
Static Task Allocation Algorithms in Mesh Networks: An Experimentation System
and Analysis of Properties

Piotr Franz, Leszek Koszalka
Dept. of Systems and Computer Networks

Wroclaw University of Technology
Wroclaw, Poland

e-mail: leszek.koszalka@pwr.wroc.pl

Iwona Pozniak-Koszalka, Andrzej Kasprzak
Dept. of Systems and Computer Networks

Wroclaw University of Technology
Wroclaw, Poland

e-mail: iwona.pozniak-koszalka@pwr.wroc.pl

Abstract—The paper concerns the static task allocation
problem in mesh structured system. Three allocation
algorithms have been evaluated, including well-known First Fit
and Stack Based Algorithm, and newly created by authors the
Current Job Based First Fit algorithm. The evaluation of their
properties and a comparison of their efficiencies have been
done on the basis of simulation experiments. The reported
investigations have been made with a designed
experimentation system coded in C# language with use of .NET
Framework for Windows platform . The discussion of results
confirms that the created algorithm seems to be promising.

Keywords - mesh structure; task allocation algorithm;
experimentation system

I. INTRODUCTION

Nowadays, modern computer systems are often created
by connecting many processing units into one big structure,
in order to solve complex problem more efficient. The
performance of such structures depends not only on
computing power of single processing units, but also on
efficiency of algorithms, which are responsible for
allocating tasks in structure and those which are responsible
to pick certain tasks from queue of ready for execution
tasks. Problems of scheduling (task selection) and allocation
are important in terms of reducing cost of computing
(saving both time and resources) [1].

In the field of solving allocation problem with efficient
algorithm still new ideas are proposed on basis on such
approaches as Best Fit or Adaptive Scan or First Fit (see,
e.g., [2], [3]) as well as algorithms based on evolutionary
concepts (see, e.g., [4]).

The aim of this paper is to examine the three
implemented allocation algorithms. The two well-known
algorithms, FF (First Fit) algorithm and SBA (Stack Based
Algorithm) [3], [5], are considered. We designed the third
one, called CJB FF (Current Job Based First Fit), which was
initially presented in [6].

The static allocation problem [7] considered in this
paper, assumes the two-dimensional mesh topology with
closed queue of ready tasks (during allocation process no
new tasks are added to the queue/system). We assume that
tasks from the queue may be picked for allocation using
FIFO or SJF scheme [1].

For the purposes of this paper, the experimentation
system was designed and implemented. The system allows
multi-aspect comparison of the considered algorithms.

The rest of the paper is organized as follows: Section II
contains the used nomenclature. In Section III, the three
allocation algorithms are briefly described. Section
IV contains description of the experimentation system. In
Section V, results of investigations are presented and the
obtained results of two complex experiments are discussed.
Finally, in Section VI, the concluding remarks are stated.

II. PROBLEM STATEMENT

In order to formulate the task allocation problem
considered in this paper, the basic definitions and ideas need
to be described.

Mesh is a set of nodes (processors) connected in orderly
fashion. The typical, full mesh M (w, h) is a rectangular two-
dimensional matrix of sizes w and h, where w stands for
width and h stands for height.

Nodes in a mesh are marked as (i, j), where i stands for a
column and j for a row in mesh structure.

Figure 1. An example of the MESH structure M(6, 4).

Submesh SM (i, j, w, h) is a rectangular set of (w x h)
nodes that belong to a mesh M (w, h). The node (i, j) is the
foothold of submesh SM in mesh M.

Free submesh is a submesh in which every node is free,
i.e. it is not occupied with previously allocated task.

Busy submesh is a submesh in which at least one node is
already assigned to execute a task.

Task J (w, h, t) is a rectangular form with known sizes w
and h and execution time t. The tasks wait in a queue to be
allocated within a mesh. The queue can be a simple FIFO
structure or can be sorted (ascending or descending due to

169Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

execution time of needed nodes number). To allocate each
task, the free sub-mesh with a specified size is needed.

Figure 2. An example: MESH M(6, 4) and a submesh SM(3, 1, 2, 3).

Expected relative task’s width pw is a ratio of expected
task width to mesh size.

Expected relative task’s height ph, similar to pw, is a ratio
of expected task width to mesh size.

Expected relative task’s size p is a ratio of expected task
size to mesh size (when expected values of task width and
task height are equal, then p = pw = ph).

Allocation problem consists in picking and allocating on
a mesh all queued tasks in a way that gives the best results in
respect to the introduced quality indicators of allocation
efficiency.

Quality indicators. In this paper, the following
indicators of efficiency (the indices of performance) are
introduced and considered:

The average allocation time tA (1) needed for algorithm
to allocate the task, measured in real time units.

 ∑=)(
1

it
n

t allocA
 (1)

where: talloc (i) – time needed to allocate i-th task, n – total
number of task in the system.

The total time TA.. The time needed for computing all
tasks, measured in ‘abstract’ time units (so called mesh
ticks). One tick passes when allocation algorithm is not able
to allocate new task due to lack of free submeshes.

The average latency LA (2). This is the average time
which task needs to wait in a queue until being allocated.

 ∑= iA L
n

L
1 (2)

where: Li – latency of i-th task, n – total number of tasks in
the system.

The fragmentation fA. This is the ratio (3) of the total
number of free nodes to the total number of nodes in mesh
during algorithm's work (excluding the biggest free
submesh).

Phw

hwPhw
f

n

i
ii

A −⋅

⋅−−⋅
=

∑
 (3)

where: w and h – sizes of mesh, P – number of nodes in the
biggest free submesh, wi and hi – sizes of i-th task.

III. ALGORITHMS

A. First Fit Algorithm (FF)

The First Fit algorithm, is described in details in [2]. The
algorithm was implemented as follows:

Step 1. Start searching a given mesh from the node (0, 0)
for every single task.
Step 2. Search nodes row by row until free one is found.
Step 3. Check whether a free submesh (containing found
free node as a foothold) matching a given task size may be
found. If not, go to Step 2.
Step 4. Allocate the task. The matching free submesh
becomes busy.
Step 5. End algorithm.

B. Stack Based Algorithm (SBA)

The detailed description of this algorithm can be found in
[3]. The main idea of this algorithm consists in finding a base
submesh for task, reducing the search space and avoiding
unnecessary searches. The algorithm works as follows:

Step 1. For a given task create prohibited area (task if
allocated in this area would stick out of mesh).
Step 2. Create coverage areas (respectively if task is going
to be allocated in those areas, it will overlap on a busy
submesh).
Step 3. Create base areas by spatial subtraction of
prohibited and coverage area.
Step 4. Check if exists base area, in which task can be
allocated. If yes allocate the task and end algorithm.
Step 5. Rotate the task by 90 degrees and go to Step 1.

C. Current Job Based First Fit Algorithm (CJBFF)

The created algorithm may be treated an improvement of
First Fit algorithm. The main idea is to speed up the process
of searching free nodes in the mesh structure by omitting
already busy nodes belonging to discovered task. The
algorithm works as follows:

Step 1. For a given task create a prohibited area (task if
allocated in this area would stick out of mesh). Consider
only nodes non-belonging to this area.
Step 2.. Start from the node (0, 0).
Step 3. Check whether the node is busy. If yes, go to Step 7.
Step 4. Check whether a free submesh (containing found
free node as a foothold) matching a given task size may be
found. If not, go to Step 7.
Step 5. Allocate the task. The matching free submesh
becomes busy.
Step 6. End algorithm.
Step 7. Move to the node, next to the last busy node of the
encountered task (in the same row). If the task’s right edge
adjacent to the mesh edge, then move to the next row. Go to
Step 3.

170Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

IV. EXPERIMENTATION SYSTEM

In order to make simulation of the performance of the
considered algorithms, an experimentation system was
designed and implemented. The core of the system is
simulator with block-scheme shown in Fig. 3.

Figure 3. Model of the simulator.

Input parameters of the simulator are:
� I1, I2 – width and height of mesh structure,
� I3, I4 – minimum and maximum width of tasks,
� I5, I6 – minimum and maximum height of a task,
� I7, I8 – minimum and maximum time of a task,
� I9 – number of tasks,
� I10 – sorting type.

Output parameters of the simulator are:
� Q1 – average allocation time,
� Q2 – total computing time,
� Q3 – average latency,
� Q4 – fragmentation.
The system has been implemented using .NET

Framework with C# language (it is working well on MS
Windows platform with .NET packages). The system
possesses the implemented GUI (shown in Fig. 4).

Figure 4. Main window of simulator.

For convenience, the system has implemented function of
automatic repetition of the experiment (certain amount of

times) for each algorithm with the same input parameters
(shown in Fig. 5).

Figure 5. Experiment design window.

V. INVESTIGATION

The aim of the investigations was to compare efficiency
of FF, SBA and CBJFF in the same environment. Three
efficiency measures were taken into consideration:

tA – the average allocation time (1),
LA – the average latency (2),
fA – the fragmentation (3).
Furthermore, in each experiment the impact of queue

sorting on the received latency was examined.

A. Experiment 1. Increasing number of tasks

In the first experiment, the set of tasks (queue) was
changed in series of experiments - increasing significantly
with slightly growing meshes. Experiment design
(combination of input values) is shown in Table 1.

TABLE I. INPUTS IN EXPERIMENT 1

Number of
Tasks

Relative Task’s
Size [%]

Mesh width Mesh height

60 22.5 20 20

140 15.0 30 30

240 11.3 40 40

380 9.0 50 50

540 7.5 60 60

730 6.4 70 70

840 5.6 80 80

Other inputs were taken as follows:

� min – max width of task: 3-6,
� min – max height of task: 3-6,
� min – max execution time of task: 5-20,
� sorting: unsorted, ascending, and descending.

The obtained results are shown in Figs. 6-8.

171Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Average allocation time t / mesh size

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

1400,0

0 20 40 60 80 100

Side size of rectangular Mesh

a
v

e
ra

g
e

 a
ll

o
ca

ti
o

n
 t

im
e

 t
 [

µ
s]

First Fit

CJB First Fit

SBA

Figure 6. The average allocation time - Experiment 1.

Average latency L / mesh size

15,0

16,0

17,0

18,0

19,0

20,0

21,0

0 20 40 60 80 100

Side size of rectangular Mesh

la
te

n
cy

 L First Fit

CJB First Fit

SBA

Figure 7. The average latency - Experiment 1.

The created CJBFF was characterized by the best
allocation time, significantly lower than the other compared
algorithms (Fig. 6). What is more it guaranteed the lowest
latency (inversely proportional to mesh size); however for
big mesh structures the difference between the CJBFF and
FF starts to fade (Fig. 7). The obtained low latencies were
possibly the result of low fragmentation maintained by
CJBFF algorithm, especially in comparison to SBA (Fig. 8).

Fragmentation f / mesh size

13,0%

14,0%

15,0%

16,0%

17,0%

18,0%

19,0%

0 20 40 60 80 100

Side size of rectangular Mesh

fr
a

g
m

e
n

ta
ti

o
n

 f

First Fit

CJB First Fit

SBA

Figure 8. The fragmentation - Experiment 1.

The impact of the chosen queue’s sorting type on average
latency (in CJBFF) is shown in Fig. 9.

Average latency L / mesh size

10,0

15,0

20,0

25,0

0 20 40 60 80 100

Side size of rectangular Mesh

a
v

e
ra

g
e

 l
a

te
n

cy
 L

unsorted

sorted by nodes number,

acending

sorted by nodes number,

descending

sorted by execution time,

ascending

sorted by execution time,

descending

Figure 9. Average latency depending on queue sorting - Experiment 1.

For sorting the tasks in queue by execution time in
ascending way, over 25% decrease of latency was obtained
comparing to the case when no sorting was used. For
descending sorting a remarkable increase of latency was
noticed.

B. Experiment 2. Increasing mesh size.

In the second complex experiment the mesh size and the
task generation parameters were chosen in such a way that
the expected relative task’s size p was always constant and
equal 15% for increasing mesh size. Experiment design
(combination of input values) is shown in Tab. II.

TABLE II. INPUT S IN EXPERIMENT 2

Task width Task height Mesh width Mesh height

2 5 20 20

3 7 30 30

3 9 40 40

4 12 50 50

5 14 60 60

6 16 70 70

6 18 80 80

Other inputs were as follows:

� number of tasks: 134,
� min – max execution time of task: 5-20,
� sorting: unsorted.

The obtained results are shown in Figs. 10-12.
It may be observed that, in this experiment, the CJBFF

was not the fastest among the considered allocation
algorithms. In this case the SBA algorithm was slightly faster
for larger mesh structures (see Fig. 10). However, once again
the created algorithm proved to guarantee the smallest

172Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

latency from all tested algorithms, as it can be observed in
Fig. 11.

Average allocation time t / mesh size

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

Side size of rectangular Mesh

a
v

e
ra

g
e

 a
ll

o
ca

ti
o

n
 t

im
e

 t
 [

µ
s]

First Fit

CJB First Fit

SBA

Figure 10. The average allocation time - Experiment 2.

Average latency L / mesh size

18

19

20

21

22

23

24

50 60 70 80 90

Side size of rectangular Mesh

a
v

e
ra

g
e

 l
a

te
n

cy
 L

First Fit

CJB First Fit

SBA

Figure 11. The average latency - Experiment 2.

Fragmentation f / mesh size

13,00%

13,50%

14,00%

14,50%

15,00%

15,50%

16,00%

16,50%

17,00%

17,50%

0 20 40 60 80 100

Side size of rectangular Mesh

fr
a

g
m

e
n

ta
ti

o
n

 f

First Fit

CJB First Fit

SBA

Figure 12. The fragmentation - Experiment 2.

Considering the fragmentation (Fig. 12) it can be seen
that the CJBFF algorithm performed as the weakest
algorithm; however, only for large meshes. Moreover, it may
be observed that the variance of results obtained by all
algorithms is rather small and it is not larger than 4%.

The impact of the chosen queue’s sorting type (in
CJBFF) on average latency is shown in Fig 13.

Average latency L / mesh size

10

15

20

25

30

35

0 20 40 60 80 100

Side size of rectangular Mesh

la
te

n
cy

 L

unsorted

sorted by nodes

number, ascending

sorted by nodes

number, descending

sorted by execution

time, ascending

sorted by execution

time, descending

Figure 13. Average latency depending on queue sorting - Experiment 2.

Again, the best results were obtained when used sorting
by execution time in ascending order and the worst when
sorting in descending order.

VI. CONCLUSION AND FUTURE WORK

The analysis of the results of complex experiments
confirms that the designed and implemented CJBFF
allocation algorithm is easy to implement and fast in many
cases. This algorithm can be recommended to use by
designers of multi-processor systems with mesh structures
[8], for which the most important factor is the latency of
newly added tasks.

Moreover, a big advantage of CJBFF is that with
increasing size of a mesh, the time needed for task allocation
increases only slightly when comparing to FF and SBA.
However, for larger mesh structures the CBJFF has the
tendency to fragment the mesh in bigger scale than two other
considered algorithms.

To additionally decrease of the latency of tasks (which
means improving the allocation process) it may be desirable
to apply sorting of task’s queue. It is worth to be noticed that
ascending sorting by execution times resulted even in a 20%
decrease of latency, when comparing to results for unsorted
queues.

The further development of the presented in this paper
experimentation system will focus on implementing other
allocation algorithms, e.g., algorithms based on evolutionary
ideas [5].

Moreover, we plan preparing new modules of the system
to ensure designing multistage experiments [7] in automatic
way and store the results of experiments in problem-oriented
data base.

ACKNOWLEDGMENT

We would like to thanks Mr. M. Halaczkiewicz, student
of Electronics Faculty, Wroclaw University of Technology
for remarkable help in preparing the programmed modules in
the experimentation system.

173Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

REFERENCES
[1] A. S. Tanenbaum, Modern Operating Systems, 2nd edition,

Prentice Hall, 2001.
[2] Y. Zhu, “Efficient Processor Allocation Strategies for Mesh-

Connected Parallel Computers”, J. Parallel & Distr.
Computing, vol. 16, 1992, pp. 328-337.

[3] B.S. Yoo and C. Das, “A Fast and Efficient Processor
Allocation Scheme for Mesh-Connected Multicomputers”,
IEEE Transactions on Computers, vol 51, No. 1, 2002.

[4] W. Kmiecik, M. Wójcikowski, L.,Koszałka, and A. Kasprzak,
” Task Allocation in Mesh Connected Processors with Local
Seach Meta-heuristic Algorithms”, Lecture Notes in Artificial
Intelligence , vol. 5559, Springer, 2010, pp. 215-224.

[5] L. Koszalka, M. Kubiak, and I. Pozniak-Koszalka,
“Allocation Algorithm for Mesh-Structured Networks”, Proc.
of 5th ICN, IEEE Comp. Society Press, 2006, pp. 24-29.

[6] M. Halaczkiewicz, “Implementation of Static Task Allocation
Algorithms in Mesh Networks”, M.Sc. project, Faculty of
Electronics, Wroclaw University of Technology, 2009 /in
Polish/.

[7] L. Koszalka, D. Lisowski, and I. Pozniak-Koszalka,
“Comparison of Allocation Algorithms for Mesh- Networks
with Multistage Experiments”, Lecture Notes in Computer
Science, vol. 3984, Springer, 2006, pp. 58-67.

[8] D. Zydek, H. Selvaraj, L. Koszalka, and I. Pozniak-Koszalka,
“Evaluation scheme for NoC-based CMP with integrated
processor management system”, International Journal of
Electronics and Telecommunications, vol. 56, no. 2, 2010,
pp. 157-167.

174Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

