
Lack of Software Engineering Practices
in the Development of Bioinformatics Software

Dhawal Verma, Jon Gesell, Harvey Siy, Mansour Zand
Department of Computer Science
University of Nebraska at Omaha

Omaha, Nebraska 68182
Email: {dverma,jgesell,hsiy,zand}@unomaha.edu

Abstract—Bioinformatics is a growing field in the software
industry. However there is very little evidence that sound
software engineering practices are being applied to bioinfor-
matics software development. As bioinformatics is a merging
of the disciplines of biology and computer science, it would
appear very odd that this, particularly important aspect of
the computer science field would be absent, however that is
the case. This paper will attempt to go into the reasons for
this, as well as propositions that others have put forward to
remedy this issue. We finally propose an approach towards
resolving the software / requirement engineering challenges by
comparing four methodologies Agile, SSADM, UP and Domain
Engineering, and select the best approach that can help resolve
the software / requirement engineering issues while developing
bioinformatics software.

Keywords—Requirements engineering; bioinformatics; agile;
UP; SSADM; domain engineering

I. INTRODUCTION

The field of bioinformatics is a relatively recent; how-
ever, rapidly growing field, and one that spans both com-
puter science and biology. It is focused on making cutting-
edge scientific discoveries through sophisticated analysis
of biomolecular data such as DNA, RNA, and protein
sequences. It is an interdisciplinary field in which com-
puter technology and computer science techniques, including
software, hardware and algorithms, are applied to solving
problems arising in biology. The primary stakeholders are bi-
ologists rather than computer scientists. As such, it presents
a unique situation for the field of software engineering,
as it presents challenges and opportunities that are not
typically present during the normal engineering process [1].
For instance, stakeholders may be more inclined to sacrifice
program structure to get something that works. While the
field itself is indeed very different from the typical software
engineering situation, with generally much tighter restraints
on budget and timetables, as well as less time allotted for
verifying and testing, the end goal of creating accurate and
reliable scientific software is no less critical since incorrect
results would greatly compromise the validity of the dis-
covery. Furthermore, developing an easily maintainable and
functional, as well as well-documented piece of software
is still ever-present. Just as in the more general field of
computer science, the practices of requirements and software
engineering should be introduced in the academic lives of

those involved. As this field is part of computer science, and
is included in the computer science departments of many
universities, requirements engineering would be assumed to
be part of the curriculum that these students would enroll in;
however, as Umarji, et al. [1] discuss, this is not the case at
all. In their studies of the syllabi of over 50 universities and
colleges across the United States, Umarji et al. found that,
while the students were always well instructed in general
computer science topics, such as “design and analysis of
algorithms, databases and programming languages in all the
bioinformatics programs, however little or no training given
to these students on basic software engineering principles.”
[1]. Part of this may stem from the fact that “only recently
have studies on end-user programming and information
activities in bioinformatics started to emerge; there is still a
large gap in our understanding problems in bioinformatics
software development” [2]. Their particular study into this
lack of application of the software engineering discipline
is particularly compelling, as it includes roughly 50% of
persons from the computer science discipline, and 50% from
the molecular biology and biochemistry disciplines, so that
it shows the influences that both sides have had on each
other in this process of discovery.

A. Problem Statement

Bioinformatics, as a field is almost unique in regards
to how requirements engineering is concerned. As Umarji,
et al. [3] point out, within this field, unlike most others,
there is a relatively large percentage of the practitioners
of the field (i.e., bioinformaticians) who are doing the
programming themselves, and have been left to their own de-
vices in terms of software development and documentation.
While science itself, and the experimental model teaches
that documentation of every detail is important, this would
appear to stop when it comes to the development of the
tools that these scientists would use, and documentation
is very limited, if it exists at all. This would appear to
match up with their findings that, when asked about where
these scientists learned what they knew about the software
development process, “84% of [126] respondents indicated
that they had learned through self-teaching alone, or that
self-teaching was one of their main modes of learning.”
[1]. This statistic in itself shows a considerable void in the
formal training of the scientists involved with bioinformatics

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

or computational biology, let alone the formal training in
software engineering.

II. LITERATURE SURVEY

The study from Umarji, et al. [1] clearly suggests a lack
in implementation of software engineering and requirements
engineering methodologies in the development of bioin-
formatics tools. It would fit in with their earlier findings
in regards to the number of university programs where
bioinformatics students who had taken software engineering
or requirements engineering as part of their degree program,
and this also would make sense given that “70% [of those
same respondents] responded that they had taken some com-
puter science courses. Ten percent of the respondents com-
pleted certification programs to gain proficiency in software
development.” The fact that so few of these respondents have
any formal training in requirements engineering is indeed a
disquieting figure: the implications are that there is a lot of
software that is developed by an individual, and that once
that particular individual is gone, the maintenance and effi-
ciency of that software, even just the simple understanding of
its function, will also be lost. While, unlike in a traditional
business setting, this loss may not be financial in nature,
the loss still could have far-reaching repercussions on the
advancement or understanding of a particular experiment.
In addition, the majority of these same respondents also
identified themselves as bioinformatics specialists with some
programming ability (57%), as opposed to programmers first
(35%). Finally, most of these respondents indicated that they
worked on mid-sized projects of about 5-20 KLOC, and that
there was a broad range of team sizes. In short, this is clearly
a discipline that covers a very broad range of experience
in terms of programming ability, but which shows a very
inconsistent level of education in the merged field, and one
which is primarily graduate-level. This would indicate that
though they completed many years of advanced computer
science courses, in addition to those in biology, one of
the most fundamental of these graduate courses, software
engineering, requirements engineering or architecture were
never covered.

To address this, Umarji, et al. propose a curriculum that
fits both the demands of the field, and which emphasizes
proper software engineering disciplinary techniques. Instead
of adding a new class or requirement, their approach spreads
the importance of disciplined software engineering in current
classes, avoiding adding time to an already lengthy train-
ing process. Chilana, et al. [2] also bring up the lack of
standardization since bioinformatics is such a new field. As
software engineering is in a similar state when compared to
other engineering disciplines, this should be a problem that
software engineers themselves are familiar with.

Another problem pointed out by Chilana, et al. is that
while bioinformatics is a cross-disciplinary field, it is one
in which the two disciplines do not even speak remotely
the same language. For example, they discuss how the two
groups in their study, the computer science-oriented and the

molecular biology and biochemistry-oriented, do not even
approach the problems in the same manner: the computer
science group “often used command-line interfaces and
programming languages that they were comfortable with
and did not find it challenging to locate any related techni-
cal information.” [2]. Meanwhile, the more bioinformatics-
oriented group, developed applications which “were simple
at the beginning to match their research purposes the partici-
pants in this category had primarily self-taught programming
skills and often sought information ... or obtain additional
help from colleagues in implementing a solution.”

Most bioinformaticians and computational biologists be-
lieve that good bioinformaticians build up their own toolbox,
and are aware of and use existing tools to do more powerful
work. The software development practices mostly surround
the notion of “Don’t reinvent the wheel” which essentially
refers to the use of existing frameworks and to take ad-
vantage of large existing projects like BioPython [4], which
contains a lot of ready to go code for practically everything.

This would indicate that while those in the bioinformatics
background are less likely to have a software engineering or
requirements engineering course to teach them the necessity
of requirements specification, software maintenance and
development, they are more willing to branch out than those
who were educated in a far more rigid, single discipline
environment. An ideal solution would, therefore, include a
cross-over: better training of those in bioinformatics with
regards to requirements engineering, and a cross-discipline
research course in the computer science field.

III. SOFTWARE AND REQUIREMENTS ENGINEERING
CHALLENGES

The term bioinformatics has a range of interpretations,
but the core activities of bioinformatics are widely ac-
knowledged: storage, organization, retrieval, and analysis of
biological data. A bioinformatician works to provide services
to the scientic community in the form of databases and
analytical tools. The serious challenges facing bioinformatics
over the next decade include integration and presentation of
the enormous and ever expanding size data. In order to make
use of the relatively weak signals present in a single data
source, it is necessary to integrate data from different views
of the same system. Of course, integrated data is still just
a mountain of data. Researchers need tools that present the
data in a comprehensible fashion, annotated with context,
estimates of accuracy and explanation. Another challenge
that bioinformaticians face while developing bioinformatics
software is that in most cases the tool or collection of
tools was written in an ad hoc manner to be used for an
experiment. If the experiment is successful, this tool evolves
into a large scale project and sometimes even considered to
be commercialized. In such situations, little emphasis is paid
on the organization and requirement gathering process in
the early stages of the software. A bioinformatician gathers
information from the biologists and takes an evolutionary
approach towards building the software and in most cases the

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

approach is so raw in the sense that absolutely no importance
is given to the software and requirement engineering process
simply because the main objective is to create a tool/software
“quickly”, that only a selective set of users who are involved
in the research can use [5].

We put forward an approach to resolve the aforemen-
tioned challenges. We considered four different method-
ologies, Agile [6], SSADM (Structured Systems Analysis
and Design Method) [7], UP (Unified Process) [8] and
DE (Domain Engineering) [9]. Table I compares the four
methodologies in terms of how they address the technical
challenges of bioinformatics software engineering. After an
exhaustive study of the pros and cons of each methodology
for software development in the field of bioinformatics we
came to the conclusion that an integrative methodology
of UP, SSADM and DE would be the best candidate for
software development in the field of bioinformatics. The
following section explains the reasons why.

IV. EVALUATION OF METHODOLOGIES

A. Evaluation: Agile methodology

One of the fundamentals of agile methodology is user
involvement. However, in our case, user involvement was
expected to be low for the following reasons:

• Most of the projects are research oriented, the users
are mainly the biologists of the research group and
they are usually unavailable due to scheduling con-
straints and only play a small part in the knowledge
transfer of the domain to the development team.

• The development team members are mostly them-
selves part of the research group, so they perceive
(correctly or not) that they understand the system
requirements and do not feel the critical need to
involve the users.

Requirements although expected to change along with
the changes in research objectives for this system, they are
still stable for a phase due to the following reasons:

• There are not many stakeholders involved (only the
research group).

• Existing work process is to be automated

• User stories are not that complex since most bioin-
formatics tools developed are for analytics and
hence it is the algorithm that takes preference.

• Existing process/work-cycle can be demonstrated
easily in short span of time thereby giving us enough
insight into how the system should work and create
plan. On an average, it takes bioinformaticians about
3-4 hours to obtain a small subset of results using
theoretical methods/algorithms.

In practice, the lightweight nature of agile methods
affords a lot of flexibility to the development process, but

makes agile methods difficult to implement in a disciplined
manner without coaching [10]. An undisciplined application
of agile methods leads to a “patch and go” attitude. Agile
methods are commonly used in the development of scientific
software (e.g., [11], [12]). However, the use of agile methods
by programmers with no formal training in software engi-
neering increases the likelihood of undisciplined application
of the process, leading to lack of documentation, and code
that is difficult to maintain or reuse. Moreover, the common
quality assurance practice employed in agile processes, test-
driven development, is very difficult to apply to scientific
software, where it is not always clear what the expected
output should be. In addition, the fact that the stakeholders,
developers and users are generally all the same person does
not help in this regard, as they are less likely to seek outside
help, and to view documentation as a waste of time, as they
are the only persons involved. For these reasons, agile is not
a good fit for creating maintainable scientific software.

B. Evaluation: Unified Process

Unified Process (UP) [8] views software development as
consisting of four iterative phases:

1) Inception: the need for the software is justified and
cost-benefit and risk analyses are conducted.

2) Elaboration: this is where requirements are elabo-
rated and the software architecture is created.

3) Construction: the design is further detailed and the
software is incrementally built.

4) Transition: the developed software is delivered to
the client.

UP provides an extensible framework to manage soft-
ware development: one of its major features is that it consid-
ers software development to be an iterative and incremental
process whereby each stage has a specific area of focus,
which is just the kind of approach required in a research-
oriented field of bioinformatics.

The iterative and incremental process divides the project
into smaller chunk called increment and each increment
refines the functionality of intended system by undergoing
several iterations, following the complete process of tradi-
tional waterfall method [6]. In UP, the system development
starts with little knowledge about the objective and as
projects continues the knowledge about the system increases,
which is exactly the kind of needs a research project calls
for. While agile processes have a similar iterative devel-
opment cycle, a key distinction is the discipline imposed
by the heavyweight process associated with UP, particularly
the explicit requirements engineering activities carried out
during the elaboration phase.

Unified Process handles risk well throughout the de-
velopment process. With deliverables at each stage of the
development there is a go/no-go decision to be made ana-
lyzing each deliverables. [13]. This helps in identifying and
analyzing the risk at early stage making it possible to decide
the steps to be taken in course of time.

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

TABLE I. COMPARISON OF METHODOLOGIES

Methods Challenges
Explosion in Data Sources User Centric Design Other

Agile Lack of documentation makes it difficult to
understand how code deals with data formats.
Lack of upfront design modeling makes it
harder to adapt to unanticipated formats.

Requires more customer participation time
than users (biologists) can commit to.

Advantage in dealing with rapid change is
not applicable due to relatively stable require-
ments.

UP Well-documented incremental development
makes it easier for users to add more feature
requests over time.

Risk management process facilitates review at
every stage of development.

SSADM Strong data modeling emphasis fits well with
managing diverse data needs.

Too rigid for incremental development.

DE Domain analysis provides understanding of the
commonalities and variabilities of the various
data formats.

Reduces dependency on domain expert in later
phases of project or future similar projects.

Develops infrastructure, generic architecture
and common “assets”. Facilitates development
of taxonomy and ontologies.

C. Evaluation: SSADM

We consider SSADM [7] to be an important candidate for
software development in the field of bioinformatics because
of the three most important techniques used in SSADM:

• Logical data modeling: the process of identifying,
modeling and documenting the data requirements of
the system being designed; the data are separated
into entities (data required to record information)
and relationships (the associations between the en-
tities).

• Data Flow Modeling: the process of identifying,
modeling and documenting how data moves around
a system; this process examines processes (activities
that transform data from one form to another), data
stores (the holding areas for data), external entities
(what sends data into a system or receives data from
a system), and data flows (routes by which data can
flow).

• Entity Behavior Modeling: the process of identi-
fying, modeling and documenting the events that
affect each entity and the sequence in which these
events occur.

Since dealing with huge amount of data is the major part
of the problem in bioinformatics, the explicit data modeling
techniques inherent in SSADM are suitable for the problems
bioinformaticians deal with the most.

While the overall SSADM process is too rigid [14] for
the incremental user-centered design approach that is ideal
for development of bioinformatics software, there are certain
aspects that are still applicable. Of the different stages
involved, we select the ones that are essential for software
development in the field of bioinformatics. These stages are:

1) Feasibility study: A feasibility study is effectively
a condensed version of a fully blown systems
analysis and design, to investigate the goals and
implications of a research project before commit-
ting resources to it.

2) Investigation of the current environment: This is
one of the most important stages in the software
development methodology; although the new envi-
ronment may be radically different, the concepts

underlying bioinformatics software will remain the
same and hence it is critical to investigate some
form of the current system.

3) Requirement Specification: This is probably the
most complex stage in the methodology. Using the
requirements developed in stage 2 and working
within the framework of the selected module, the
analyst must develop a full logical specification of
what the new system must do.

4) Technical system options: This is the first stage to-
wards a physical implementation of the system and
a large number of options for the implementation
are generated such as the hardware architecture,
software to use, cost of implementation, staffing
required, physical limitations and constraints such
as a space occupied by the system, the distribution
including any network which that may require and
the overall format of the human computer interface.

5) Logical design: This level concentrates on the
requirements for the human computer interface,
which is something important when it comes to
research projects having potential of being widely
used, such as a Genome Browser or an interface
for querying a disease database. The logical design
specifies the main methods of interaction in terms
of menu and command structures.

6) Physical design: This is the final stage where all the
logical specifications of the system are converted to
descriptions of the system in terms of real hardware
and software.

D. Evaluation: Domain Engineering

Domain engineering [9] provides a systematic process
for analyzing a family of similar applications in order to
produce a common extensible framework. It consists of the
following activities:

1) Domain analysis: In this stage that is unique to
domain engineering, the domain is studied to un-
derstand what the different applications have in
common and how they vary. This also leads to the
definition of the scope of the domain, i.e., which
applications to consider part of the domain and
which ones to exclude.

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Fig. 1. An integrative approach towards a suitable Software/Requirement Engineering Methodology for Bioinformatics Projects

2) Domain specification: In this stage, the artifacts are
refined, producing a domain-specific requirements
document followed by a reference architecture that
defines the common components and reusable as-
sets as well as where application-specific compo-
nents and modifications can be added.

3) Domain implementation: This stage uses exist-
ing software development processes to take the
domain-specific requirements and architecture and
create the framework and other core assets that can
be used for developing additional applications.

The domain engineering process is well-suited to an-
alyze and model the diverse data sources and organize
the multiplicity of scripts that perform similar analyses
on bioinformatics data. Domain analysis studies the com-
monalities and variabilities of the various data sources and
formats, enabling developers to understand how they vary
and anticipate additional variations.

The outcome of domain engineering activities facilitates
further development of a product line of similar bioinfor-
matics applications. Development of a product line tool or
workbench makes it possible to easily develop add-ons to
existing products. It makes every function and feature of the
family of products available for use, extensions, and possible
adaptation of developed/abstracted features. This can be

accomplished with the creation of bioinformatics-specific
designer tools that simplify many of the programming tasks
for bioinformaticians.

E. Integrative Approach

We present here an integrative software and require-
ment engineering approach for the domain of bioinformatics
where applied research is the brainchild for development
of software in this unique discipline. Research can be
perceived differently depending on viewpoint, academic or
industrial. In this paper, we define applied research as an
activity that gains intellectual leadership that ultimately
leads to commercial reward for a company by combining
the classical viewpoints. We measure this in terms of the
combination of intellectual leadership (knowledge) together
with the ability to demonstrate new ideas through proof of
concept prototypes.

From our survey, we observed that since a number of
the methodologies used in software development today have
their origins in the waterfall process and tend to separate
activities into distinct phases of design, coding, testing and
integration. These activities have been found to occur repeat-
edly on each cycle or iteration. Iterative design processes
such as the Unified Process (UP) have become widely
used over the past decade. Since, research is considered
to be an incremental and iterative process; we chose UP

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

to be the backbone of our methodology and incorporated
different stages of SSADM and domain engineering into
the four stages of UP methodology. Figure 1 shows the
integration of these methodologies. The feasibility study and
investigation of current environment activities are adopted
from SSADM to guide the inception phase, justifying the
business case. During the elaboration phase, domain analysis
and specification are adopted from DE to guide requirements
analysis activities that can be shared across several related
bioinformatics applications. A study of the technical systems
options are used to understand the requirements from the
systems engineering standpoint. In the construction phase,
logical and physical design activities model the structural
and behavioral aspects of the software. Finally, the transition
phase includes system testing and validation.

V. CONCLUSION AND FUTURE WORK

As was stated before, the lack of any formal training
in requirements engineering principles has led to a major
problem in the field of bioinformatics: many programs with
no requirements specifications, no maintenance plans, and
which, more often than not, have only a single user who
will ever understand these issues. While general education
in the field of requirements engineering and architecture
would certainly assist in making sure that these principles
are reinforced while in academia, the uniqueness of the field
in practicum presents challenges that are not seen in most
other areas. To this end, several techniques that are discussed
in a typical requirements engineering class are on the table.
The first of these, agile, is actually very common in the
field itself, however, as it is practiced almost to the point of
exclusion, it has contributed to the problem almost as much
as the lack of education in the requirements engineering.
Instead, the more practical option would be a combination
of the Unified Process, SSADM or Domain Engineering
methods that were discussed, as they would ensure a more
robust architecture thru requirements specification, an actual
architectural design, and a maintenance plan put in place
to ensure that others actually know what the developed
software is for and how it is to be used, beyond simply
those using it in the here and now.

Future work includes empirical validation of the ef-
fectiveness of the integrated approach. Validation of any
new process or methodology is always difficult, particularly
during the formative years, partially due to the subjective
nature of evaluation but primarily due to the limited expe-
rience in using the technique. As every research project is
different, it is difficult to exactly compare productive gains;
however many approaches for examining the credibility,
reusability and the efficiency of performing research have
been discussed at length [14], [15].

In addition, we will investigate aspects of other software
development processes that can be used to further support
informally trained software developers in building reliable
systems.

REFERENCES

[1] M. Umarji, C. Seaman, A. G. Koru, and H. Liu, “Software engineer-
ing education for bioinformatics,” in Proceedings of the Conference
on Software Engineering Education and Training (CSEET 09), 2009,
pp. 216–223.

[2] P. K. Chilana, C. L. Palmer, and A. J. Ko, “Comparing bioinformatics
software development by computer scientists and biologists: An
exploratory study,” in Proceedings of the ICSE Workshop on Software
Engineering for Computational Science and Engineering, 2009, pp.
72–79.

[3] M. Umarji, M. Pohl, C. Seaman, A. G. Koru, and H. Liu, “Teaching
software engineering to end-users,” in Proceedings of the 4th In-
ternational Workshop on End-User Software Engineering, 2008, pp.
40–42.

[4] P. J. Cock, et al., “Biopython: freely available Python tools for com-
putational molecular biology and bioinformatics,” Bioinformatics,
vol. 25, no. 11, pp. 1422–1423, 2009.

[5] K. Pavelin, J. A. Cham, P. de Matos, C. Brooksbank, G. Cameron,
and C. Steinbeck, “Bioinformatics meets user-centered design: A
perspective,” PLOS Computational Biology, vol. 8, no. 7, pp. 1–4,
2012.

[6] I. Somerville, Software Engineering (9th Ed). Addison-Wesley,
2010.

[7] J. S. Hares, SSADM for the Advanced Practitioner. John Wiley &
Sons, Inc., 1990.

[8] Rational Software, The Rational Unified Process, version 5.0, Cu-
pertino, CA, 1998.

[9] D. M. Weiss and R. Lau, Software Product-Line Engineering: A
Family-Based Software Development Process. Addison-Wesley,
1999.

[10] M. M. Muller and W. F. Tichy, “Case study: Extreme programming
in a university environment,” in Proceedings of the International
Conference on Software Engineering (ICSE 01), 2001, pp. 537–544.

[11] O. Chirouze, D. Cleary, and G. G. Mitchell, “A software methodol-
ogy for applied research: extreme researching,” Software: Practice
and Experiences, vol. 35, no. 15, pp. 1441–1454, 2005.

[12] W. A. Wood and W. L. Kleb, “Exploring XP for scientific research,”
IEEE Software, vol. 20, no. 3, pp. 30–36, 2003.

[13] B. W. Boehm, “A spiral model of software development and en-
hancement,” IEEE Computer, vol. 21, no. 5, pp. 61–72, 1988.

[14] B. Kitchenham, S. L. Pfleeger, D. C. Hoaglin, K. El Emam,
and J. Rosenberg, “Preminary guidelines for empirical research in
software engineering,” IEEE Transactions on Software Engineering,
vol. 28, no. 8, pp. 721–734, 2002.

[15] C. Robson, Real World Research. Backwell Publishers: Oxford,
2002.

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

