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Abstract—In this paper, the single machine job shop scheduling
problem is studied with the objectives of minimizing the tardiness
and the material cost of jobs. The simultaneous consideration
of these objectives is the multi-criteria optimization problem
under study. A metaheuristic procedure based on simulated
annealing is proposed to find the approximate Pareto optimal
(non-dominated) solutions. The two objectives are combined in
one composite utility function based on the decision maker’s
interest in having a schedule with weighted combination. In view
of the unknown nature of the weights for the defined objectives, a
priori approach is applied to search for the non-dominated set of
solutions based on the Pareto dominance. The obtained solutions
set is presented to the decision maker to choose the best solution
according to his preferences. The performance of the algorithm
is evaluated in terms of the number of non-dominated schedules
generated and the proximity of the obtained non-dominated front
to the true Pareto front. Results show that the produced solutions
do not differ significantly from the optimal solutions.

Keywords-Multi-criteria optimization; Simulated annealing;
Metaheuristic procedures; Pareto optimal; Job shop scheduling.

I. INTRODUCTION

Real industry problems require simultaneous optimization
of several incomparable and conflicting criteria. Often, there
is no single optimal solution; rather there is a set of alternative
solutions. In joinery manufacturing, the decision maker aims
at simultaneously minimizing the tardiness and the material
cost for the produced jobs. Jobs with similar materials have
a savings factor when scheduled together. On the other hand,
the customer requires fast delivery once the order is confirmed.
Therein lies a dilemma: scheduling jobs with similar materials
would help control the material cost, but this would definitely
increase the tardiness. Minimizing the tardiness will meet the
customer’s requirements, but does not generate higher revenue.
A proper balance would minimize the material cost while
simultaneously finishing all the jobs in a timely manner. In
other words, a trade-off must be made between the material
cost and a timely completion of all the jobs. Hence, in most
real industry scheduling problems, we encounter the multi-
objective optimization.

A general multi-objective optimization problem can be for-
mulated in the following way. Given an n-dimensional solution
space S of decision variables vector X = {x1, . . . , xn}, it
is required to find a vector X∗ that satisfies a given set
of criteria depending on K objective functions Z(X) =
{Z1(X), . . . , ZK(X)}. Finding the ideal vector X∗ that min-
imizes all objective functions simultaneously is usually unfea-
sible. The solution space S is generally restricted by a series
of constraints, such as gj(X

∗) = bj for j = 1, . . . ,m, and
bounds on the decision variables. Objectives under considera-
tion always conflict with each other, hence, optimizing vector
X with respect to a single objective often results in unaccept-
able results with respect to the other objectives. Therefore, a
perfect multi-objective solution that simultaneously optimizes
each objective function is almost impossible. A reasonable
solution to a multi-objective problem is to investigate a set
of solutions, each of, which satisfies the objectives at an
acceptable level, and without being dominated by any other
solution. Marler and Arora [1] summarize the multi-objective
optimization area within the following definitions:

1) Dominant solution: If all objective functions are used for
minimization, a feasible solution X is said to dominate
another feasible solution Y (X ≻ Y ), if Zi(X) ≥
Zi(Y ) for i = 1, . . . ,K and Zi(X) < Zi(Y ) for at
least one objective function.

2) Pareto optimal (Efficient) solution: A solution is said
to be Pareto optimal if it is not dominated by any other
solution in the solution space. A Pareto optimal solution
cannot be improved with respect to any objective without
worsening at least one of the other objectives.

3) Pareto optimal set: The set of all feasible non-dominated
solutions in S is referred to as the Pareto optimal set. For
many problems, the number of Pareto optimal solutions
is enormous (perhaps infinite). Therefore, the problem of
reducing Pareto optimal sets by obtaining the additional
information is very important.

4) Pareto front: For a given Pareto optimal set, the corre-
sponding objective function vector values in the objec-
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tive space are called the Pareto front.
Scheduling problems are combinatorial optimization prob-

lems. In most cases, they are NP hard for even a single
criterion optimization and are therefore unlikely to be solvable
in polynomial time. The approaches are classified, Nagar et
al. [2], into two groups: (1) finding the exact optimal solution
using implicit enumeration methods based on either branch-
and-bound or dynamic programming techniques; (2) finding a
near optimal solution using heuristic methods. Heuristics are
either constructive (e.g., Panneerselvam [3]) or improvement
derived from metaheuristic approaches, such as genetic algo-
rithm (GA) and simulated annealing (SA) (e.g., Sridhar and
Rajendran [4], Suman [5]).

SA has become very popular for solving multicriterion opti-
mization problems [6][7][8]. The increasing acceptance of this
technique is due to its ability to: (1) find multiple solutions in a
single run; (2) work without derivatives; (3) converge speedily
to Pareto-optimal solutions with a high degree of accuracy;
and (4) handle both continuous function and combinatorial
optimization problems with ease. There have been a few
techniques that incorporate the concept of Pareto-dominance.
Some such methods are proposed in [9][10][11] and [12],
which use Pareto-domination based acceptance criterion.

In this paper, the concept of Pareto-dominance is incorpo-
rated into the SA procedure to find the non-dominated set of
solutions required by the decision maker. We start by briefly
discussing the problem and the methodology of combining
the objectives into a single weighted composite function in
Section II. In Section III, we describe the Pareto archived
simulated annealing (PASA) algorithm, and in Section IV, the
computational study carried out to show the performance of
the algorithm. Finally, we draw conclusions in Section V.

II. THE PROBLEM UNDER STUDY

In the joinery domain, the cost of products, such as kitchens,
is largely determined by the number of material sheets used in
manufacturing. Jobs with similar materials can be scheduled
together to decrease the amount of material waste. This leads
to minimizing the production cost and therefore increase in
the profit; however, not without affecting the tardiness of the
jobs. The goal is to find the proper balance between these
objectives.

The deterministic job shop scheduling problem considered,
in this paper, consists of a finite set J of n jobs to be processed
on a single machine. It is desired to find the order (schedule)
in, which these n jobs should be processed to maximize the
total cost savings C and minimize the total tardiness time T .

Every two jobs, j and k, with the same material have a
savings factor Sjk, which shows the reduction in material that
can be achieved when producing the two jobs in sequence
(Sjk = Skj). Given the number of material sheets N and the
cost of a material sheet M , the cost savings CSjk is calculated
as:

CSjk = CSkj = Mj ∗ (Nj +Nk) ∗ Sjk (1)

where j = 1, . . . , n, k = 1, . . . , n

The total cost savings C is defined by:

C =
1

2

n∑
j=1

n∑
k=1

CSjk (2)

Each job is to be processed for an uninterrupted processing
period of pj . The process time pj is assumed to be known
in advance, and necessary setup times are included in the
processing times. The tardiness T of job j is determined by
the completion time cj . It is calculated as:

T =

n∑
j=1

max(0, cj − dj) (3)

where dj is the due date and cj is the completion time of job
j.

It is worth to note that in general, we may have to minimize
all the objective functions, maximize them all, or minimize
some functions and maximize others. However, any objective
function can always be converted from the minimization form
to the maximization form, and vice versa since:

max(f(a)) = −min(f(a)) and
min(f(a)) = −max(f(a))

This conversion is applied to the total cost savings C
objective to transforming it to a minimization objective.

An attractive approach adopted by several investigators
[13][14][15][16] is to combine the objectives into a weighted
sum:

E(x) =
K∑
i=1

wifi(x) (4)

The composite objective is used as the energy to be mini-
mized in a scalar form. Therefore, the two objectives (1) the
cost saving C and (2) the tardiness T are combined in one
energy function as:

E = w ∗ T − (1− w) ∗ C (5)

where w (0 ≤ w ≤ 1) is the weight assigned to each objective
during the search process.

It is clear that SA with a composite energy as in (4) and
(5) will converge to points on the Pareto optimal front where
the objectives have ratios given by w−1

i , if such points exist.
However, it is unclear how to choose the weights in advance.
Recognizing this, w is initialized to 0 and is increased by
0.1 at each search process in order to realize various search
directions to uncover more non-dominated solutions in the
solution space.

The notations used throughout this paper are given below.
n: Number of jobs;
pj : The processing time of job j;
dj : The due date of job j;
σ: The current schedule;
T : Tardiness of the schedule σ;
C: Total cost savings of the schedule σ;
σ′: The candidate schedule;
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T ′: Tardiness of the schedule σ′;
C ′: Total cost savings of the schedule σ′;
σb: The best solution obtained during the search;
Tb: The best tardiness obtained during the search;
Cb: The best total cost savings obtained during the search;
w: The non-negative weight of the objectives;
Z: The weighted sum of the objectives for the schedule
according to (5);

III. THE PARETO ARCHIVED SIMULATED ANNEALING
ALGORITHM (PASA)

SA is a metaheuristic algorithm based on the basic idea of
neighborhoods. It was derived from the analogy between the
simulation of the annealing of solid and the strategy of solv-
ing combinatorial optimization problems [17]. A neighboring
solution is derived from its originator solution by a random
move, which results a new slightly different solution. This
increases the chance of finding an improved solution within a
neighborhood more than in less correlated areas of the search
space. Also, SA overcomes the problem of getting stuck in
local minima, by allowing worse solutions (lesser quality) to
be taken some of the time (i.e., allowing some uphill steps).
The simplicity of the approach and its substantial reduction
in computation time [18][19] has made it a valuable tool for
solving multi-objective optimization problems [13][15][16].

In this section the main components of the PASA algo-
rithm are presented. The implementation of the algorithm is
described in Figure 1. To preserve the non-dominated solutions
obtained during the search process, an archive is maintained
for storage. The Pareto search and archiving procedure, as
well as the procedures followed for setting the parameters are
explained below.

A. Pareto Search and Archiving

The PASA algorithm starts its search with a randomly
generated solution σ. This solution is added to the Pareto
archive and the objectives T and C and the weighted sum,
based on w, of the two objectives are calculated. A neighbour
solution σ′ is generated from the current solution σ using
the Randomly Pairwise Interchange mechanism. The candidate
solution σ′ is then compared to σ for non-domination. In case
of the two objectives T and C, a solution σ′ is said to dominate
a solution σ, if the following condition is satisfied:

[((T ′ ≤ T ) AND (C ′ ≥ C))

AND ((T ′ < T ) OR (C ′ > C))] (6)

If the candidate solution σ′ dominates σ, then σ′ becomes the
current solution. Otherwise, the dominated candidate solution
is accepted with the acceptance probability Paccept as given
in (7).

Paccept = exp−(△Z/T ), △Z = Z ′ − Z (7)

Whenever a candidate solution σ′ is accepted, it is compared
with every member of the archive. Once any solution in the

archive is identified as a dominated solution, it is removed
from the archive. If σ′ is dominated by any existing solution,
then it is discarded and comparison is terminated. After all
comparisons, non-dominated solutions will be left in the
archive and σ′ is added to the archive, if those within the
archive and σ′ are not dominating each other. Irrespective of
whether the candidate solution is added into the archive or
not, the search process is continued with the current solution.

B. Parameter Settings

The value of the initial temperature is chosen by experimen-
tation. The range of change ∆Z in the value of the objective
function with different moves is determined. The initial value
of temperature to is calculated based on the initial acceptance
ratio λo, and the average increase in the objective function,
∆Z0:

to = − ∆Z0

ln(λo)
(8)

The following steps describe the method used to calculate
the value of to. Non-improver solutions are accepted with a
probability of about 95 percent in the primary iterations (i.e.,
λo = 0.95).

Step 1:
/* Q represents the number of samples */
for q = 1 to Q do

repeat
Generate two solutions X1 and X2 at random

until Z(X1) ̸= Z(X2)

tqo = − |Z(X1)−Z(X2)|
ln(0.95)

end for
Step 2:

to = 1
Q

∑Q
q=1 t

q
o

Enough number of iterations at each temperature are carried
out to ensure that all represented states are searched and
to enable reaching the global optimum. For our problem,
a 150 non-improving iterations are used to terminate the
current temperature level. The temperature is decremented in
a proportional manner using the relationship ti+1 = α ∗ ti,
where α is the cooling factor constant and chosen to be
0.98. A final temperature value tf equals to 5 percent of the
initial temperature to is used for stopping the algorithm (i.e.,
tf = 0.05 ∗ to).

The re-annealing procedure restarts the SA process with
the best solution obtained during the previous run as the
seed solution. The search direction is changed by changing
the weight coefficient w to uncover more non-dominated
solutions. Initially, w is set to 0 and is changed with increments
of 0.1 for every search process. During, the re-annealing, the
temperature and other parameters are re-set to their initial
values. The re-annealing process is carried until w reaches
the value 1.0.
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� = 	� ∗ � 

Algorithm PASA 
Calculate the initial temperature t0. 
Initialize the Archive. 
Initialize w = 0, non-improving iterations at each temperature (nt = 150), cooling factor � = 0.98	and  
final temperature tf = 0.05 * t0 . 
Generate a random solution (σseed), add σseed to the Archive, and let σb= σseed. 
while (w ≤ 1.0)  

t = t0. 
σ = σseed. 
Calculate T, C, and Z. 
Let Tb = T, Cb = C, and Zb = Z. 
while (t ≥ tf) 
k = 1 
while (k ≥ nt) 
Generate a neighbour solution σꞌ from σ. 
Calculate Tꞌ, Cꞌ, and Zꞌ. 
if (σꞌ dominates σ) OR (σꞌ and σ are non-dominating to each other) 
σ = σꞌ, T = Tꞌ, C = Cꞌ, and Z = Zꞌ. 
Check dominance of σꞌ w.r.t all solutions in the Archive and update the Archive. 
if (σꞌ dominates σb) 
σb = σꞌ, Tb = T, Cb = C, and Zb = Z. 

End if 
else 

Generate a random number U. 
if (U < ��	∆� �⁄ 	) 
σ = σꞌ, T = Tꞌ, C = Cꞌ, and Z = Zꞌ. 
Check dominance of σꞌ w.r.t all solutions in the Archive and update the Archive. 

End if 
End if 
k = k + 1 

End while 

End while 
w = w + 0.1 
σseed = σb. 

End while 
Return the Archive containing the generated non-dominated solutions. 

Fig. 1. The PASA algorithm

IV. COMPUTATIONAL RESULTS

In this section, effectiveness of the proposed algorithm in
obtaining the Pareto front is measured by considering the
extreme solutions, i.e., the best tardiness and the best total cost
savings, of the Pareto optimal solution set as the reference.
The performance is verified using a number of numerical
examples, inspired by the real data and generated randomly
with pre-defined parameters. The problem sets used for testing
consist of 5, 6, 7, 8, 9 and 10 jobs. Processing times for jobs
are generated based on the job size, while the due dates are
generated with different levels of tightness as proposed in [20].

The total processing time P =
∑n

i=1 pi is computed first,
then the due date for each job is generated from the uniform
distribution:

[P (1− TF − RDD

2
)), P (1− TF +

RDD

2
))] (9)

where TF is the average tardiness factor and RDD is the
range of due dates. The settings of TF = 0.6 and RDD = 0.4
are used.

The relative percentage deviation (RPD), defined by (10), in
the objective value of the obtained non-dominated front with
respect to the objective value of the extreme solution is used
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Fig. 2. True Pareto front and net non-dominated solutions for problem 22
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Fig. 3. True Pareto front and net non-dominated solutions for problem 27

as the main quality metric. Additionally, the mean relative
percentage deviation (MRPD) is calculated for each problem
set.

RPD =
Oobtained −Oextreme

Oextreme
∗ 100 (10)

Table I shows the performance results of the algorithm for
the generated problem sets. The true extreme solutions are
obtained by enumerating all possible schedules to find the
optimal values for T and C. The best values for T and C
generated by the PASA are compared to the true extreme
solutions. It is observed that the extreme solutions of the
non-dominated front generated by PASA are very close to
extreme solutions of the corresponding Pareto front. The non-
dominated solutions generated are within 2.87% in T and
1.59% in C of the true extreme Pareto solutions on the average
with a maximum deviation of 5.56% in T and 2.36% in C.
Table II presents the net non-dominated solutions obtained
for some problem instances. Figure 2 and Figure 3 show the
net non-dominated front relative to the true Pareto front for
sample of the problems (problem no. 22 and problem no. 27).
Given the experimental results, the PASA produced very high
quality solutions with low computational complexity based on
the combinatorial nature of the problem.

V. CONCLUSION AND FUTURE WORK

In this paper, a SA algorithm is presented to find Pareto
solutions for the minimization of tardiness and the maxi-
mization of material cost savings for the single machine job
shop scheduling problem in the joinery manufacturing domain.
Different problem sets are solved with the proposed algorithm
and the approximate Pareto optimal solutions are found. These
solutions are compared with the true Pareto optimal front
obtained by enumeration. Results show that the proposed
method generates very close solutions to the optimal solutions
for some problems and the true extreme solutions for other
problems. Archiving the non-dominated solutions during the
search process enables the decision maker to choose the best
solution according to the conditions and constraints present at
the time of decision making. For future work, more than two

criteria will be considered as well as problems with dynamic
and stochastic data.
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TABLE I
PERFORMANCE OF THE PASA ALGORITHM, COMPARED TO THE OPTIMAL SOLUTION OBTAINED BY ENUMERATION, MEASURED IN TERMS OF THE

RELATIVE PERCENTAGE DEVIATION (RPD) IN TARDINESS T AND TOTAL COST SAVINGS C

Problem n Optimal PASA RPD MRPD in Optimal PASA RPD MRPD in
no. T T T T C C C C
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5 5 2 2 0.0 8633.12 8633.12 0.0
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30 10 38 39 2.63 11345.43 11190.1 1.37
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