
Using Git to Manage Capstone Software Projects

An Empirical Research Report

Zhiguang Xu

Department of Math and Computer Science

Valdosta State University

Valdosta, GA, USA

zxu@valdosta.edu

Abstract—Distributed software project development has

become a reality not only in industry but also in computer

science classes nowadays – students and teachers have to

leverage time, talent, and resources collaboratively wherever

they reside, especially when everyone is working on his/her

own schedule, from his/her convenient location, and using

various programming systems. In this paper, we will present

an empirical study of how Git, “a free & open source,

distributed version control system”, is used in an

undergraduate Computer Science (CS) capstone class to

facilitate team collaboration for the students and to ease the

project assessment and grading tasks for the teachers. Other

Git-related aspects such as preventing plagiarization, hosting

online public/private project repositories, and improving the

student-teacher interactivity during lecture sessions, are also

discussed. Despite of the relatively bumpy and steep learning

curve in the beginning of the semester, all four groups of

students in the capstone class described in this paper benefitted

tremendously from Git, which reduced the burdens of version

control and group management on their shoulders, increased

the collective productivity of their groups, and helped them in

completing their substantial software projects successfully.

This paper is concluded with a vision on expanding and

standardizing the adoption of Git in other Computer Science

classes in the future.

Keywords - Distributed Student Software Project

Management; Distributed Version Control System: Git;

Computing and Information Sciences Education.

I. INTRODUCTION

CS 4900, Senior Seminar, is a project-driven course
designed to provide senior capstone experiences for
graduating Computer Science majors at Valdosta State
University (VSU). In fall of 2011, twelve students in this
class formed four groups to write full-fledged Ruby on Rails-
based Web server applications that were accessible not only
from regular Web browsers but also from Android mobile
clients that they developed.

In Section II, we present reasons why a Distrusted
Version Control System (DVCS) is very much needed in CS
4900 and what features that it ought to have. Then, in
Section III, we will provide a literature survey of popular
DVCSs (Git being one of them) under the umbrella context
of Collaborative Development Tools. This is followed by

Section IV, an in-depth review of how a Git system is setup,
configured, and used in CS 4900. Then, in Section V, three
workflows with Git are presented to show what kind of
services Git (configured in the way as described in Section
IV) provides to students and teachers to increase the overall
productivity of the whole class. Finally, this paper concludes
with Section VI, a vision on and future works planned for
expanding and standardizing the adoption of Git in a wider
range of Computer Science programming classes.

II. BACKGROUND

In this section, we will provide the pedagogical

motivations of incorporating DVCS into CS 4900 in fall

2011. Many issues discussed here are also believed to be

common concerns that many students and teachers in a CS

programming course would be likely to share.

A. Student’s Perspective

One of the central challenges for the students in

managing their software project development is handling the

update process among multiple distributed team members

without sacrificing or introducing undue overhead. It is such

a process that is too time-consuming, error-prone, and

chaotic to be done either manually or using some generic

Web content management tools such as Google Docs. What

they truly need is an automatic version control system that

has the following features –

 Easy branching and merging. First and foremost,
every group member has a complete “sandbox” of
the project. Creating branches for fixing bugs,
experimenting different designs, or developing new
features is easy, cheap, and fast. When the time
comes to merge work outputs from multiple group
members back together, even multiple times, the job
is done in a snap.

 Platform Neutral. When multiple students work in a
group nowadays like in CS 4900, it is very likely
that their computers are running different
kinds/versions of operating systems, mainly
Windows, Mac OS X, and Linux. Therefore, they
need a version control system that works seamlessly
across them.

 Distributed architecture. Each group member can
work on his/her part of the project and commit the

159Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

work output locally without the dependency and/or
distraction of an always-on Internet connection. In
the age of always-on, broadband Internet
connections, we forget that sometimes we do not
have access to a network [1]. This was truly a
concern when literally every student in CS 4900 was
working on his/her laptop; but, unfortunately, the
Wi-Fi signal on VSU campus was not ideal all the
time. (It was the case even on the day when students
did their final project demos.)

B. Teacher’s Perspective

As what you will see in Section V later, DVCSs satisfy

all students’ needs above. In fact, they have garnered

significant attention in developer communities [2] while

attracting relatively little in CS education. Exposing

students to and familiarizing them with such an important

aspect of the software development process was the primary

motivation that drove me to include it in CS 4900. In

addition, the following items were also behind the adoption

of a DVCS for student projects in such a capstone class.

They are elaborated in section V.

 Preventing Plagiarization and “Free-Riders”.

 Being unobtrusive to undergraduate level students,
both conceptually and mechanically.

 Fitting an Educational Setting. It should not require
a significant commitment of administrative,
technical, and financial resources to be successful in
an educational institution.

C. Social Context

In contrast to faculty members who belong mostly to

the “baby boomers” and “X generations”, college students

sitting in our Computer Science classrooms today are also

known as the “Generation-Yers” [5], who embrace mobile

phones and cloud-computing based social networks as part

of their daily lives. The latter is of particular importance to

the subject of this paper because it includes not only general

social networking sites such as Facebook and Web content

management sites such as Google Docs, but also “social

coding” sites such as Github – the primary online source

code repository hosting site used by the student projects in

CS4900. It is the students’ digitized cultural background

that makes it such a natural and smooth process to transit

from the manual, tedious, and error-prone way of managing

software projects to a DVCS.

III. DVCS AND GIT

Lanubile et al. did a comprehensive survey on

collaboration tools for global software engineering in [2],

which include Trackers, Build Tools, Modelers, Knowledge

Centers, Communication Tools, Web 2.0 Apps, and of this

paper’s most interest, version control systems. Subversion is

a popular version control system. But, it adopts a traditional

centralized architecture, which does not fit well for the

educational setting for reasons as described in Section II and

in [2]. Git, Mercurial, and Darcs are distributed systems that

operate in a peer-to-peer manner, where each local clone of

the project is a full-fledged repository with complete history

and full revision tracking capabilities, not depending on

network access or a central server.

Although there are technical differences between these

DVCSs and the decision of choosing Git in CS 4900 was

quite of my personal preference, there were a few legitimate

factors that reinforced my decision: first, Git is the built-in

version control mechanism of Rails, the platform students

used to build their Web server applications in this class;

second, Eclipse, the Integrated Development Environment

(IDE) students used for both Rails and Android

programming has a Git plug-in that makes version control a

natural step in their project developing cycle; and third,

Github [3], the most popular online Git repository hosting

site, offers educational accounts to host not only public but

also private repositories for free, which is greatly convenient

for authenticated accesses to both individual and group

projects in CS4900.

There are some drawbacks of using Git that one needs

to put under consideration. First, Windows support is still

lagging behind. You simply cannot use Git from a normal

command prompt. Second, there is a long and rough

learning curve for students before they feel comfortable

using Git.

Next, Section IV discusses how Git is used in CS 4900

from the mechanical view that focuses on various

components in such a distrusted system; then Section V

covers it from the “Service” view, i.e., workflows that

demonstrate how the students and teacher can use and take

advantages of Git.

IV. GETTING GIT TO WORK

A. Local Git Repositories

For each project, either individual or group, each

student has a local Git repository (see the .git/ directory

in Figure 1). The working tree is student’s current view into

the repository [6]. After making changes to the files on the

working tree, through the staging area, he/she can commit

the changes to one of the working sets, known as branches,

in his/her local repository and store a log message/comment

explaining what the change did. (The use of such logs and

comments will be more covered later in Section V.)

Each student could have as many local branches as

he/she wants and checkout anyone at any time to start/

continue to work on it. Among these local branches, one is

of special importance – The master branch serves as the

“interface” branch to other group members and the teacher.

It always stores the most current version of the project,

which gets pushed to other students in the same group for

sharing the collaborating purposes or to the teacher to be

graded. When a newer version of the project from some

other group members, or when a graded version of the

project from the teacher, becomes available, it gets pulled in

onto the master branch.

160Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 1. Student's Local Repo per Project

Teacher’s project-based local repository looks

structurally similar to Students’, except that its branches

hold graded code turned in by students, i.e., one branch per

student (see Figure 2).

Figure 2. Teacher's Local Repo per Project

The Git push and pull operations described above are

actually performed to and from online Web-based hosting

service at Github (see Section III.B) and might incur

conflicts handling and branch merging [6].

Git plug-in for Eclipse makes it very easy for all Git

operations to be conducted from within Eclipse either

through GUI items or more conveniently in an embedded

shell (see Figure 3).

Figure 3. A snapshot of Git in Eclipse

B. Online Public and Private Repositories on Github

Github was chosen as the online Git repository hosting

site for CS 4900 due to the following reasons:

 Free public AND private repositories, thanks to
Gitbub’s educational program, that allow students
and teacher to access their projects from anywhere at
any time

 Secure source code backup in the Cloud (True story
– one student’s laptop crashed in the middle of the
semester and it was his backups on Github that saved
his project)

 Clean and fast submission and grading of projects,
especially when their sizes go beyond megabytes

 Rich tools for administrating student groups,
visualizing students’ contributions to their group
projects, archiving projects for future course
assessments, and much more

We created an Organization “VSU-CS4900” on Github

that has 13 members (12 students and 1 teacher) and 17

private repositories (12 for individual projects, 4 for group

projects, and 1 for the teacher, see Figure 4).

Figure 4. Private Repositories on Github

Each individual repository has two owners – a student

(e.g., Ian) and the teacher – who both have full privileges,

and a number of branches. The master branch always stores

the most up-to-date version of the current individual project

(e.g., #5) that Ian is working on. One the due date, the

teacher will pull the project on the master branch and grade

it. Once the grading is done, the graded project is pushed up

to the Project_5_Graded branch on Ian’s individual repo for

him to review. There might be other branches in his

individual repo that Ian creates for himself (see Figure 5).

161Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 5. A Student's Individual Repo on Github

Teacher’s repo has only one owner (the teacher) and a

number of branches. The master branch as usual serves as

the interface branch and the rest branches store the solutions

to the student projects and example projects for class

lectures (see Figure 6).

Figure 6. Teacher's Repo on Github

Each group repo has four owners (three students in the

group and the teacher) and a number of branches, at least

two of which store the final version of their client side code

and server-side code respectively (see Figure 7).

Figure 7. A Group Repo on Github

V. THE WORKFLOWS WITH GIT

This section presents three workflows with Git to show

what kind of services Git (configured in the way as

described in Section IV) provides to the students and the

teacher to increase the overall productivity of the whole

class. In the end, you will also find discussions on a

challenging issue that we have encountered and how we

addressed it.

 Developing, Submitting, and Deploying Projects. In
a group of three students A, B, and C, student A is
the “group leader” (see Figure 8). As the project
progresses, each student is able to push and pull
his/her newest work output to and from his/her
remote branch in their group repo on Github. Only A
has the privilege to pull code from everyone’s
remote branch, merge them, and push the result to
the master branch, which consequently stores the
most current version of the project for everyone to
pull so as to be code-synchronized.

Figure 8. Student Workflow

When the project is finished, the group leader will
submit the Git log file to BlazeVIEW, a Blackboard
based online course management system at VSU,
and optionally deploy the server side of the code to

162Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Heroku [7], a cloud based, Rails friendly application
platform.

 Grading Projects. When grading a project, the
teacher pulls the code from the master branch in the
project’s Github repo, builds it locally, and runs it.
But more importantly, the teacher heavily relies on
the revision logs to see each group member’s
contributions to the final project (see Figure 9).
These logs also provide an audit trail for determining
if students followed the incremental process, which
will be demonstrated by a logical and coherent
sequence of commit messages that indicate a
methodical progression toward the end goal. At each
commit, students must stop and describe their work
in a commit comment, which forces reflective
pauses and helps promote an intentional attitude
toward their work [4]. The graded project is then
pushed up to the Teacher’s branch on Github for
students to review.

Figure 9. Teacher Workflow

In fact, the flexibility that Git extends in terms of
setting up local and online repositories greatly helped
how students’ projects were graded in CS 4900. In
addition to the semester-long projects as mentioned
in the introduction section of this paper which
constituted the major component in CS 4900, there
were around ten “practice” projects that were
designed to get students technically ready for their
“big deals” (Note, Ruby and Rails and Android
programming were new to most of the students in
this class), and they had to accomplish these
“practice” projects individually. On the other hand, a
related issue that concerns lots of CS teachers (me
included) is how to assess individual student’s
performance in group projects. Obviously, the best
way to detect cheating in individual projects and
free-riding in group projects is to have a version
control system that comes with a rich and sane
logging history that records each and every commit
of intermediate work output along the evolvement of
the project, based on which students can justify their
progresses towards and contributions to the final
product.

 Discussing Example Code in Class Lectures. For
better student-teacher interactions and more efficient
use of the class lecture time, Git makes it very easy
for the teacher to checkout a new branch and
elaborate critical code step by step to students in
class (see steps 1 and 3 in Figure 10) and skip non-
essential parts by checking out the commits that
conclude them (see steps 2 and 4 in Figure 10) and
move on.

Figure 10. Discussing Examples in Class Lecture

 Challenging Issues. In addition to the bumpy road in
the beginning of the semester mainly to get familiar
with Git, inevitably, there were a few issues students
encountered that held them from moving on with
their projects but fortunately found solutions to [8].
For instance, although Git worked perfectly with
Rails for the development of their servers, it gave
students hard time merging work outputs from
multiple group members on the Android client side
into one new version by generating all sorts of
conflicts. They found that the .gitignore file was
their friend which allowed them to specify which
files they did not want Git to track, specifically for
Android, the ones in the bin/ and gen/ folders, for
they will be automatically generated during the build
process anyways.

VI. CONCLUSIONS AND FUTURE WORK

Our initial experience with Git and DVCS in general

has been very positive. We have seen senior students in the

Capstone class voluntarily and comfortably use Git as the

distributed version control system for their projects. Git

gives them unique opportunities and exposures to

collaborative and real-world practices that are prevalent in

today’s distributed software development community. As

the students gain experience and competitive skills with the

version control system that will be integrated into CS 4900,

such skills scale with them, enabling them to collaborate

with their peers, contribute to open source software projects,

and eventually transfer their new knowledge to the work

environment [2]. It also streamlines my work as a teacher in

terms of grading student projects and giving lectures.

Future work includes expanding the adoption of Git in a

wider range of Computer Science classes that emphasize

students’ programming skills. In particular, we are also

going to enrich the process of composing Git commit

comments [9] to help keeping them from getting too

general, vague, and/or uninformative.

163Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

REFERENCES

[1] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaíno,
“Collaboration Tools for Global Software Engineering,” IEEE
Software, March/April 2010, pp. 52-55.

[2] B. de Alwis and J. Sillito, “Why are software projects moving
from centralized to decentralized version control systems?”
CHASE ’09: Proceedings of the 2009 ICSE Workshop on
Cooperative and Human Aspects on Software Engineering,
IEEE Computer Society, Washington, DC, USA, 2009, pp.
36–39.

[3] http://www.github.com, retrieved: June, 2012.

[4] D. Rocco and W. Lloyd, “Distributed Version Control in the
Classroom,” ACM SIGCSE’11, Dallas, Texas, USA, March,
2011, pp. 637–641.

[5] G. Thiruvathukal, K. Laufer, and D. Dennis, “Moving
Academic Department Functions to Social Networks and
Clouds: Initial Experience,” IEEE Computing in Science and
Engineering, September/October, 2011, pp. 84–89.

[6] T. Swicegood, “Pragmatic Version Control Using Git,”
Publisher: Pragmatic Bookshelf, ISBN: 1-934356-15-8.

[7] http://www.heroku.com, retrieved: June, 2012.

[8] C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, and P.
Devanbu, “The Promises and Perils of Mining Git,” MSR ’09
Proceedings of the 2009 6th IEEE International Working
Conference on Mining Software Repositories, Washington,
DC, USA, 2009.

[9] M. D’Ambros, “Commit 2.0: Enriching Commit Comments
with Visualization,” ICSE ’10, Cape Town, South Africa,
May, 2010.

164Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

http://www.github.com/
http://www.heroku.com/

