
Porting of C library
Testing of generated compiler

 Ludek Dolihal
Department of Information systems

Faculty of information technology, BUT
Brno, Czech Republic
idolihal@fit.vutbr.cz

 Tomas Hruska
Department of Information systems

Faculty of information technology, BUT
Brno, Czech Republic
hruska@fit.vutbr.cz

Abstract— For testing the automatically generated C compiler for
embedded systems on the simulator, it is necessary to have
corresponding support in the simulator itself. Testing programs
written in C very often use I/O operations. This can not be done
without support of C library. Hence the simulator must provide
an interface for calling the functions of the operation system it
runs on. In this paper we provide a method that enables
programs to run, which use functions from the standard C
library. After the implementation of this approach we are able to
use the function provided by the C library with limitations given
by the hardware.

Keywords - Porting of a library; C library; compiler testing;
simulation.

I. INTRODUCTION

One of the goals in our research group is an automatic
generation of C compilers for various architectures. Currently,
we are working on Microprocessor without Interlocked
Pipeline Stages (MIPS). To minimize the number of errors in
the automatically generated compilers, it is necessary to put the
generated compilers under test. Because the whole process of
compiler generation is highly automatic and we do not have all
the platforms, for which we develop, available for testing, we
use simulators for compiler testing instead of the chips or
development kits. If one wants to test the C compiler within
any simulator, it is necessary to add the support for the C
library functions into the simulator, which is used for testing.

The support of the library is crucial in our project. We need
to use tests written in C for the compiler testing and the tests
commonly use I/O functions, functions for memory
management, etc. This paper presents the idea of fitting the
simulator, where the testing is performed, with support of the C
library and later on the implementation of this method.

The paper is organized in the following way; the second
section provides the position of the testing in the Lissom
project, then a short overview of related work is given, section
four discusses the reasons for choosing the library. Sections
five and six discuss the theoretical and practical side of
adding the library support into the simulator. Section seven
concludes the paper.

II. POSITION IN LISSOM PROJECT

In the Lissom project [1], we focus mainly on hardware
software codesign. In order to deliver the best possible services

we want to provide the C compiler for a given platform as C is
one of the main development languages for embedded systems.
The C compiler is automatically generated from the description
file. Besides the C compiler there are a lot of tools that are also
generated from the description file. The tools include mainly:

• simulators,

• assembler,

• disassembler,

• profiler,

• hardware description.

 Simulators can be either cycle accurate or instruction
accurate. The profiler was thoroughly described in this article
[2].

 The description file is written in ISAC [3] language. The
ISAC language is an architecture description language (ADL).
It falls into the category of mixed architecture description
languages.

We would like to produce the whole integrated
development environment (IDE) for hardware software
codesign. This IDE should provide all the necessary tools for
developers when designing embedded systems from the
scratch. The simulators are part of the IDE and the C library is
part of the simulators.

The tool for generating compilers is called backendgen and
is also embedded in the IDE. The backendgen was
programmed manually; it is not generated. The quality of a
compiler is crucial for the quality of software that is compiled
by the compiler. Hence it is very important to test the compiler
that is generated by the backendgen. Through locating the
errors in the compiler itself we can afterwards identify and fix
problems in the generation tools and in the whole development
process.

The primary role of the C library is to enlarge the range of
constructions that can be used during the process of testing.
Without all doubts it is important to test the basic constructions
such as if statement loops, function calls, etc. On the other
hand it is highly desirable to have a possibility of printing
outputs or the exiting program with different exit values and
this can not be done without C library support. Exit values are
the basic notification of program evaluation and debugging
dumps are also one of the core methods of debugging. Note

125

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

that all the tests are designed for the given embedded system,
and the tests are run on the simulator.

Secondary role of the library in the whole process of
development is providing additional functions for writing
programs. One of the most used groups of functions are
functions for allocating memory, string comparison and
parsing, input/output methods, etc.

As it is possible to generate several types of simulators in
Lissom project, it will be necessary to add the library support
into all types of simulators. It should not include any
substantial changes to the process of generation.

III. RELATED WORK

Simulators in general are one of the most popular solutions
as far as embedded system development is concerned. They are
very often used for testing. We tried to pick up several
examples that are connected to embedded systems
development, and were published in the form of an article. The
Unisim project is not aimed at embedded systems but provides
an interesting idea.

In [4], a system very similar to the one that is developed
within our project is suggested. It is called Upfast. The article
describes system that generates different tools from a
description file such as we do. The article mentions that C
libraries were developed, but no closer information is given. It
seems that in the simulator of the Unisim project the support
for C language library has been right from the beginning.
Unfortunately, this is not our case. Porting of the library is
critical for us, because without the support it is very difficult to
test and evaluate the results of any tests.

Another interesting system including a simulator is
described in [5]. The project is called Rsim and is focused on
the simulation of shared memory multiprocessors. The Rsim
project works under Solaris. The Rsim simulator can not use
standard system libraries. Unfortunately, it is not explained
why. Instead the Rsim provides commonly used libraries and
functions. The Rsim simulator was tested for support of a C
library. All system calls in the Rsim are only emulated, no
simulation is performed. In our system we will simulate the
calls when necessary. The Rsim does not support dynamically
linked libraries and our system also does not consider dynamic
linking at the current state. Unfortunately, in the article [5] is
not mentioned how the support for C library functions was
added into the simulator.

 The Unisim project [6] was developed as an open
simulation environment which should deal with several crucial
problems of today simulators. One of the problems is a lack of
interoperability. This could be solved, according to the article,
by a library of compatible modules and also by the ability to
inter-operate with other simulators by wrapping them into
modules. Though this may seem to be a little out of our
concern, the idea of an interface within the simulator that
allows adding any library, is quite interesting. In our case we
will have the possibility to add or remove modules from the
library in a simple way. But the idea from the Unisim project
would make the import of any other library far easier than it is
now.

The articles above are all related to simulations. The C
programming language is not a new one and it is not possible
to list all the articles that are in any way related to any library
of C language. The simulator is either created in a way that it
already contains the library or it has at least some interface
which makes it easier to import the library in case it is wrapped
in a module. Unfortunately, our simulator does not contain
such an interface.

IV. CHOOSING THE LIBRARY

As we are focused mainly on embedded systems and we
design the whole process of compiler development for them we
dedicated quite a lot a time to choosing the correct library. It
was clear right from the beginning that glibc is needlessly large
and therefore not suitable for use in embedded systems. We
need a library that satisfies the following criteria:

• minimalism,

• support for porting on different architectures,

• well-documented,

• new release at least once a year,

• compatibility with glibc,

• modularity.

All these conditions were satisfied by very few libraries.
Amongst those we chose uClibc [7]. This library is largely
minimalistic. It does not contain certain modules, because,
according to the authors, it would be against the principle of
minimalism. In certain areas it sacrifices better performance in
favor of minimalism. For example, functions for I/O could be
optimized for different platforms, but there is just one version
for all platforms written in portable C that is optimized for
space.

V. THEORY OF PORTING

The main reason for porting the library into a simulator is
the fact that we need to add the support for C functions into the
simulator itself. To be precise, we want to use the libc
functions such as printf, malloc, free, etc. in the programs that
will be used for testing of the compiler. And because we do not
posses the development kits for all the platforms on which we
run our tests we use simulators instead.

If one does not grant libc library support in the simulated
environment, the number of constructions we can use and test
is very limited.

Consider the following simple example written in C:

int main(int argc, char **argv)

{

 if(strcmp(“alpha”,”beta”)==0)

{ return 1;}

 else

{ return 0;}

126

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

}

Even this simple program can not be executed, because it
uses function strcmp that is part of the C library. This program
can not be compiled unless the inclusion of string.h and
possibly some other header files is performed.

On the contrary the main aim of testing is to cover as wide
an area as possible and also try as many different combinations
of functions as we can. However, this goes against the idea of
embedded solutions. And because we focus especially on
embedded systems, we do not even try to cover all the
functions provided by glibc, or in our case, uClibc. In fact we
will use and hence test only functions that can run under the
simulated environment and are useful for the programs that
will be executed on the given platform. Moreover embedded
systems are not designed for use of vast numbers of
constructions that programming languages offer. Typically
there is just one task, usually quite complicated, that is
launched repeatedly. The functions we will use forms just a
small part of uClibc. The functions that are not important to us
can be easily removed via a configuration interface or
manually. The following categories are examples of
unimportant functions:

• threads, we assume that in simple programs for
embedded systems one will not use threads,

• locales, all the locales were removed from the library,

• math, functions for computing sin, cos, etc.

• inet module, even though networking plays an
important part in modern embedded systems the
whole module was removed,

• files and operations with files, our application does
not need an interface for working with files.

 Now we come to the important parts of the library. Simply
spoken all that really has to remain from the library are the
sysdeps, this is the core of the whole system (how to allocate
more memory, etc.), then important modules such as stdio (for
outputs, inputs) and other modules we wish to preserve. In our
case we wished to preserve the following parts of the uClibc
library:

• stdio, this was the main reason for porting the library,
to get in human readable form output from the simulator,

• a module for working with strings and memory, in our
applications we would like to use functions such as
memcpy, strcpy, strcat, etc.,

• memory functions, for example malloc, free, realloc,

• abort, exit,

• support for wchar, but without support of different
encodings.

Some parts of the library could not be removed because of
the dependencies. According to our estimations nearly 40
percent of the library was disabled or removed, measured by
the size of the library.

There are several ways of building the library and also
different methods of using it. There is a possibility of building
a position independent code (PIC). Even though this is an
interesting solution we decided against it. Instead of PIC we
are going to compile the library into a single object and then
link it to the program statically. The position of the library in
the whole process of testing is shown in figure 1.

Figure 1. Position of the library in testing system.

Let’s return to the functions that remain in the library. They
can be divided into two groups. The first group consists of
functions that are completely serviced within the simulated
environment. For example, function strcmp falls into this
category. This function and its declaration remain unchanged
within the simulator if it is written in portable C. These
functions are not tied with kernel header files so there is no
need to change them.

The second group of functions consists of functions that are
translated to the call of system function. Function printf can be
used as an example of this group of functions. The call of printf
function can be divided into three phrases that are illustrated at
the following picture.

In the beginning the call of printf function is translated into
the call of the system function, with the highest probability it is
going to be the call of function write. Write, being the POSIX
function is offered by the operation system. But as we want to
use the simulator on Unix platform as well as on Windows
systems we have to get rid of these dependencies. To do so we
will use the special instruction principle.

A. Use of ported library of Unix and Windows systems

Before we get to the principle of a special instruction
method we should explain why we need to use this method.

127

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

The main reason why we should oust the dependencies on the
kernel header files is the fact, that we must be able to use the
library under Unix like, and also under Windows like operation
systems.

Figure 2. Scheme of calling the printf function

As long as we use the library under Unix systems
everything should be all right. Though even on Unix systems
there might be differences amongst the different versions of the
header files. But once we use the Windows based system we
can not use header file functions any more. It would almost
certainly result in a crash of the system.

In our project we currently support several Unix
distributions as well as Windows. Use of other operating
systems is not considered.

B. Special instruction principle

The special instruction principle means, that we will use
instruction with the operation code (opcode) that is not used
within the instruction set of given microcontroler for the
special purpose. We can do so, because we design the chip
from the scratch. Usually the microcontroler has a given set of
instructions. There is a defined bahaviour for each instruction.
We describe the instruction set by our language ISAC. In
ISAC, every instruction has an opcode and defined behaviour.
So if there is any spare opcode we can model a new instruction
with behaviour that suits our needs.

So far, all architectures that were modeled within the
Lissom project had several free opcodes. It is typical that the
instruction sets do not use all operation codes that are provided.
But in case of no free opcode this method can not be used. The
special instruction principle will be used for ousting the
dependencies on kernel header files.

Functions provided by operation system are called by the
system call (syscall) mechanism. The system calls can be quite
easily detected. Each library should have defined the syscall

mechanism in special source file. This syscall mechanism
differs, as they usually are platform dependent. So i386
architecture will have different syscall mechanism than arm.

Figure 3. Scheme of calling the simulator via uClibc layer

We wish to preserve the mechanism. The syscalls will
remain in the library, but with a different meaning. The file
containing syscall will be changed in the following way: in the
beginning the parameters of the syscall will be placed at the
given addresses in the memory and we will also define where
the syscall return value will be placed. Afterwards the call of
the instruction, which was designed for this purpose, will be
performed. It is also possible to put the parameters into
registers, but some platforms have a limited number of
registers, hence this method could cause problems.

C. Simulators

This brings us back to the simulators. As was mentioned
before, all the simulators, where the testing is performed, are
generated automatically. The generation is based on the
instruction set description file, where our special instruction is
modelled. In the beginning all the source files are generated by
specialized tools. When the generation phase is finished the
simulator is built by a Makefile from the generated files. It will
be necessary to add into this process the following information:

• information about which instruction (opcode) calls the
system function,

• the simulator will have to know the convention for
storing parameters,

• the simulator will have to recognize which system
function is going to be called,

• the simulator will have to perform the call of the
correct system function.

 The first three points will be solved within the model of
an instruction set. The instruction with the opcode that is not
used will be declared. The instruction behavior will be defined
in the following way: it will locate the position in the memory
where the parameters are stored and according to the value of
one of the parameters it will call the corresponding system
function. The simulator will have to recognize the system it
runs under and call the correct function. For example, in Unix

128

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

system, it will be function 'write', and in Windows system,
WriteFile. This should be solved by the libc library of the given
platform. The following figure demonstrates the call of special
instruction.

Figure 4. Calling sequence of specialized instruction

The parameters that were placed at the given position on
the simulated memory can remain unchanged. They will later
be passed to the specific system call.

One important issue is connected with the simulated
memory. As we would like to correctly simulate the operations
with memory such as malloc, realloc, etc. we need to tell the
simulator how much memory it can simulate. This will be
done most probably by the special file that will be passed to the
linker. This file will contain symbols that will declare how
much memory can be used. It is necessary to state how much
memory can be allocated. The symbol that denotes the heap
end will be used in the sbrk function.

VI. PROCESS OF PORTING

Before the whole process of porting begins we need to
download the uClibc. There are two possibilities. It is possible
to download only the library or there is a whole toolchain for
development of embedded system for a given architecture, the
so-called buildroot.

The main advantage of downloading the whole buildroot is
that once it is built you get a whole set of development tools
including various compilers, linkers, debugers, strip programs,
etc. You also get the build of uClibc. These tools are quite
useful in the beginning when you remove useless modules
from the library, because they can be used for rebuilding the
library.

One of the problems we faced is that we need to have the
compiler for the architecture we are developing for. In other

words, if we want to create a library for testing a C compiler on
a given platform we need a compiler for the same platform that
is already created. The compiler will be used for building the
uClibc. Moreover the compiler must have exactly the same
instruction set. In the future we would like to use the generated
compiler for building the library. This requires a high quality of
backendgen and generated backend.

Because we are going to use the library in the simulator and
the simulator can handle only instructions of the specified
instruction set, then the library must be translated to the
instruction set that is recognized by the simulator. For building
the simulator, we can use common gcc for Windows or Unix,
because it runs under common system such as Windows or
Unix.

This may be the first big problem in the whole process of
porting. It is not hard to find a compiler for a given platform.
Nowadays, there are specialized compilers for nearly all
architectures used in embedded systems. The buildroot for
uClibc contains more than a dozen different architectures such
as MIPS, arm, mipsel, sparc, etc. There are even different
versions of the micro-architectures in case of Microprocessor
without Interlocked Pipeline Stages (MIPS), for example.

The problem is that, thanks to the aim of the whole Lissom
project, we usually use specialized instruction sets or we use
some generic instruction set and add certain specialized
instructions. After this customization it is usually impossible to
use a generic compiler for building the library.

We could use the compiler that we want to test for building
the library but currently it is not stable enough for building
large programs. The best solution of this problem is usually
building a specialized toolchain including GNU binutils and
GNU compiler collection [8]. As it was mentioned, once the
generated backend is stable enough it will be used for building
the library.

Several issues we faced during the process are closely
related to the buildsystem of the library. The library contains a
system of makefiles. This system is hierarchical and usually the
makefiles from the upper levels are included. So, if for
example we would like to compile any test examples that are
included in the uClibc we switch to the given directory and call
make. This will call all the makefiles from the above directory.
This is very effective, because only the makefile in the root
directory contains variables defining which compiler,
assembler, linker will be used. On the other hand, it is very
difficult to modify this system in case we want to build the
different parts of the library using different tools.

Currently, we are using for development the set of our tools
containing archiver, linker, asembler and compiler. The
currently used compiler is called mips-elf-gcc. It is not
generated automatically but was created specially for this
purpose as our generated compiler is not stable enough for
compiling the library. Our compiler has in the current version
problems with floating point number, so it usually fails to
compile them. Linker and archiver are not generated
automatically for each platform but were developed in the
Lissom project.

129

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Our tools are not compatible with the tools that were
originally used for building the library. Our tools do not
support such a wide variety of parameters so some of them had
to be erased from the configuration files and some were just
changed to suit our needs. There are two main reasons for this.
The first is that we simply do not need all the parameters. For
example we always build files in elf format, so we do not need
parameter to specify this. The second reason is that our files
have different (usually text) format, that allows us to debug
more effectively.

Currently, we use a set of scripts, which preprocess the
flags. In the scripts we erase the flags we do not need and make
necessary substitutions.

The buildsystem of the library starts by parsing the
configuration file and accord to the content of the file are set
different macros and variables. When doing manual changes to
the buildsystem we have basically two possibilities:

• change the configuration file or,

• do the changes later in the Makefiles.

The first possibility is cleaner but the Makefiles often check
if the option is present in the configuration file and ends with
an error if the option is missing. Hence it is more convenient
to make the necessary changes in the Makefiles. Thanks to the
hierarchical structure it is in most cases sufficient to make the
change in just one place.

In the theoretical part, we mentioned the need to link a
special file containing information on how much memory can
be used. The file will contain symbols defining the beginning
and the end of memory space that can be used. It will have the
following syntax:

#file defining memory boundaries

define start 256

define stop 768

Given that the numbers are in kB the simulator can simulate
up to 512 kB of memory. Character # denotes comment.

For storing the parameters we have chosen the following
approach: the first parameter says which system function is
going to be called. In the uClibc it is a list of system functions
for Unix systems. The rest of the parameters, that have
numbers 2-7, are passed to the function call. The parameters
remain unchanged. They are passed to the system function in
exactly the same state which were saved in the memory before
calling the special instruction. The special instruction itself has
no parameters. When the instruction is called, all the
parameters have to be stored in the memory at given addresses.

A. Automation of the porting process

For the first time, all the steps were performed manually. In
the future we would like to automatize this process as much as
possible. Without doubt we could remove the needless parts of
the library automatically. The needless parts would be
identified by the configuration file and also the special
instruction principle could be highly automatic. If we have
spare instruction we will choose it and compose it into the

simulator. Unfortunately, there are steps that need to be
performed manually, for example, we need to provide the
runtime file for the simulators and the corresponding sections
need to be specified in the ISAC file.

File with the runtime is also one of the files that is written
by hand in the assembler. There are also other files written in
assembly language and hence are platform dependent. In case
of mips platform there were 8 files that contained assembly
language. For example syscalls or memcpy functions are
implemented in the assembler. In order to minimize number of
files written by hand we decided to provide as many files
written in portable C as possible. We managed to replace all
but two files by C implementations. All that has to be provided
is the runtime and syscall mechanism.

VII. CONCLUSION

In this paper, was sketched the idea of porting the library
into the simulator. The motivation is quite clear: to be able to
use the library functions in the tests that are run on the
simulator of the given micro-controller. The special instruction
principle was proposed which enables us to forward the call of
system function. It also allows us to identify which system
function is called. This principle is quite universal and can be
used for the majority of platforms. After implementation of this
method, we are able to run all the functions that are commonly
used, such as I/O functions, memory management and string
functions, etc. Moreover we can adjust the library according to
our needs. Thanks to the modularity we can enable or disable
any module. This may turn out to be an advantage, because the
complete library has tens of megabytes and compilation and
linking such a library can be time consuming.

 ACKWNOWLEDGEMENTS

This research was supported by doctoral grant GA CR
102/09/H045, by the grants of MPO Czech Republic FR-
TI1/038, by the grant FIT-S-11-2 and by the research plan no.
MSM0021630528.

REFERENCES
[1] Lissom Project, doi :http://www.fit.vutbr.cz/research/groups/lissom,

[online, accessed 19. 4. 2011] .

[2] Z. Prikryl, K. Masarik, T. Hruska, and A. Husar, “Generated cycle-
accurate profiler for C language,” Proc. 13th EUROMICRO Conference
on Digital System Design, DSD'2010, pp. 263—268, in press.

[3] ISAC language, doi:http://www.codasip.com/, [online, accessed 19. 4.
2011].

[4] S. Onder, and R. Gupta, "Automatic generation of microarchitecture
simulators," Proc. 1998 International Conference on Computer
Languages, May 1998, pp. 80-89, in press.

[5] C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V. Adve, "Rsim:
simulating shared-memory multiprocessors with ILP processors,"
Computer , vol.35, no.2, Feb. 2002, pp. 40-49, in press.

[6] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard, D.
Penry, O. Temam, and N. Vachharajani, "UNISIM: An open simulation
environment and library for complex architecture design and
collaborative development," Computer Architecture Letters , vol.6, no.2,
Feb. 2007, pp. 45-48, in press.

[7] Uclibc, doi:http://uclibc.org/, [online, accessed 19. 4. 2011].

[8] GNU Operating System, doi:http://www.gnu.org/software/, [online,
accessed 19. 4. 2011].

130

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

