
A Review of Domain-Specific Modelling and Software Testing

Teemu Kanstrén

Security and Testing Technologies

VTT, Oulu, Finland

teemu.kanstren@vtt.fi

Abstract—Domain-specific modeling is an approach of using

customized, domain-specific languages tailored for the domain

as a basis for modeling the target system. The intent is to

provide a means for domain experts to work with tools and a

language closer to their domain knowledge, while abstracting

away excess detail. This should provide more effective

communication and ease the work done by providing a higher

abstraction level. In the test automation domain, this means

providing the domain experts with means to effectively create

test cases based on their domain knowledge, and to

communicate with the test automation experts. Despite the

potential benefits and its applications, this viewpoint domain-

specific modeling has received little consideration so far in test

automation research. This paper reviews different approaches

to applying concepts from domain specific modeling to test

automation to provide a basis for further work in the area.

Keywords-domain-specific modelling; software testing; test

automation

I. INTRODUCTION

Testing is generally considered to be one of the biggest
cost factors in software development. The testing process
requires collaboration between several stakeholders, large
investments in test infrastructure and continuous efforts in
maintenance and evolution. The test infrastructure needs to
be built to be able to address verifying both low-level details
and high-level requirements. Domain experts need to be able
to effectively communicate with the testers to ensure what
needs to be implemented is implemented and is implemented
correctly. Optimally, this means test automation needs to be
built in layers to enable test engineers and software
developers to verify the low level details, while providing
domain experts the means to work and understand what is
implemented and verify it, while working together to
improve the resulting product.

When discussing concepts at a local level, where only a
single team at a single organization is involved, having a
common understanding becomes quite naturally. The people
can sit down at common face-to-face meetings and quickly
reach a common understanding. When teams become
geographically and organizationally distributed, more
difficulties arise. Different backgrounds and limited
communications contribute to long delays in reaching a
common basis for discussion between the different parties.

This applies to all works, not just software testing.
Reaching a common understanding and maintaining that
understanding requires that people can communicate using a
shared terminology. Agreeing such a domain terminology is

an obvious requirement for applying domain specific
modeling and creating domain specific languages. A less
obvious requirement is the need to first agree on what the
different parties mean when they talk about domain specific
languages and modeling in general.

A domain-specific model (DSM) is expressed in terms of
a domain-specific language (DSL). These languages can be
hugely diverse and take completely different representations,
typically with “domain specific” referring to the language
being specific to a company and its application(s), each
language being highly customized to a specific purpose [1].
A domain specific language works best in a domain that has
a lot of variation that can be expressed by the language,
leading to possibilities for cost-effective application vs. the
initial language design costs. In software testing, test cases
describe the behavior of a system, through a common base
language while each test case can be seen as a variant
expressed over that language. This makes testing a great
domain for application of DSM.

Domain specific languages in the context of test
automation can take different forms. In our experience, some
people prefer shell scripts as their domain-specific
languages. Others prefer to create their own textual scripting
languages, such as keywords over test frameworks. Some
prefer to create graphical modeling languages, such as those
presented in [2] and [3]. This can be influenced by different
factors such as the expert background, test requirements, and
the target domain. Often there is no clear understanding of
the involvement of a domain-specific language design
process, which leads to less optimal results.

In our experience the language choice and design is
heavily influenced by the people’s background. Someone
with a strong background in Unix scripting wants to write
everything in shell scripts (e.g., termed previously as “little
languages” [4]). Someone with a strong background in
graphical modeling languages will only consider those when
talking about domain-specific languages. While all these
different factors contribute to what is a suitable solution for
test modeling in different contexts, a better understanding of
domain specific language concepts in the testing domain, and
knowledge of different options provide a basis for making
more informed decisions. This paper contributes to this basis
by reviewing current work and approaches for domain-
specific modeling and test automation.

The following section II presents different types of
domain specific languages we have observed in our work on
building and applying test automation systems. Section III

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

presents examples of these using an example of a calendar
application. Finally, conclusions end the paper.

II. LANGUAGES FOR TEST AUTOMATION

Various tools exist specifically intended for designing
domain-specific languages. In this paper the MetaEdit+ [5] is
mainly used to illustrate the concepts but various others are
also available. These tools can provide good mechanisms for
defining language concepts and transforming these into
different types of artefacts (e.g., test scripts). The tools
intended to create these languages are in general not intended
to build languages with features required to express all the
low-level details of the systems in the domain-specific
models. They work best when the transformations for them
can be written to target higher level abstractions.

For these reasons, it is typically a useful approach to
build the support for the domain-specific test languages in
different layers. Figure 1 illustrates these different layers.
Test frameworks (TF) are in essence programs written using
general purpose programming languages (GPPL) such as
Java and Python. General purpose programming languages
allow for freely expressing different computational concepts,
providing good support and existing libraries for writing a
test platform that allow one to express the required test
concepts at different levels. The test framework takes care of
connecting to the actual system under test and executing the
concrete test cases.

Figure 1. DSL layers.

On top of this test framework, the higher level
representations and test languages can be created. In the
terminology of domain-specific languages the tools used to
create these languages are often called DSL workbenches
(WB). Depending on the tools used and the type of test
language targeted, this top layer can also be integrated with
the test framework layers in a form such as a keyword driven
test framework, where the keywords form the test DSL.

It is our experience that a domain specific test solution is
often best build from bottom up. That is, having a good test
platform available first to create and execute test cases, and
using this to create the required support for testing in
general. Once this support is in place it makes sense to start
designing and providing the higher level DSL support on top
of this existing platform. This also lends itself well to
support cost-effective decision making when the extension of
the support towards the top layers can be made when
requirements and needs are identified.

A. Common Language Elements

While there are different approaches to building domain
specific test languages, and using those to model test cases,

these share a number of common language elements. The
target domain needs to be expressed in terms of the domain
terminology and as such a set of domain objects needs to be
defined for the language. In the test automation domain, we
are typically interested in expressing the various ways that
the different actors involved in the system behavior can
interact, and how the results of these actions should be
considered (correct or failed).

Testing can be seen to represent a number of different
concepts. However, in general testing is about exercising the
different relevant aspects of system behavior in different
ways and evaluating the results. A basic element of the test
models is then the ability to explore the flow of execution in
the system. In some cases, such as textual scripting
languages this can take the form of implicit expression
through the ordering of the script elements. In graphical
notations the tools may allow one to connect the different
elements as best seen fit. In test generation modeling
languages this may take the form of expressing constraints
over the possible combinations of the different test elements.
The following subsections will discuss each of these types of
test expressions.

B. Scripting Languages

A typical approach to test automation is to have a
scripting language that the user can use to write regression
test cases. These scripting languages can take different forms
and abstraction levels.

An example of a low-level test scripting language is the
TTCN-3 (testing and test control notation version 3 [6]),
which is a scripting language intended for testing
communication systems. While it is a low-level language
requiring a lot of effort and expertise in its use to write test
cases, it is something designed for testing of systems in a
particular (communications) domain. For example, it has
specific support for features such as ports and messages. The
benefit of this type of a standardized industry domain
language is also the ability to exchange information between
different partners in an executable format, in a well-defined
and formalized terminology.

Examples of higher level scripting languages are those
defining a set of keywords for writing test cases. This is
supported by keyword-driven test frameworks such as Robot
Framework [7]. These keyword-based languages provide
textual domain-specific testing language. Examples of their
application include telecommunication systems [8] and
enterprise systems [9]. These are very domain-specific and
different in each case.

C. Graphical Languages

As noted, in the domain-specific modeling community,
various approaches exist for creating the domain-specific
languages. Besides using general tools to build textual
scripting languages, there are also tools specifically intended
for creating graphical modeling languages. These are
typically used to build a graphical notation on top of a
framework that is implemented using a general purpose
programming language, or a lower level scripting language.
For example, in the test automation domain, we can build a

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

graphical modeling language on top of a specific test
scripting or keyword-based language.

For example, a graphical test modeling language built on
top of TTCN-3 was presented in [2]. Highlighting the typical
benefits to application of domain-specific modeling,
significant benefits were reported in allowing a domain
expert to create relevant test cases at a high level,
communicate results and test intents with different
stakeholders such as management, and in providing cost
savings in focusing the variation modeling at a high-level on
the most important aspects. At the same time, lower-level
details could still be expressed in the underlying scripting
language where required.

Other application examples of graphical domain-specific
test languages include digital libraries and information
systems [10]. Sometimes the distinction is also not so clear,
for examples, with a focus on textual elements and
formalisms with some graphical elements (an example of
safety-critical systems in the railway domain) [11].

D. Model Based Testing

A related concept to domain-specific modeling in the
software testing domain is model-based testing (MBT). In
our experience, model-based testing for different people can
be defined in many ways, such as using a mental model as a
basis to manually write test cases, or using test stubs to
model the system environment. However, a commonly used
definition that we use here is from [12] as “generation of test
cases with oracles from a behavioral model”.

The models in model-based testing are typically different
forms of state-machines, defining the potential test steps of
interest and their possible combinations. The models in MBT
are traditionally not considered from a viewpoint of a
domain-specific language as they are hand-crafted model-
programs (term used, e.g. in [13]) used to generate test cases,
not to manually model test cases. However, as shown in [14],
the act of modeling the potential test steps and their possible
orderings also provides a basis for the definition of domain-
specific test modeling language. That is, the potential test
steps in the model program define the model elements (along
with the state variables of the model), and the guard
statements defining the possible ordering of the test steps for
the generator provide a definition of the possible execution
flows that can be created from these elements.

Model-based testing approaches by their nature lead to
creating test models for specific domains. Examples of these
application domains include smartphones user interface
testing [15], automotive systems [16], and healthcare
systems [17]. These approaches typically report good results
when applied in a suitable context (i.e., choice of right
abstraction level, addressing of high variability, and so on).
However, only a few works discuss these in relation to
domain-specific modeling concepts (for smartphones in [15]
and generally in [14]). As widespread adoption of model-
based testing has long been an elusive goal in practice,
providing more synergies in this area to make it more
approachable to domain experts while also making it more
cost-effective to tie into other different testing techniques
holds a lot of potential.

III. CALENDAR EXAMPLE

This section illustrates the principles discussed above
with an example of applying them on a calendar example.
This example is available online on the OSMO Tester MBT
tool website [18]. The calendar is an example application
where the user can create meetings and invite other people to
those meetings. The user can also create tasks that are only
visible to himself. Several users each have their own
calendar instance.

The following subsections show an example of defining a
domain-specific modeling language for this application. It
starts with examples presented using a graphical notation
built with the MetaEdit+ domain-specific modeling
workbench [5], and proceeds to show different ways to
create the underlying implementations of the test frameworks
including the use of a keyword-driven framework and a
model-based test tool. Possibilities for combining these
different options are also discussed.

A. Terminology

Any process of applying DSM needs to begin with a
definition of a common terminology. Sometimes this can be
the biggest step in getting started and producing a useful and
accepted solution. One might expect this to be simple for a
calendar application, which is a widely used tool and
concept. Yet domain-specific models are commonly defined
for internal use at a company, where over time custom terms
will have been adopted for effective communication between
workers.

Here we use the calendar as an example for the readers of
this paper, who can only be assumed to have a varying
background. In a global context, many people will not be
native English speakers, while the language commonly used
to communicate in this context is English. Thus different
mappings from the organization and personal language have
an effect on how to approach building the basic blocks of a
DSL. This makes it much more difficult to stay in line with
the target audience and intended use of the language, as the
terminology should be generally understandable and not just
for the (paper) author(s).

A calendar is a very general entity and the base
functionality of a calendar application as discussed in this
paper is to add and remove events. As this example was
originally devised it was influenced by the background of the
author(s), which led to simply using the names “event” and
“task” for the calendar entries involving several or just one
person respectively. Yet, an event is an overloaded term in
the English language, and using it in this way easily leads to
confusion on what type of an event it is. Thus “event” was
later renamed “meeting”, while the underlying platform(s)
use the terms varyingly. This simple example shows how the
language design needs to consider many factors.

Besides calendar entries, we also need to fix the
terminology related to the actors using the calendars. The
users are people, who have certain roles in the system
(organizers, participants), and perform certain actions on the
different elements (create, remove, invite).

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

B. Defining the Language Elements

From the terminology, we can already pick a set of
language elements as a starting point. We need to be able to
model the properties of calendar users (people), meetings
and tasks. We also need to be able to model actions of
creating and removing meetings and tasks, as well as inviting
people to the meetings. We start with these elements and the
basic sequential test flow. Figure 2 shows an example of a
test case where a user named “bob” creates and removes a
task for the date first of January, 2012.

Figure 2. Two-step test flow.

Figure 3 shows the same scenario but with error
notification where a second user (“john”) has been added and
a test case is created where he tries to delete a task created by
“bob”. However, as he is not in the “owner” role for the
referenced task, he is not allowed to delete it. This also
illustrates a design choice that needs to be made in
considering a test language in general. In this case the choice
has been made to allow using the language to model only the
“correct” behavior of the system, and notifying when errors
in the test models are observed by the modeling tool.

In other cases, it can be meaningful to allow for also the
creation of test cases that exercise invalid flows of operation
on the target system to test error handling behavior. This,
however, requires creating different language elements as a
different type of a test oracle needs to be bound to the test
flow in this case (to define the correct expected response
from the system). In our experience, the use of test cases and
the creation of the language also serves a very useful purpose
in facilitating communication between the different parties
working on the system, where defining what is allowed
explicitly also helps communicate the different expectations
over the system behavior.

Figure 3. Embedded error checking.

Figure 4 shows examples of some of the other elements in
our test language. The meetings are represented by the
people shapes in three different colors (red, green, blue).
Actions for working with the meetings are shown similar to
how the user would interact with the task objects. The action
of inviting people to meetings is not explicitly visible here,
but is shown by the different types of lines used to connect
the people to the meeting object(s). The organizer is
connected by a solid line (the main actor on the top of the
sequence flow line), whereas the participants are connected

with a dashed line along the sequence path. Several
concurrent flows of users working on their calendars are
shown as parallel flows.

Figure 4. Parallel test flows.

Figure 5 shows an example of defining a set of model
building blocks and using those as templates for building test
models for the calendar application. In this snippet, we have
the actions for creating and removing tasks and meetings
shown. Although not shown here, similar approaches can be
used to model the calendar users as well, by creating
templates for the person objects and allowing copying and
modifying these as required.

Figure 5. Model building blocks.

Finally, Figure 6 shows an example of creating a test
generator configuration for a MBT tool using these same
model elements. In this case, we have configured the test
generator to produce test cases where four different people
are involved in different roles for performing actions on
creating and removing meetings.

Figure 6. Generator configuration.

C. Scoping the Language

To scope the calendar test language, we need to consider
who it is intended for and what the users (domain experts)
are intended to use it for. In this case, the main purpose of
the language is to allow the users (who are expected to be
familiar with calendar concepts) to use it to model their basic
interactions and functionality of the calendar.

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

They do not need to be able to model boundary
conditions over the possible characters and strings used to
express names, dates and other variables for the model
elements. These types of low-level details are best handled
by test experts who have more direct access to the low-level
test platform functionality. The domain experts in this case
just need an easy and effective way to express the different
objects, fill in valid values and compose them to express
their ideas of how the calendar should work, and how the
different elements can relate to each other. The test cases
generated from their test models and executed against the
target system can then be used to validate how well these
assumptions hold.

Thus the scope of the language in this case is defined to
be exactly what is shown in the example figures in the
previous subsection. There is no need to create any more
complex properties or model hierarchies for the elements to
achieve the set goals.

D. Test Platforms

The test platform for the calendar as described here and
provided at [18] is based on different layers as discussed
before. The bottom layer is based on a general purpose
programming language. It is used to create a basis for the
keyword driven layer, which is based on the Robot
Framework (RF) test platform. This layer already allows
writing test cases using a keyword based language for the
calendar application, as shown in Figure 7. It allows one to
manually compose test cases using such terms as “Add
Event” and “Remove Event”. However, composing all these
elements together manually is still error prone and not an
intuitive approach that a domain-expert with no
programming background is typically interested to use.

Figure 7. Calendar script in RF.

A snippet of a test model for the calendar as implemented
on top of the OSMO Tester MBT tool is shown in Figure 8.

@Guard("RemoveTask")
 public boolean allowRemove() {
 return tasks.size() > 0;
 }
 @TestStep("RemoveTask")
 public void doRemove() {
 ModelTask task = tasks.next();
 state.remove(task);
 scripter.removeTask(task);
 }

Figure 8. OSMO MBT model snippet.

This shows the part for generating a “Remove Task” test
step, basically stating that this step is allowed when some
tasks exist to be removed, and when it is taken, an existing

task is chosen and removed both from the model state and
the system under test state (through the scripter). As
described in [14], the names given to these test steps in this
type of a test model typically represent domain concepts in
domain terminology, and as such provide a basis for a
domain-specific test language. In this case, the scripter also
generates scripts for the robot framework similar to those
shown in Figure 7.

The final layer to provide on top of this is the graphical
language described in the previous subsections. It can make
use of both the model-based testing tool and directly the
keyword based language, according to what is available and
what is preferred. The main point to take away is that these
different layers can be created as required and as seen cost-
effective and useful. Different experts with different
backgrounds can then use the different layers as they best see
fit for their purposes.

IV. DISCUSSION

In general, it is our experience that it typically makes
sense to create test languages at different abstraction levels
using the different techniques described here when best seen
useful. In some cases, it may be enough to just stay at the
lowest level and only write unit tests using a general purpose
programming language, augmented with some manual
testing at the highest level. For example, this is the approach
applied with the OSMO Tester MBT tool also mentioned
before. It is mainly tested with extensive unit tests and by
building a set of test models and test cases manually on top
of it. This is possible when domain experts are also technical
experts and comfortable with programming tools and
techniques. However, this is different in large organizations
and with a large number of different stakeholders (managers,
customers, domain experts,..) who have a close interest to
see and understand and work with the test artifacts.

In some cases, it can be enough to create a simple
keyword driven test language to test the applications when it
allows expressing all the test cases needed in sufficient
detail. Finally, a model-based testing layer can be used on
top of the keyword driven layer to provide variation in the
generated test cases. However, creating a model-based
testing layer or a domain-specific language layer rarely
makes sense directly on top of low-level test support such as
provided directly by general purpose programming
languages (or even general purpose testing languages such as
TTCN-3). These modeling tools generate test cases using
specific transformations from a source model to a target
model. These transformations are made much simpler when
built on top of a higher abstraction such as that provided by a
keyword driven test framework. By having a layer in
between that allows generating test cases as a form or
configuration for this (i.e., keyword combinations) makes it
much simpler to generate these from the models, simplifies
the required transformations, and makes for much better
maintenance of the modeling infrastructure. Having a
working middle layer (such as keywords based) also allows
for writing manual test cases directly on this layer where
desired.

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

For the final part of the domain-specific test languages, it
can be built either on top of the model-based testing tools
and their test models, or on its own. The model-based testing
tools typically do not offer much added abstraction for the
domain-specific tools but rather provide a lot of added power
in expressing domain variance and generating higher test
coverage automatically. When model-based testing tools are
used with domain-specific models, it is useful to include
them in the loop when possible in order to reduce the costs of
maintaining and evolving several different models. That is,
using the domain-specific workbench to generate a
configuration for the model-based testing tool, which can
then generate the actual test scripts from this configuration.
This of course depends on having the required support
available in the different tools for this type of functionality.
Better understanding their relations in a domain-specific
context as presented in this paper helps achieve these goals.

V. CONCLUSIONS

This paper presented an overview of domain-specific
modeling in the context of software testing. While various
approaches for applying test automation in different domains
exist, few explicitly consider these two concepts together and
aim for most benefit. The overview presented here provides
a basis for building better support for making these concepts
benefit from each other.

The graphical modeling language definition for the
calendar example is available as a MetaEdit+ project on the
OSMO Tester MBT tool website [18]. The test platform
code can also be accessed as part of the OSMO Tester MBT
tool examples code repository at [18].

Overall, although different definitions and approaches are
presented here for both domain-specific modeling and test
automation, as noted, many different interpretations for these
terms exist, and any definition should suffice, as long as it
helps the people involved perform the task at hand and the
stakeholders are able share the common definition(s). In our
experience, being more explicit in the domain terminology
and building the test frameworks based on this helps achieve
this.

In the future we look forward to more extensive case
studies on applying different DSM approach to testing, and
how it affects and benefits the different stakeholders.

VI. REFERENCES

[1] S. Kelly, and J.-P. Tolvanen, "Domain-Specific Modeling:

Enabling Full Code Generation", Wiley-Blackwell, 2008.

[2] O.-P. Puolitaival, T. Kanstrén, V.-M. Rytky, and A. Saarela,

"Utilizing Domain-Specific Modelling for Software Testing,"

in 3rd International Conference on Advances in System

Testing and Validation Lifecycle (VALID 2011), 2011, pp.

115-120.

[3] T. Kanstrén, O.-P. Puolitaival, V.-M. Rytky, A. Saarela, and

J. Keränen, "Experiences in Setting up Domain-Specific

Model-Based Testing," in IEEE International Conference on

Industrial Technology (ICIT 2012), 2012, pp. 319-324.

[4] J. Bentley, "Programming Pearls: Little Languages,"

Communications of the ACM, vol. 29, no. 8, 1986, pp. 711-

721.

[5] MetaCase, "MetaEdit+ Domain-Specific Modeling (DSM)

environment," MetaCase, [Online]. Available:

http://www.metacase.com/products.html. [Accessed January

2013].

[6] ETSI, "Testing and Test Control Notation version 3,"

European Telecommunication Institute (ETSI), [Online].

Available: http://www.ttcn-3.org/. [Accessed January 2013].

[7] NSN, "Robot Framework - A generic Test Automation

Framework," [Online]. Available:

http://code.google.com/p/robotframework/. [Accessed

January 2013].

[8] S. Stresnjak, and Z. Hocenski, "Usage of Robot Framework in

Automation of Functional Test Regression," in The 6th

International Conference on Software Engineering Advances

(ICSEA 2011), 2011.

[9] S. Wieczorek, and A. Stefanescu, "Improving Testing of

Enterprise Systems by Model-Based Testing on Graphical

User Interfaces," in 17tht IEEE International Conference and

Workshops on Engineering of Computer Based Systems

(ECBS 2010), 2010, pp. 352-357.

[10] S. Bärisch, "Domain-Specific Model-Driven Testing,"

Vieweg+Teubner Verlag, 2009.

[11] J. Kloos, and R. Eschbach, "A Systematic Approach to

Construct Compositional Behaviour Models for Network-

structured Safety-critical Systems," Electronic Notes in

Theoretical Computer Science, vol. 263, 2010, pp. 145-160.

[12] M. Utting, and B. Legeard, "Practical Model-Based Testing:

A Tools Approach", Morgan Kaufman, 2006.

[13] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman,

"Model-Based Quality Assurance of Protocol Documentation:

Tools and Methodology," Journal of Software Testing,

Verification and Reliability, vol. 21, no. 1, 2011, pp. 55-71.

[14] T. Kanstrén, and O.-P. Puolitaival, "Using Built-In Domain-

Specific Modeling Support to Guide Model-Based Test

Generation," in 7th Workshop on Model-Based Testing (MBT

2012), 2012, pp. 58-72.

[15] A. Jääskeläinen, M. Katara, A. Kervinen, M. Maunumaa, T.

Pääkkönen, T. Takala, and H. Virtanen, "Automatic GUI test

generation for smart phone applications - an evaluation," in

Proceedings of the Software Engineering in Practice track of

the 31st International Conference on Software Engineering

(ICSE 2009), 2009, pp. 112-122.

[16] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M.

Baumgartner, B. Sostawa, R. Zölch, and T. Stauner, "One

Evaluation of Model-Based Testing and its Automation," in

Proceedings of the 27th International Conference on Software

Engineering (ICSE 2005), St. Louis, Missouri, USA, 200, pp.

392-401.

[17] M. Vieira, X. Song, G. Matos, S. Storck, R. Tanikella, and B.

Hasling, "Applying Model-Based Testing to Healtcare

Products: Preliminary Experiences," in Proceedings of the

30th International Conference on Software Engineering (ICSE

2008), Leipzig, Germany, 2008, pp. 669-672.

[18] T. Kanstrén, "OSMO Tester Home Page," May 2012.

[Online]. Available: http://code.google.com/p/osmo.

[Accessed May 2012].

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

