ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Compiler-based Differentiation of Numerical Simulation Codes

Michel Schanen, Michael Forster, Boris Gendler, Uwe Nauma
LUFG Informatik 12: Software and Tools for ComputationalgiEreering
RWTH Aachen University
Aachen, Germany
{schanen, f oer st er, bgendl er, naunann}@t ce. r wt h- aachen. de

Abstract—Based on algorithmic differentiation, we present replaced by approximated values. To improve their accuracy
a derivative code compiler capable of transforming imple- additional observed valueg®® € R"=*x"t gre taken into
mentations of multivariate vector functions into a program o~.ount. The discrepancy between observed val@?;sand

for computing derivatives. The resulting values are accurte simulated values. - are evaluated by the cost funetion
up to machine precision compared to the common numerical 4.3 y

approximation by finite differences. This paper gives a shar 1 &=
mathematical background of algorithmic differentiation while y=- Z Z(ul G—ut)? ©)
focusing on the user’s perspective of applying derivative en- 2 ' I

eration tools on an already implemented code. This process i ==t
illustrated by a one dimensional implementation of Burgers allows us to obtain improved estimations for the initial
equation in a generic optimization setting using for exampt conditions by applying, for example, Newton’s method [3] to
Newton's method. In this implementation, finite differences are g4|ye the data assimilation problem with Burgers’ equation
replaced by the computation of adjoints, thus saving an orde as constraints [4]. The single Newton steps are repeatdd unt
of magnitude in terms of computational complexity. >) .
the residual cosy undercuts a certain threshold.

In Section II, we introduce algorithmic differentiation as
implemented by our derivative code compilécc cover-
ing both the tangent-linear as well as the adjoint model.
)) _ S Section Il provides a user’s perspective on the applicatio

A typical problem in fluid dynamics is given by the of gcc. Higher-order differentiation models are discussed
continuous Burgers equation [1] in Section IV. Finally, the results of our case study are

9 discussed in Section V.
ou ou 0-u

- - = 1
ot “ax VB:v? ’ S Il. ALGORITHMIC DIFFERENTIATION

describing shock waves moving through gasedenotes The minimization of the residual is implemented by
the velocity field of the fluid with viscositys. Similar resorting to Newton's second-order method for mini-
governing equations represent the core of many numericahization. In general, Newton’s method may be applied
simulations. Such simulations are often subject to variouso arbitrary differentiable multivariate vector funct®n
optimization techniques involving derivatives. Thus, ur y = F'(x) : R® — R™. This algorithm heavily depends on
ers’ equation will serve as a case study for a compiler-basethe accurate and fast computation of Jacobian and Hessian
approach to the accumulation of the required derivatives. values, since one iterative step — x;41 iS computed by

Suppose we solve the differential equation in (1) by
discretization using finite differences on a equidistarg-on
dimensional grid withn,. points. For given initial conditions The easiest method of approximating partial derivatives
u;,0 With 0 < 4 < n, we simulate a physical process by inte- V.. I’ uses the finite difference quotient
grating overn, time steps according to the leapfrog/DuFort- F(x+h-e)—F (x)

Keywords-Algorithmic Differentiation; Source Transforma-
tion; C/C++; Optimization; Numerical Simulation;

I. INTRODUCTION

Xi1 =% — V2F(x;) 7 - VF(x;) . 4)

Frankel scheme presented in [2]. At time sfewe compute Ve, F(x) &~ 5 , (5)
u; j+1 for time stepj + 1 according to _ _ _
' A for the Cartesian basis vecter € R™ and withx € R,
t i Nari
Wi = i1 — (wij (Uis1j — tim1;)) h — 0. In order to accumulate the Jacobian of a multivari

(2) ate function the method is rerum times to perturb each
+ 24t (ir1j — (Wijg1 + i j—1) + Uio1;) component of the input vectat. The main advantage of
Az? - - ’ - this method resides in its straightforward implementgtion
where At is the time interval andAx is the distance no additional changes to the code of the functioare nec-
between two grid points. In general, if the initial condit®d essary. However, the derivatives accumulated througrefinit
u; o cannot be accurately measured, they are essentiallfifferences are only approximations. This represents amaj

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7 105

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

drawback for codes that simulate highly nonlinear systems, I1l. bcc - A DERIVATIVE CODE COMPILER

resulting in truncation and cancellation errors or simply Numerical optimization problems are commonly
providing wrong results. In particular by applying the Tyl jmplemented as multivariate scalar functions
expansion to the second-order centered difference quotiery — r(x) : R* — R, describing some residuaj of a
we derive a machine precision induced approximation erropymerical model. We assume that the goal is to minimize a
of 77, with ¢ being the rounding error. norm of this residual by adapting the inputs. Therefore,
Algorithmic differentiation (AD) [5] solves this prob- for better readability and without the loss of generality, i
lem analytically, changing the underlying code to computethis paper, we will only cover multivariate scalar function
derivatives by applying symbolic differentiation rules to The main link betweedcc and the mathematical models

individual assignments and using the chain rule to progagatof AD is the ability to decompose each function implemen-
derivatives along the flow of control. The achieved accuracyation into single assignment code (SAC) as follows:

only depends on the machine’s precisien There exist ,
forj=n,...,n+p

two distinct derivative models, differing in the order of (8)
application of the associative chain rule. LetF" be the v; = @;(vi)i<;j
Jacobian off’. The tangent-linearcode The entire program is regarded as a sequenge-ofl ele-
mental statements. In each statement an elemental function
F(i,y) deg F(i,i,y,y) ’ ; is applied to a set of vz?\riableési)Hj yielding the unique
1 Ll intermediatevariablewv; with ¢ < j denoting a dependence
where (6) of v; onwv;. Theindependentnputs are given by, = x;
v =VF(x) % fpr 1=0,...,n—1 while thedependgnbutput of F' is Fhe
final valuey = v,1,. Whendcc applies the tangent-linear
and y=F(x) , model to each of the + 1 assignments, we obtain
of F' computes the directional derivatigeof the outputsy forj=n,...,n+p
with respect to the inputg for a given directionk € R",] dp; .
while arrows designate inputs and outputs. By iteratively s Y= Z ov; i 9)
ting x equal to each of the Cartesian basis vectors R, =3
we accumulate the entire Jacobian. This leads to a runtime v; = ¢;(vi)i<;

complexity identical to finite differences @(n) - cost(F), Considering thej-th assignment in (9), the locaktth entry

where cost(F') denotes the computational cost of a singleof the gradient(ng)k<j is provided inv; by settingy,

function evaluation. to one and all(v;)zi<; to zero. The gradient component
By exploiting the associativity of the chain rule, the (aa_gi)ke{o vvvvv n—1} IS obtained by evaluating (9) and setting
adjoint code &y, to one and all othe(d;),zicqo,... n—1} tO zero. To get
Lo the whole gradient we have to evaluate {9}imes letting
F(>¢<, y) deg F(éji’}“y) , % range over the Cartesian basis vector®ih The adjoint
1 ol model is acquired by transforming (8) into:
where (7) forj=mn,....,n+p
y=Fx) o v = ;(vi)i;
and x=x+VF(x)'-y , fori <jandj=n+p,...,n (10)
of F' computesadjointsx € R™ of the inputsx for given Ui = ; + j(vk)kﬁ. i

adjointsy € R™ of the outputs. To accumulate the entire v;
Jacobian we have to iteratively sgequal to each Cartesian The first part consists of the original assignmepits=
basis vector oR™ yielding a runtime complexity o®(m)- n,...,n + p and is calledforward section The reverse
cost(F'). Note that for scalar functions withn = 1 the sectionfollows with the computation of the adjoint variables
accumulation of the Jacobian amounts to the computatiom the orderj = n+p,...,n. Note the reversed order of the
of one gradient yielding a runtime cost 6¥(1) - cost(F) assignments as well as the changed data flow of the left and
for the adjoint model compared 0(n) - cost(F') for the right-hand sides compared with the original assignmernas. T
tangent-linear model. In this particular case, we are able tcompute the local gradier(th“"Z)Hj we have to initialize
compute gradients at a small constant multiple of the cost;);<; with zero andy; with one. The initialization with

of a single function evaluation. The reduction of this facto zero is mandatory becauge;);~; occurs in (10) on both
down toward the theoretical minimum of three [5] is one sides of the adjoint assignment. According to (7), the adjoi

of the major challenges addressed by ongoing research amdriable v; is an input variable. Therefore it is initialized
development in the field of AD [6], [7], [8]. with the "Cartesian basis vector” iR.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7 106

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

The important advantage of the adjoint model is that by: void t1_f(int n, doublex x, doublex ti1_x
evaluating (10) only once we obtain the full gradief , double& y, double& t1_y)
in z; = v; fori = 0,...,n — 1. To achieve this we have {
to initialize (Z;);=0,...n—1 With zero andy with one. As for(int i=0;i<n;i++) {
mentioned abov& must be zero because it occurs not only y=yxsin(x[i]); _ _
on the left-hand side in (7) angis initialized with the value toy=tl_y=sin (x[1])+y=cos(x[1])«t1x[i]:
of the Cartesian basis vector x

In (8), we assumed that the input code is given as & }

SAC. This is an oversimplification in terms of real codes. Listing 2: Tangent-linear version afas generated bgicc
The adjoint code has to deal with the fact that real code

variables are overwritten frequently. One way to simulbte t

predicate of unique intermediate variables is to storeag®rt 1 for(int i=0; i<n;i++) {

left-hand side variables on a stack during the augmented tl_x[i]=1; .
forward section. Candidates for storing on the stack are’ glrgg(iZmT;]iltzxy’;y’ oy
those variables that are being overwritten and are required t1_x[i]=0; B

for later use during the computation of the local gradientss

and associated adjoints. Before evaluating the correspgnd Listing 3: Driver fort1_f
adjoint assignment in the reverse section the values are

restored from the stack.

For illustration purposes we consider Listing 1 show-
ing an implementation of the non-linear reductional_f (adjoint, 1st-order version off) shown in Listing 4.
y(x) = HZL:_Ol sin(z;). dcc parses only functions withoid ~ AS in the tangent—llnear_ case e.ac_:h function argument is
as a return type (line 1). All inputs and return values aredugmented by an associated adjoint component, fiese
passed through the arguments, which in turn only consistand al_y. As mentioned above we need a stack in the
of arrays (called by pointers) and scalar values (called by@djoint code for storing data during the forward section.
reference). Additionally we may pass an arbitrary number ofl he augmented forward sectiomses stacks to store values
integer arguments by value or by reference. We assume thipat are being overwritten and to store the control flow. The
all differentiable functions are implemented using valoés —actual implementation of the stack is not under considemati
type double. Therefore, only variables of typeouble are here; therefore we replaced the calls to the stacks withanacr

directly affected by the differentiation process. definitions for better readability. By defauticc generates
code that uses static arrays which ensures high runtime

© ©® N @ U A~ W N

void f(int n, double xx, double &y)

; { performance. There are three different stacks used in the
3 int i=0; adjoint code. The stack callezs is for storing the control

4 y=0;, _ flow, FDs takes floating point values ands keeps integer

; for (1=0:i<nsi+s) { values. The unique identifier of the two basic blocks [9] in

y=y=sin(x[i]); ! o
7 the forward section are stored in lines 6 and 9. For example,
&} after evaluating the augmented forward section of Listing 4
Listing 1: dcc input code. the stackcs contains the following sequence
Using the command linecc f.c -t, we instruct the O’u (11)

compiler to use the tangent-lineart() mode in order to n times

generate the function_f (tangent-linear]lst-order version In line 10, variabley is stored onto the stack because it
of f) presented in Listing 2. The original function argumentsis overwritten in each iteration although needed in line 21.
x andy are augmented with their associated tangent-lineaHence, we restore the value ¢fin line 20. For the same
variables1_x andti_y. Inside a driver program this code has reason we store and restore the valuei ofi line 11 and

to be rerunn times letting the input vecta_x range over 19. The reverse section consist of a loop that processes
the Cartesian basis vectors RI* to accumulate the entire the control flow stackcs. The basic block identifiers are
gradient. Listing 3 shows how to use the generated code akstored from the stack and depending on the value, the
Listing 2 in a driver program. Lines 2 and 5 let input variable corresponding adjoint basic block is executed. For example

t1_x range over the Cartesian basis vectors. By settingi] the sequence given in (11) as content in ¢isestack leads
to 1 the function1_f (line 3) computes the partial derivative to a n-times evaluation of the adjoint basic block one and
of y with respect tox[i]. afterward one evaluation of the adjoint basic block zero.

The command linedcc f.c -a tells dcc to apply The basic block one in line 9 to 11 has the corresponding
the adjoint mode-(a) to f. c. The result is the function adjoint basic block in line 19 to 22. In contrast to (7), in

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7 107

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

1 void al_f(int n, doublex x, doublex al_x, The tangent-linear mode reapplied to the first-order
2 double& y, double& al_y) tangent-linear code (6) witmm = 1 for scalar functions
: { int i=0: yields the second-order tangent-linear code
5 /1 augmented forward section f f 1
CS_PUSH(0) ; by dec AL XYoo s
S yoo. (0 F(xx,y,9) — F(X,X%,%,0,5,9,9)
8 for (i=0; i<n; i++) { L4 1l
9 CS_PUSH(1); where
10 FDS _PUSH(y); y=yxsin(x[i]); - . - -
1 IDS_PUSH (i) y=(VF(x)-x)" x+VF(x)-x , (12
12 } —
13 /1 reverse section y=VF(x)-x ,
1 while (CS_NON_EMPTY) { y=VF(x)-x and
15 if (CS_TOP==0) {
16 al_y=0; y = F(x)
1; }i’f (CS_TOP==1) { Again, dcc generates exactly the implementation of the
19 IDS_POP(i); mathematical model. As we see in (12), the te&Vifi (x) - x
20 FDS_POP(y) ; . _ must be equal ta) in order to accumulate the entries of
21 al_x[i]+=y*cos(x[i])*al_y; . 9 ~
2 al_y=sin(x[i])*al y; the HessiarV<F. As a consequence, must be set td on
2 } input. The produc(VQF (x) - X)T -X represents a projection
“ y CS_POP; of the Hessian, determined by the vectérand x. In our
%} case withm = 1 the HessiarV?F € R"*" hasn? entries.

To compute the entryfW F; ; of the Hessian the vectors
% and x have to be set to theé-th and j-th Cartesian
basis vectors, respectively. In order to accumulate theevho
Hessian this step has to be repeated for each entry, yiedding

line 22 the adjointal_y is not incremented but assigned. COMPputational complexity a®(n?) -cost (F). Taking either
This is due to the fact thag is on both hand sides of adjoint or tapgent—llnear first-order input code, we regppl
the original assignment in line 10. This brings an aliasingdc¢ Py invokingdec -t -d 2 t1_foo. cpp. Thistells
effect into play. This effect can be avoided with help of CC to generate second-orderd 2) tangent-linear{t)
intermediate variables; making this code difficult to read.derivative code while avoiding internal namespace clashes
For that reason we show the adjoint assignment without L0OKINg at the possible combinations of the two dif-
intermediate variablesdcc generates adjoint assignments ferentiation models, there exist another three secondrord
with intermediate variables and incrementation of the- left Mdels. We may either apply the adjoint model to the
hand side as shown in (7). Tlie c-generated code and the tangent—hngar code or apply the adjoint mode to_the adjoint
one shown here are semantically equivalent. To accumulafe?de. We will focus on the model where tangent-linear mode
the gradient using the functica_f, we again have to write IS _applled to the adjoint code, calladngent-linear over

a driver, presented in Listing 5. It is sufficient to initzgi ~ 2djointmode. _ _

the adjoint variablext_y and call the adjoint functiom1_t This time the adjoint code (7) is taken as the input for the

only once to get the whole gradient (line 2), illustrating th "€@pplication of the tangent-linear mode, obtaining

Listing 4: Adjoint dcc output

reduced runtime complexity of the adjoint mode. L d o bidee 2oL by Lt
_1. F(Xaxvyvy) — F(vavxaxvyayayvy) ’
1 al_y=1; 1y Ll
2 al_f(n, x, al_x, y, al_y);
s for(int j=0; j<n;j++) where
4 gradlent[]l]:.al_x[J];- y':VF(x)-X ’
Listing 5: Driver fora1_f y=F(x) ,
x=x+x%xT-V?F(x)-y+VF(x)T-y and
IV. HIGHER ORDER DIFFERENTIATION x=x+VF)"y

Numerical optimization algorithms often involve higher- (13)
order derivative models. Thus, the need for Hessians iFhe generated implementation computes the term
imminent. With this in minddcc was designed to generate x7 - V2F (x)-y. This time we do not end up with
higher-order derivative codes effortlessly using tsappli- one single entry, but we are able to harvest one complete
cation featuredcc is able to generatgth-order derivative row V2F; of the Hessian ink. To achieve this, the term
code by readingj — 1)th-order derivative code as the input. VF (x)T -4 and thusy must be set tad) on input. The
In this section we will focus on second-order models. scalary must be set td. Finally to compute a row of the

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7 108

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

n 250 500 1000 2000 : . . .
10 003 008 015 032 The single execwtop ofl_f takes approximately twice so
TLM (s) 33 109 457 1615 much as the execution éf
?le (AS%)J %g(l) 05-;13 202-22 815-23 The execution time of the adjoint gradient computation is
- s
DS size) 7500502 | 15001002 | 30002002 | 60004002 growing only proportional to the execution time pf
FDS size 5000002 | 10000002 | 20000002 | 40000002 /
_ cost(F")
CS size 7500503 | 15001003 | 30002003 | 60004003 AM : ————= ~ O(1).
cost(F)
Table I: Time and memory requirements for gradient com- Finally we accumulate the Hessian using tangent-linear
putation over adjoint mode. Here, the runtime is growing linearly
with respect ton as well asf since the dimension of the
dependentost is equal tol.
HessianV2F;, & must be set to thé-th Cartesian basis 1
: ¢ ! cost(F")
vector. As such, we have to rerun this modetimes in FM — AM : “cost(F) O(n).
order to accumulate the whole Hessian, yielding only a]] i))
linear increase in runtime complexity 6¥(n) - cost (F). For scalar functions in particular, the runtime complexity

The desired dcc command is dcc -a -d 2 for accumulating the Hessian using AD is the same as the
t1_foo. cpp resulting in the filea2_t 1_f 0o. cpp. The rl_mtime compl_exity of the gradient accumulation using &nit
option - a instructsdcc to generate adjoint code. difference. This enables developers to implement a second-

order model where a first-order model has been used so far.

V. CAsE STUDY VI. OUTLOOK & CONCLUSION

As discussed in Section I,, we run atest case on an inverse e have presented a source transformation compiler for
problem based on Burgers’ equation (1). As a start we takg restricted subset of C/C++. As suahcc runs on any

th_e code presented in [2] implementing the original functio system with a valid C/C++ compiler making it a very
with the signature of portable tool. Its unique reapplication feature allows eod

1 void f(int n, int nt, double& cost, doublesxx to be transformed up to any order of differentiation.
u, doublex ui...) Additionally, several extensions were implemented. As
z { these programs run on cluster systems, they often rely on
4} parallelization techniques. The most widely used paia#el
Listing 6: Signature of Burgers’ function tion method is MPI. Hence, there is a need for adjoint MPI

enabled code [10]. This feature has been integratediiato
Taking n grid points of ui as the initial conditions we Using an adjoint MP!I library [11]. Additionally there are
integrate ovent timesteps. The values are saved in the twoattempts to achieve the same goal with OpenMP [12]. For

dimensional array for each grid pointi and time steg. the sake of brevity we did not mention the program analysis
To solve the inverse problem we need the derivatives oficc performs. For better efficiencgcc usesactivity and
cost with respect to the initial conditions. TBRanalyses [13].

The results in Table | represent the runtime of one full
gradient accumulation as well as the memory requirements . . .)
in adjoint and tangent-linear mode. Additionally one Hassi [1] D- Zwillinger, Handbook of Differential Equations, 3rd ed

. . . . Boston, MA: Academic Press, 1997.
accumulation is performed using the tangent-linear over
adjoint model (13). Different problem sizes are simulated [2] E. Kalnay, “Atmospheric modeling, data assimilationdan
with varying n. We also mention the different stack size predictability,” 2003.
shown in Section lll. (3] T. Kelley, Solvi i i th Newton’ thod
; . Kelley, Solving nonlinear equations with Newton’s metho

If we assume four bytes per Integer and control stack ser. Fundamentals of Algorithms. Philadelphia, PA: Sgciet
element plus eight bytes for a floating data stack element {5 |ngustrial and Applied Mathematics (SIAM), 2003.
we end up with a memory requirement of 610 MB for
the Hessian accumulation. The tests were running on a[4] A. Tikhonov, “On the stability of inverse problemsPokl.
Genuinelntel computer with Intel(R) Core(TM)2 Duo CPU Akad. Nauk SSSRol. 39, no. 5, pp. 195-198, 1943.

and with 200(_)'009 MHz cpu. . . [5] A. Griewank and A. WalterEvaluating Derivatives. Prin-
The execution time of the tangent-linear gradient compu- "~ ciples and Techniques of Algorithmic Differentiation (2nd

tation is growing proportionally to the problem size and Edition). Philadelphia: SIAM, 2008.
the execution time of:

REFERENCES

[6] G. Corliss and A. Griewank, EdsAutomatic Differentiation:
~ O(n) Theory, Implementation, and Applicatioser. Proceedings
’ Series. Philadelphia: SIAM, 1991.

cost(F")

FM :
cost(F)

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7 109

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

[7] G. Corliss, C. Faure, A. Griewank, L. Hascoét, and U. Nau
mann, Eds.Automatic Differentiation of Algorithms — From
Simulation to Optimization New York: Springer, 2002.

[8] U. Naumann, “Dag Reversal is NP-complete,
Journal of Discrete Algorithms vol. 7,
no. 4, pp. 40-410, 2009. [Online]. Avail-
able: http://www.sciencedirect.com/science/artickg8J-
4THC1FD-2/2/7ddfc2eab484bbe184d4dcdf16d8e58a

[9] A. Aho, M. Lam, R. Sethi, and J. UllmanCompilers.
Principles, Techniques, and Tools (Second EditioRgading,
MA: Addison-Wesley, 2007.

[10] P. Hovland and C. Bischof, “Automatic differentiatidior
message-passing parallel programs,”’Rarallel Processing
Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First
Merged International ... and Symposium on Parallel and
Distributed Processing 1998nar-3 apr 1998, pp. 98 —104.

[11] M. Schanen, U. Naumann, and M. Forster, “Second-order
adjoint algorithmic differentiation by source transfotioa
of mpi code,” in Recent Advances in the Message Passing
Interface, Lecture Notes in Computer ScienceSpringer,
2010, pp. 257-264.

[12] OpenMP Architecture Review Board, “OpenMP Applicatio
Program Interface,” Specification, 2008. [Online]. Avalkx
http://www.openmp.org/mp-documents/spec30.pdf

[13] L. Hascoét, U. Naumann, and V. Pascual, “To-be-reedrd

analysis in reverse mode automatic differentiatidfiiture
Generation Computer Systenwsl. 21, pp. 1401-1417, 2005.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7 110

