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Abstract—A Classification problem can be viewed as a problem of 

assigning a category or class to a given input. The Hidden Markov 

model is a well known stochastic model that is used to solve 

classification problems and has been widely exploited in diverse 

computing applications ranging from speech, acoustics, gesture 

recognition to part-of-speech tagging, cryptography to Google page 

rank and the list goes on. State Complexity of Deterministic Finite 

automata is now a well established research area. State complexity 

of Deterministic Finite Automata defines the total number of states 

in the minimal Deterministic Finite Automata. State complexity, if 

known, of a given automata helps to realize how expensive the 

application would be that will exploit that automata. Similarly, if 

known, the state complexity of the Hidden Markov Model will help 

to know the complexity of a computing application that exploits 

that Hidden Markov Model. In this paper, we have explored 

several, yet unpublished, important facts about the Hidden Markov 

Model including the state complexity of Hidden Markov Model and 

the diagram of 2nd order Hidden Markov Model (Fig. 3). Our 

discussion of the Hidden Markov Model is unique in the sense that 

we present a complete diagram of the 1st order Hidden Markov 

Model (Fig. 2) with all estimated parameters for a given input 

sequence. We explicitly define a generalized rule to give 

“Dimension of Transition probability matrix of HMM” which is 

also not available in the literature yet. We present a generalized 

rule to draw the Mth order Hidden Markov Model diagram for M 

greater than 1. We present the generalized state complexity of the 

Mth Order HMM, the state complexity of the diagram for the 

“Training of Mth Order HMM” and also present the diagram for 

second order Hidden Markov Model. 

 
Keywords – State complexity; Hidden Markov Model.  

I. INTRODUCTION 

The Hidden Markov Model (HMM) has states, input symbols 
and transitions much like a deterministic finite automata (DFA). 
Transitions between states of HMM are labeled with the 
probabilities, unlike DFA, defining how likely that transition is to 
take place. States of HMM actually represent the classes or 
categories that we intend to assign to the symbols of input 
sequence. How it works is that first we define the classes or 
categories that will be represented by the states of HMM. In order 
to assign categories or states to input symbols, we process the 
input sequence on the HMM. The sequence of states assigned to 
as input sequence is called the output sequence. Many recent 
techniques exploit the Hidden Markov Model as in [10] [11][12]. 

 Section II defines the HMM as well as the related 
terminology. State Complexity of Deterministic Finite automata 

is now a well established research area [8]. In Section III, we 
define the state complexity of the 1

st
 order HMM. In Section IV, 

we define the rule for drawing the M
th
 order HMM diagram for 

M>1. In Section V, we define the transition probability matrix 
dimensions of M

th
-Order HMM. In Section VI, we define the 

state complexity of the M
th

-Order HMM for M>1. In Section VII, 
we define the 2

nd
 order HMM Example. In Section VIII, the 

diagram of the 2
nd

 Order HMM is presented. Section IX 
concludes the paper.  

II. HIDDEN MARKOV MODEL 

We present an overview and terminologies for the HMM. 

A. Formal Definition 

 
A HMM is a tuple (S, ∑, ∏, A,B) 

 A set of states:   S={S1,S2,…Sm} 

 A set of input symbols:   ∑ = {O1,O2….Ok}   

 Initial state probability:        m

i 1
1     

 Transition probability matrix: A={a i j} 

 Emission probability matrix:    B={b i j} 
In order to show the working of the HMM, usually, we add 

two additional states “Start” and “End” states. Dimensions of the 
transition probability matrix and emission probability matrix, 
above, are for the 1

st
 order HMM and are contingent to the order 

of the HMM. Transition probability is termed as “P(ti | ti-1)” as 
mentioned in Section V.  

B. Training of HMM  

Processing of the input sequence on a given HMM develops a 
HMM training diagram, which we call “HMM with all estimated 
parameters”. Those parameters include transition/emission 
probabilities. One such but partial HMM training diagram is 
given in [1]. “HMM with all estimated parameters” is also called 
“training of HMM” [9]. This “training of HMM” gives all 
possible sequences of states or categories which can be assigned 
to the input sequence. All these possible sequences of states or 
categories are also called hidden states sequence because these 
sequences are not known unless we train the original HMM for a 
given input sequence. Each hidden state sequence of states or 
categories assigned to the input sequence is also called the output 
sequence. Brute Force expansion of the HMM is usually 
intractable for most real world classification problems, as the 
number of possible hidden state sequences is extremely high and 
scales exponentially with the length of input sequence.  
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All output sequences that are assigned to a given input 
sequence have probability of likelihood. This probability defines 
how likely the output sequence is as an appropriate assignment 
for the input sequence. These probabilities of likelihood are 
calculated with the help of transition probabilities and emission 
probabilities of the original HMM. For a given input sequence, 
HMM chooses the state sequence that maximizes in the following 
formula.  

P(input symbol/state) * P(state/previous ‘M’ states) 
In the above formula, Transition probability = 

P(state/previous ‘M’ states)  and  Emission probability    = 
P(input symbol/state) . Transition probabilities (TPs) of each 
state of HMM either depend on one previous state or more than 
one previous state. If they depend on one previous state (i.e., 
M=1), this HMM is called a 1

st
 order HMM.  If all TPs of states 

of HMM depend on two previous states (i.e., M=2), this HMM is 
called a 2

nd
 order HMM and so on.  

C. 1
st
 Order HMM Example 

Below, we have given an example HMM of two states, cold 
and hot. Major components of the HMM are also mentioned in 
the section ahead as well as the dimensions of the transition 
probability matrix.  

We simulate a real world phenomena in Fig. 1 related with 
the ‘weather of a day’. We suppose we can have either a Hot or 
Cold day. We know the probability (transition probability) of the 
next day is either cold or hot depending upon the weather of the 
previous day. This 1

st
 Order HMM represents how many ice 

creams servings, (e.g., 8, 7, 6 etc), a person is likely (emission 
probability) to eat on a given day depending upon the “weather of 
that day”. Further we show the training diagram of the 1

st
 order 

HMM diagram in Section F. 
We can see in Fig. 1 that each state of 1

st
 Order HMM 

directly corresponds to one single category, e.g., Cold or Hot in 
this example. This is also shown in [4].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  1st Order Hidden Markov Model 

D. Components of our Example HMM  

Components of our HMM given in the previous Section are 
shown in the tabular form below. 

TABLE I. Components of Hidden Markov Model  

Q-Set of states  Q= {Hot, Cold}    

={q1,q2}  

Transition probability Matrix            

  [2-dimensional 2*2 ]  

a11 = 0.7 , a12=0.3, 

a21= 0.4 , a22= 0.6  

Vocabulary of Inputs  V= {6,7,8,9}  

Input Observation under 
consideration for training of this 
HMM  

( 8 7 6 ), i.e.,  

O1 =8 ,O2= 7, O3=6  

Emission Probability: 
b1(6)=P[6/Hot],b1(7)=P[7/Hot], 
b1(8)=P[8/Hot],b2(6)=P[6/Cold], 
b2(7)=P[7/Cold],b2(8)=P[8/ Cold] 

b1(6)=0.2 , 
b1(7)=0.4, 
b1(8)=0.4,b2(6)=0.5, 
b2(7)=0.4, b2(8)=0.1  

Start state and End state  q0 , qF  

Transition probability from start 
state to q1 and q2 

ao1 = 0.8 , a02=0.2  

Transition probability to End 
state from q1 and q2 

a1F = 0.8 , a2F=0.2  

E. Dimension of Transition probability matrix  of 1
st
 Order 

HMM 

Dimensions of the transition probability matrix are based on 
the simple principle, i.e., Transition probability matrix shows 
probabilities of all the transitions from each state to all other 
states as well as to itself.  

If ‘S’ is the number of states and ‘M’ is the order of HMM 
then the Transition probability matrix of the HMM is ‘M+1’ 
dimensional such as S

i
 *….* S

M+1
. The superscript on ‘S’ 

represents the dimensions, i.e., how many times ‘S’ should 
appear. 

In case S=3 and M=1, i.e., the 1
st
 order HMM then the 

transition probability matrix is 2 dimensional, i.e., 3*3.  So, if 
S=3, there are three states say Q={q1,q2,q3}, the two dimensional 
(3*3) matrix will be as follows: 

   ajk= probability of transition from state j to k,           ∀  j,k ∈  Q 

F. 1st Order HMM Training Diagram 

We show a training of the HMM of the 1
st
 Order for the input 

sequence “8 7 6”. We process this input sequence on the HMM 
and try to find the most likely sequence of “weather of days” 
corresponding to the given “number of ice creams” a person eats 
each consecutive day. 

The terminologies we have used are such that the equation 
“[CHH] X3(1)=0.0032 * 0.14 = 0.000448” from Fig. 2 represents 
that this probability is the likelihood for assigning state sequence 
[CHH] to the input sequence “8 7 6” and it is finally calculated in 
the 3

rd
 column for State q1(HOT) by multiplying two other 

probabilities [CH] X2(1) and P(H/H) * P(6/H) because of “(1)” of 
Section H. 
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Figure 2.  1st Order HMM Training diagram 

  

[CHH] is one possible output state sequence of the “weather of 

days” corresponding to the given input sequence “8 7 6” of the 

“number of ice creams” a person eat each consecutive day. 

G. All Possible Output Observations 

This table shows all possible output observations that can be 
assigned to the input observation along with their likelihood for 
the given input observation. 

Table II. Output Observation Probabilities 

Output Observation  Probability 
likelihood  H H H  0.012544  

C C C  0.00144  
H C C  0.01152  

H H C  0.01344  

C H H  0.000448  
C C H  0.000384  

H C H  0.003072  
C H C  0.00048  

We conclude that “H H C” is the most likely output 
observation for the input sequence “8 7 6” because its probability 
is found to be highest, i.e., 0.01344 using “(2)”of Section H. 

H. Training of 1
st
 Order HMM  

Transition probabilities (TPs) of each state of the HMM either 
depend on one previous state or more than one previous state. If 
they depend on one previous state (M=1), the HMM is called 1

st
 

order HMM.  If all TPs of states of HMM depend on two 
previous states (M=2) then, the HMM is called 2

nd
 order HMM 

and so on.  We gave a HMM in Section C and then trained that 

model for the input sequence “8 7 6” in Section F. The trained 
model shows all calculated parameters. Transition probabilities of 
the 1

st
 order model (i.e., M=1) are represented as below:  

P(qi | qi-1)          ∀  q1….qS 

For our example model we have given these probabilistic 
parameters along with the transitions of Fig. 1 in Section C. The 
likelihood of each possible output observation is calculated from 
the following formula.  

[ Π P(ti | ti-1)P(w | ti)]  
The most likely output observation is calculated from the 

following formula.  

Argmax  [ Π P(qi | qi-1)P(w | qi)]          

    q1….qS  
The 1

st
 Order HMM training diagram shows all possible 

output observations and their likelihood probability estimates by 
a brute force approach. The viterbi algorithm calculates only the 
most likely output observation sequences. For each input 
observation, we calculate its likelihood for both states, i.e., for 
both cold and hot. So, for three input observations we have 
shown three columns. Each column has state q1(cold) and 
q2(Hot).  

III. STATE COMPLEXITY OF 1
ST

 ORDER HMM 

Training of the HMM is a state diagram that shows how a 
given input observation sequence is processed by the underlying 
HMM. This Training model gives us all possible output 
observations or all possible classifications for a given input 
observation sequence.  

If ‘H’ is a 1
st
 order HMM, ‘S’ is the number of states of ‘H’. 

‘X’ is an input observation sequence. ‘L’ is the training diagram 
of ‘H’ for ‘X’. ‘K’ is the number of observations in ‘X’. ‘M’ is 
the total number of hidden states of ‘L’ which are trained for ‘X’.   
  M= total number of hidden states of ‘L’  

i.e.,         M= state complexity of ‘L’  

Then,   M = S * K  
So, we can see the state complexity of the training diagram of 

the 1
st
 order HMM depends on S (number of states of underlying 

HMM) and K (number of input observation of input sequence) 
such that for each input observation (‘K’ in total), we calculate its 
likelihood for all states (‘S’ in total). As we can see in Fig. 2, for 
each of the three input observations, we have to find the 
likelihood for both states, i.e., (K=3 and S=2, so M=2*3=6). 
There are 6 likelihoods calculated in total represented by 6 states 
of Fig. 2. 

Two additional (‘start’ and ‘end’) states are also added to 
complete the Fig. 2. This state complexity is of the brute Force 
expansion, which is usually intractable for most real world 
classification problems, as the number of possible hidden states 
sequences is extremely high and scales exponentially with the 
length of the input sequence.  

IV. RULE TO DRAW M
TH

 ORDER HMM DIAGRAM FOR M>1 

First of all, we have to define ‘S’ basic categories or states we 
intend to assign to the input symbols. In the case of the M

th
 order 

HMM, each of these ‘S’ categories will depend on ‘M’ previous 
categories. 
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Then, we will find all possible combinations for ‘M’ previous 
categories. The M

th
 order HMM diagram will have two kinds of 

states.  
(1) The ‘S’ original states (or categories) that we intend to be 

ultimately assigned to input symbols. 
(2) The states that represent all possible combinations of ‘S’ 

states of length ‘M’.  (i.e., S
M

).  
Each of these ‘S’ distinct states and S

M
 distinct combinations 

of states will be combined to form M
th

 order HMM as shown in  
Fig. 3 for M=2. 

Example1: if we have two basic categories for “Weather of 
the Day”, i.e., Cold (C) or Hot (H), i.e., S=2 and M=2. The total 
possibilities for ‘M’ previous categories are as follows: 

Table III.  Possible Previous States for M=2 

Possibility for M=2 

previous state 

Remarks 

YZ= HH, CH, HC, 

CC 

Last category is Z, second last is 

Y. Each of the Y and Z represent 

either H or C 

Since, the total possibilities of M previous categories are 

S
M

=2
2
=4. 

Example2: if we have two basic categories for “Weather of 
the Day”, i.e., Cold (C) or Hot (H), i.e., S=2 and M=3. The total 
possibilities for ‘M’ previous categories are as follows: 

Table IV. Possible Previous States for M=3 

Possibility for M=3 previous 

state 

Remarks 

XYZ=HHH,HHC,HCH,CHH, 

         HHC, HCC, CHC,CCC 

Last category is Z, 

second last is Y and 

third last is X 

Each of the X, Y and Z 

represent either H or C 

Since, the total possibilities of M previous categories are 
S

M
=2

3
=8.  

V. TRANSITION PROBABILITY MATRIX DIMENSIONS OF M
TH

 

ORDER HMM  

The M
th
 order HMM means that the probability of transiting 

to each state depends on last ‘M’ states. 

If ‘S’ is the number of states (categories) and ‘M’ is the order 
of HMM, then the Transition probability matrix of the HMM is 
‘M+1’ dimensional such as S

i
 *….* S

M+1
. The superscript on S 

represents the dimensions, i.e., how many times S should appear.  
In case S=2 and M=2, i.e., 2

nd
 order HMM then the transition 

probability matrix is 3 dimensional, i.e., 2*2*2. 
Further, A={a i j k}  such that     ∑ a i j k  =  1    

Transition a i j k represents the transition probability to state 
‘k’ depending upon the last two categories j & i respectively as 
shown in Fig. 3. 

VI. STATE COMPLEXITY OF M
TH

 ORDER HMM FOR M>1  

Theorem:  
State complexity of M

th
 Order HMM = S+S

M 
and 

State complexity of M
th

 Order HMM training diagram= N*K. 
∀  M>1. 

 
 

Proof: 
Let ‘S’ represent the total number of basic categories that we 

intend to assign to input symbols and M is the order of the HMM. 
Let ‘N’ be the state complexity of the M

th
 order HMM. Recall 

our basic idea of the higher order HMM, that each state (or 
category) depends on previous ‘M’ states. The M

th
 order training 

diagram of the HMM will have two kinds of states. 
 (1) The ‘S’ original states (or categories) that we intend to 

assign to input symbols. 
(2) The states that represent all possible combinations of ‘S’ 
states of length ‘M’.  (i.e., S

M
) 

Therefore, combining both the above kinds of states for the 
M

th
 order HMM will give us a total number of states or state 

complexity of the M
th
 Order HMM as below: 

N=State complexity of M
th

 Order HMM = S+S
M

.  
For completeness, we add ‘2’ as well for the “start” and “end” 

state. 

 N= 2+S+S
M

    (3) 
State complexity of its training model will depend on the 

number of observations of the input sequence similar to what is 
discussed in Section F. 

Let ‘X’ be an input sequence. Let ‘K’ be the number of input 
observations of ‘X’. Let ‘P’ be the total number of states of 
training diagram of the M

th
 order HMM for ‘X’. Then,   

P=N*K     (4) 

Equations “(3)” and “(4)” above prove the theorem.  
All possible combinations of states, i.e., S

M
 is calculated in 

[7] as well. We have now given a generalized formula “(4)” for 
the state complexity of the higher order HMM diagram.  

Indeed, P(t3|t2,t1) represents the transition probability of the 
2

nd
 order model because it says the probability of “t3”depends on 

the last two (i.e., M=2) states “t2” and “t1”. Similarly, we know 
that P(t2|t1) is the transition probability of the 1

st
 order model 

because it says the probability of “t2” depends on the last single 
(i.e., M=1) state “t1” and this is mentioned in [2] as well. 

Law and Chan [4] also defined that, for the M
th
 order HMM, 

all possible combinations of states should be S
M

 but do not 
explain how each of these S

M
 states will be connected and any 

higher order HMM diagram is also not illustrated. 

VII. 2
ND 

ORDER HMM EXAMPLE  

For M=2, transition probabilities should depend on the last 
two states. We represent each transition probability by ‘aijk’.   

This means that aijk = transition probability to state k 
depending on the last two states j & i respectively. 

aijk = P(qk | qj,qi)  
In the 2

nd
 order HMM, the transition probability matrix is 

three dimensional, i.e. aijk, as the probability of transiting to a 
new state depends on the last two previous states as mentioned in 
[5] as well. Hence the dimension of the transition probability 
matrix is S*S*S, where ‘S’ is the number of states.  

Let’s suppose for our example diagram of 2nd order HMM, 
the number of states, i.e., S=2. The transition probability for each 
state will depend on all possible “pairs of states”.  If we have S=2 
states then the total number of pairs of states = S

2
 = 4  
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The dimension of the transition probability matrix is S*S*S,  i.e., 

2*2*2 , which means, in total, 8 transitions represented in general  

by  aijk . 
Each aijk = the transition probability to state ‘k’ such that last 

two states are j & i respectively. 
We write the following formula using “(3)”. 
Total number of states of the 2

nd
 order HMM = 2+S + S

2
  

                      = 2+2+2
2
   = 8 

VIII. DIAGRAM OF 2
ND

 ORDER HMM 

We draw in this section the 2
nd

 Order HMM diagram of the 
example discussed in Section VII. Let’s suppose we have S=2 
states. The first state is called ‘Cold’ represented by C1 and the 
second state is ‘Hot’ represented by H2. The diagram of this 
example second order HMM is given in Fig. 3 with two 
additional start and end states. The transition probability matrix 
will contain 8 transition probabilities, i.e., 
aijk={a111,a112,a121,a122,a211,a212,a221,a222}. The other transition 
probabilities in the diagram qik and qijk are just for completion of 
the diagram and for the calculation of actual transition 
probabilities, aijk. 

 
Figure 3. 2nd Order Hidden Markov Model diagram 

 

We describe the transition probabilities, aijk, for the Fig. 3 in 

Table V. 
 

Table V. Transition probability Description for 2nd Order Hidden 

Markov Model diagram 

Transition 
Probability 

Transition 
From State 

Transition 
To State 

Description 

a111 C1C1 C1 The transition represents the 

probability of occurrence of 

day C1 based on the last two 
days C1 & C1 respectively. 

a112 C1 C1 H2 The transition represents the 

probability of occurrence of 

day H2 based on the last two 
days C1 & C1 respectively. 

a121 C1 H2 C1 The transition represents the 

probability of occurrence of 
day C1 based on the last two 

days H2 & C1 respectively. 

a122 C1 H2 H2 The transition represents the 

probability of occurrence of 
day H2 based on the last two 

days H2 & C1 respectively. 

a211 H2 C1 C1 The transition represents the 
probability of occurrence of 

day C1 based on the last two 

days C1 & H2 respectively. 

a 212 H2 C1 H 2 The transition represents the 

probability of occurrence of 

day H 2based on the last two 
days C1 & H2 respectively. 

a221 H2 H2 C1 The transition represents the 

probability of occurrence of 

day C1 based on the last two 
days H2 & H2 respectively. 

a222 H2 H2 H2 The transition represents the 

probability of occurrence of 
day H2 based on the last two 

days H2 & H2 respectively. 

 

IX. CONCLUSION AND FUTURE WORK 

In this paper, we presented the state complexity of the M
th
 

Order HMM. We also presented the state complexity of the 
diagram for “Training of M

th
 Order HMM”. We explicitly 

defined HMM of different orders along with its training in a clear 
cut way. We presented a complete diagram of the “1

st
 order 

training HMM” in which all possible sequences of categories are 
mentioned along with their probabilities of assigning these output 
observations to input observations. We explicitly defined a 
generalized rule to give the “dimension of Transition probability 
matrix of HMM”, which is also not available in the literature yet. 
We defined a generalized rule for drawing the M

th
 order HMM 

diagram for M>1 and also drew the HMM diagram for M=2, 
which is not available in the literature yet. Our study of the state 
complexity of HMM will thus help researchers to analyze the 
complexity of implementation of their proposed HMM based 
scheme. This paper has introduced the terminology, i.e., “State 
complexity of HMM” that will lead researchers to explore the 
state complexity of different kinds of HMM and similar 
stochastic models. Diagrams for M

th
 Order HMM for M>2 can 

also be explored. Since the complexity of computing applications 
that exploit HMM depends on the complexity of HMM used. 
Therefore, our analysis of state complexity of HMM will help to 
analyze the complexity of those computing applications that 
exploit HMM. 
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