
QPSOL: Quantum Particle Swarm Optimization with Levy’s Flight 

Optimization of appliance scheduling for smart residential energy grids 

Ennio Grasso, Claudio Borean 

Swarm Joint Open Lab 

TELECOM ITALIA 

Turin, Italy 

e-mail: ennio.grasso@telecomitalia.it, claudio.borean@telecomitalia.it 

 

 
Abstract— This paper considers the minimum electricity cost 

scheduling problem of smart home appliances in the context of 

smart grids. Functional characteristics, such as expected 

duration and peak power consumption of the smart appliances 

can be adjusted through a power profile signal. The optimal 

scheduling of power profile signals minimizes cost, while 

satisfying technical operation constraints and consumer 

preferences. Time and power constraints, and optimization 

cost are modeled in this framework using a metaheuristic 

algorithm based on a Quantum inspired Particle Swarm with 

Lévy flights. The algorithm runs on the limited computational 

power provided by the home gateway device and in almost 

real-time as of user perception.  

Keywords: scheduling, swarm intelligence, methaeuristic smart 

grids. 

I.  INTRODUCTION 

This paper considers the minimum electricity cost scheduling 
problem of smart home appliances in the context of the 
Energy@Home international project [1]. Functional 
characteristics, such as expected duration and peak power 
consumption of the smart appliances can be modeled through 
a power profile signal. The optimal scheduling of power 
profile signals minimizes cost, while satisfying technical 
operation constraints and consumer preferences. Time and 
power constraints, and optimization cost are modeled in this 
framework using a metaheuristic algorithm based on a 
Quantum inspired Particle Swarm with Lévy flights. The 
algorithm runs on the limited computational power provided 
by the home gateway device and in almost real-time as of 
user perception. 
The innovative Quantum inspired Particle Swarm 
Optimization (QPSO) with Lévy flights metaheuristic 
algorithm for scheduling home smart appliances, capturing 
all relevant appliance operations, is not only described in the 
paper but also validated, since the results of the 
implementation of it running on an embedded platform are 
presented. With appropriately dynamic tariffs and short-term 
load forecasting, the proposed framework can calculate and 
propose a schedule for achieving high cost savings and 
overloads prevention, improving the user experience of 
energy management services. Good quality approximate 
solutions can be obtained in a short amount of computation 
time, in the order of about 2 seconds an almost optimal 
approximate solution can be obtained, which enables the 

usage of this algorithm on very embedded and low cost 
platforms . 
It is also described in the paper how the proposed framework 
could be extended to incorporate solar power forecasting in 
the presence of a residential Photovoltaic (PV) system by 
tuning the objective function and using the solar energy 
forecaster as further input to the scheduler ([16], [18]).  

 
Figure 1.  Example Power Profile with its phases generated by a washing 

machine 

The paper is structured as it follows. Section 2 describes and 

models the problem of scheduling of smart appliance. 

Section 3 highlights how this problem can be classified as  a 

NP-Hard Combinatorial Optimization Problem. In Section 4 

a review of metaheuristic algorithms is performed while in 

Section 5 the new QPSOL algorithm proposed in the paper 

is described. Section 6 reports the results of the simulations 

of the QPSOL algorithm applied to the problem of 

scheduling of smart appliance while Section 7 presents the 

conclusions and future work. 

II. SCHEDULING PROBLEM OF SMART HOME 

APPLIANCES 

Europe has set the ambitious target of a 20% share of overall 
energy demand to be supplied from renewable energy by 
2020. In order to achieve this target, the share of renewable 
energy will need to increase to some 35%. Most of the 
increase will come from wind and solar energy, which are 
both fluctuating resources by nature. 
Electricity consumption varies between different hours of the 
day, between days of the week, and between seasons of the 
year. In recent years, the power demand has reached new 
peak levels and environmental / economic reasons will 
require more complex power balance scenarios also based on 
the introduction of residential renewable electricity 
generation to reduce the carbon footprint and CO2 emission. 

14Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology



One of the major challenges associated with this drastic 
restructuring of the energy supply with renewables is how 
electricity networks can cope with the extreme variability of 
wind and solar energy production. In the past, the ideal load 
curve was flat in order to allow for the full load operation of 
conventional power plants. In the future, the ideal demand 
needs to be variable in order to adapt to the current 
production from renewable energy sources. 
It is expected in the near future that time-varying and 
dynamic electricity tariffs will increase popularity, especially 
for the reduction of peak power consumption which are the 
most detrimental from the grid operators. However, such 
load balancing is only feasible if consumers are both able 
and willing to consider tariff information, but it is still 
unrealistic to expect most consumers to identify the most 
economical operations of their appliances with dynamic 
tariffs, or in the presence of a small-scale photovoltaic (PV) 
power generation system which adds even more complexity 
in determining the economic convenience between 
immediate power usage versus selling the power to the main 
grid operator. 
In view of the above considerations, not only is an automatic 
decision system highly desirable but even necessary in most 
cases, which either directly takes control of the appliances’ 
operations, or at the very least is capable of providing advice 
to the home consumers. 

A. Smart Appliances in Energy@Home 

The Energy@Home (E@H) consortium is based on ZigBee 

communication between smart appliances in a home mesh 

wireless network [1]. The “core” element of this home 

network is the Home Gateway (HG) that coordinates and 

manages the smart appliances as end devices. Among its 

functionalities, the HG provides the intelligence for real-

time scheduling of residential appliances, typically in the 

time interval 24 hours ahead, based on the (possibly) 

varying tariff of the day, the forecasted energy power 

consumption, and also the forecasted home PV power 

generation, if available. 

The proposed scheduling framework is based on the Power 

Profile Cluster defined in the E@H specifications [1], which 

specifies that each appliance operation process is modeled 

as a Power Profile divided into a set of sequential energy 

phases, as presented in Figure 1. An energy phase is an 

uninterruptible  logic subtask of the appliance operation, 

which uses a pre-specified amount of electric energy. The 

energy phases are sequential since the next phase cannot 

start until the previous phase is completed, e.g., a washing 

machine agitator cannot start until the basin is filled with 

water. 

In addition to having a specified energy usage, each energy 

phase is characterized by peak maximum power, a specific 

duration, and a possible maximum activation delay after the 

end of the previous phase. Some phases cannot be delayed 

and must start soon after the previous phase completes 

(maximum delay is zero). Other phases may be delayed 

adding extra flexibility in the scheduling of the Power 

Profile, e.g., the washing machine agitator must start within 

ten minutes of the basin being filled. 

In addition, the scheduler needs to take into account user 

specified time preferences, requiring that certain appliances 

should be run within some particular time intervals, e.g., the 

dishwasher must complete washing dishes between 13:00 

and 18:00. 

The objective of the HG scheduler is to find the least 

expensive scheduling for a set of smart appliances, each 

characterized by a Power Profile with its energy phases, 

while satisfying the necessary operational constraints. 

The scheduling execution interval is divided into 1440 1-

minute time slots for a 24-hour period. The number of 

appliances considered for scheduling is denoted N, and the 

number of energy phases for each appliance is denoted ni 

for i = 1, 2,.., N. The problem dimension, i.e., the number of 

independent variables that make up the problem, is 

∑i=1
N
 ∑j=1

ni
 pij    (1) 

where pij is the jth phase of power profile i. The objective of 

the scheduler is to minimize the total electricity cost for 

operating the appliances based on a given 24-hour ahead 

electricity tariff while taking into account user comfort 

criteria (earlier executions are preferable than delayed 

execution) and respecting time and energy constraints. 

B. Modeling Time and Energy Constraints 

Even in the presence of the HG scheduler controlling a set 

of smart appliances, the real number of home appliances and 

other electric powered devices that consume energy in the 

hose is higher and outside the control of the scheduler. For 

that reason any sensible scheduling system must be 

complemented by an appropriate forecasting module that 

provides good estimation of the overall power consumption 

based on past statistics. 

The energy constraints imposes that for each time slot, the 

total sum of power required by all phases running in that 

slot, plus the forecasted power consumption “outside” the 

control of the scheduler, be less than peak power threshold 

provided by the grid operator, 

 

∑i=1
N
 ∑j=1

ni
 Power(pij) + Loadforecast  ≤ PeakPower   (2) 

 
Time constraints are twofold. On the one hand the user can 

set up time preference constraints, specifying the time 

interval that a particular appliance must be scheduled in 

terms of an earliest start time (EST), e.g., after 13:20, and a 

latest end time (LET), e.g., before 18:00. 

 

EST ≤ PPi
start

 ≤ PPi
end

 ≤ LET         (3) 

 
where PP

i
start and PP

i
end are respectively the scheduling start 

slot of the 1
st
 phase of Power Profile i and the end slot of the 

last phase. 

The second time constraint is the maximum activation delay 

of each of the sequential phases that make up the Power 

Profiles. While the scheduling interval specified in the first 

15Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology



constraint is absolute, the maximum activation delays are 

relative and therefore the lower and upper bound time limits 

of each phase need to be adjusted based on the scheduling 

decisions for the previous phase. 

 

pij
end

 ≤ pij+1
start

 ≤ pij
end

  + pij+1
maxdelay   

(4) 

 

III. NP-HARD COMBINATORIAL OPTIMIZATION 

PROBLEMS 

Given the problem formulation, the scheduling of Power 
Profiles, each composed by a set of sequential (and possibly 
delayable) phases, under energy constraints is classified in 
the more general family of Resource Constrained Scheduling 
Problem (RCSP), which is known as being an NP-Hard 
combinatorial optimization problem [12] [13]. 
Moreover, the presence of time constraints introduce even 
another dimension to the complexity of problem, known as 
RCSP/max, i.e., RCSP with time windows. Combining the 
inherent complexity of the problem with the fact that the 
limited computing power of the HG which runs the logic of 
algorithm, and the almost real-time requirement for finding a 
solution (typically the user wants a perceived immediate 
answer), make the formulation of the problem and its 
solution a challenging endeavor. 
From a theoretical perspective, combinatorial optimization 
problems have a well-structured definition consisting of an 
objective function that needs to be minimized (e.g., the 
energy cost) and a series of constraints. These problems are 
really important for the great amount of real-life applications 
that can be modeled in this way. For example, areas like 
routing or scheduling contain plentiful hard challenges that 
can be expressed as a combinatorial optimization problem. 
For easy problems, exact methods can be exploited, such as 
Branch&Bound and Mixed Integer Linear Programming 
(MILP), with back-tracking and constraints propagation to 
prune the search space. However, in most circumstances, the 
solution space is highly irregular and finding the optimum is 
in general impossible. An exhaustive method that checks 
every single point in the solution space would be infeasible 
in these difficult cases, since it takes exponential time. 
As a point of fact, [2] also addresses a similar scheduling 
problem of smart appliances, and relies on traditional MILP 
as a problem solver. They provide computation time 
statistics for their experiments, running on an Intel Core i5 
2.53GHz equipped with 4GB of memory and using the 
commercial application CPLEX and MATLAB. According 
to their figures, discretizing the time interval in 10-minute 
discrete slots (for a total of 144 daily slots), takes their 
algorithm about 15.4 seconds to find a solution. With 5-
minute slots the time rises to 83.6 seconds, and with 3-
minute slots to 860 seconds. From these figures it is clear 
that a traditional approach like MILP or B&B is hardly 
acceptable for scheduling home appliances, and other more 
efficient methods need to be investigated. 

A. Convex Constraints and Smooth Objective Functions 

Generally speaking, optimization problems can be 

categorized, from a high-level perspective, as having either 

convex or non-convex constraints. 

Convex constraints form a series of convex regions where 

exact methods could be applied (e.g., B&B, linear-

programming, etc.). The main idea, in convex optimization 

problems, is that every constraint restricts the space of 

solutions to a certain convex region. By taking the 

intersection of all these regions we obtain the set of feasible 

solutions, which is also convex. Due to the nice structure of 

the solution space, every single local optimum is a global 

one. Most conventional or classic algorithms are 

deterministic. For example, the simplex method in linear 

programming is deterministic, and use gradient information 

in the search space, namely the function values and their 

derivatives. 

Non-convex constraints create a many disjoint regions, and 

multiple locally optimal points within each of them. As a 

result, if a traditional search method is applied, there is a 

high risk of ending in a local optimum that may still be far 

away from the global optimum. But the main drawback is 

that it can take exponential time in the size of problem 

dimension to determine if a feasible solution even exists! 

Another definition is that of smooth function, i.e., a function 

that is differentiable and its  derivative is continuous. If the 

objective function is non-smooth, the solution space 

typically contains multiple disjoint regions and many locally 

optimal points within each of them. The lack of a nice 

structure makes the application of traditional mathematical 

tools, such as gradient information, very complicated or 

even impossible in these cases. 

Most “real” problems are neither convex nor smooth, so 

traditional exact methods cannot be applied. Finding a 

solution not the best one but “acceptable”, or even finding a 

feasible solution is NP-Hard. 

B. An Overview of General Metaheuristic Algorithms 

A problem is NP-Hard if there is not an exact algorithm that 

can solve the problem in polynomial time with respect to the 

problem’s dimension. In other words, aside from some “toy-

problems”, an NP-Hard problem would require exponential 

time to find a solution by systematically “exploring” the 

solution space. 

A common method to turn an NP-Hard problem into a 

manageable, feasible approach is to apply heuristics to 

“guide” the exploration of the search space. These heuristics 

are based on “common-sense” specific for each problem and 

are the basis for developing Greedy Algorithms that can 

build the solution by selecting at each step the most 

promising path in the solution space based on the suggested 

heuristics. Obviously this approach is short-sighted since it 

proceeds with incomplete information at each step. Very 

rarely do greedy algorithms find the best solution or worse 

yet they might fail to find a feasible solution even if one 

does exist. 

16Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology



A better approach for solving complex NP-Hard problems 

that has shown great success is based on metaheuristic 

algorithms. The word meta means that their heuristics are 

not problem specific to a particular problem, but general 

enough to be applied to a broad range of problems. 

Examples of metaheuristic algorithms are Genetic and 

Evolutionary Algorithms, Tabu search, Simulated 

Annealing, Greedy Randomized Adaptive Search Procedure 

(GRASP), Particle-Swarm-Optimization, and many others. 

The idea of metaheuristics is to have efficient and practical 

algorithms that work most the time and are able to produce 

good quality solutions, some of them will be nearly optimal. 

Figuratively speaking, searching for the optimal solution is 

like treasure-hunting. Imagine we are trying to find a 

hidden treasure in a hilly landscape within a time limit. It 

would be a silly idea to search every single square meter of 

an extremely large region with limited resources and limited 

time. A more sensible approach is to go to some place 

almost randomly and then move to another plausible place 

using some hints we gather throughout. 

Two are the main elements of all metaheuristic algorithms: 

intensification and diversification. Diversification via 

randomization means to generate diverse solutions so as to 

explore the search space on the global scale and to avoid 

being trapped at local optima. Intensification means to focus 

the search in a local region by exploiting the information 

that a current good solution is found in this region as a basis 

to guide the next step in the search space. The fine balance 

between these two elements is very important to the overall 

efficiency and performance of an algorithm. 

 

IV. CLASSIFICATION OF METAHEURISTIC 

ALGORITHMS  

Metaheuristic algorithms are broadly classified in two large 

families: population-based and trajectory-based. Going 

back to the treasure-hunting metaphor, in a trajectory-based 

approach we are essentially performing the search alone, 

moving from one place to the next based on the hints we 

have gathered so far. On the other hand, in a population-

based approach we are asking a group of people to 

participate in the hunting sharing all information gathered 

by all members to select the next promising paths for the 

next moves. 

A. Genetic Algorithms  

Genetic algorithms (GA) were introduced by John Holland 

and his collaborators at the University of Michigan in 1975 

[3]. A GA is a search method based on the abstraction of 

Darwinian evolution and natural selection of biological 

systems, and representing them in the mathematical 

operators: crossover (or recombination), mutation, fitness 

evaluation and selection of the best. The algorithm starts 

with a set of candidate solutions, the initial population, and 

generate new offspring through random mutation and 

crossover, and then applies a selection step in which the 

worst solutions are deleted while the best are passed on to 

the next generation. The entire process is repeated multiple 

times and gradually better and better solutions are obtained. 

GA algorithms represent the inseminating idea of all more 

recent population-based metaheuristics. 

One major drawback of GA algorithms is the “conceptual 

impedance” that arises when trying to formulate the 

problem at hand with the genetic concepts of the algorithm.  

The formulation of the fitness function, population size, the 

mutation and crossover operators, and the selection criteria 

of the offspring population are crucially important for the 

algorithm to converge and find the best, or quasi-best, 

solution. 

B. Simulated Annealing 

Simulated Annealing (SA) was introduced by Kirkpatrick et 

al. in 1983 [5] and is a trajectory-based approach that 

simulates the evolution of a solid in a heat bath to thermal 

equilibrium. It was observed that heat causes the atoms to 

deviate from their original configuration and transition to 

states of higher energy. Then, if a slow cooling process is 

applied, there is a relatively high chance for the atoms to 

form a structure with lower internal energy than the original 

one. Metaphorically speaking, SA is like dropping a 

bouncing ball over a hilly landscape, and as the ball bounces 

and loses its energy it eventually settles down to some local 

minima. But if the ball loses energy slowly enough keeping 

its momentum, it might have a chance to overcome some 

local peaks and fall through a better global minimum. 

C. Particle Swarm Optimization 

Particle swarm optimization (PSO), introduced in 1995 by 

American social psychologist James Kennedy, and engineer 

Russell C. Eberhart [6], represents a major milestone in the 

development of population-based metaheuristic algorithms. 

PSO is an optimization algorithm inspired by swarm 

intelligence of fish and birds or even human behavior. The 

multiple particles swarm around the search space starting 

from some initial random guess and communicate their 

current best found solutions and also share the global best so 

as to focus on the quality solutions. The greatest advantage 

of PSO over GA is that it is much simpler to apply in the 

formulation of the problem. Instead of using crossover and 

mutation operations it exploits global communication 

among the swarm particles. Each particle in the swarm 

modifies its position with a velocity that includes a first 

component that attracts the particle towards the best position 

so far achieved by the particle itself. This component 

represents the personal experience of the particle. The 

second component attracts the particle towards the best 

solution so far achieved by the swarm as a whole. This 

component represents social communication skill of the 

particles. 

Denoting with N the dimensionality of the search space, i.e., 

the number of independent variables that make up the 

exploring search space, each individual particle is 

17Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology



characterized by its position and velocity N-vectors. 

Denoting with xi
k
 and vi

k
 respectively the position and 

velocity of particle i at iteration k, the following equations 

are used to iteratively modify the particles’ velocities and 

positions: 

  

vi
k+1

 = w vi
k
 + c1 r1 (pi - xi

k
) + c2 r2 (g* - xi

k
)    (5) 

  

xi
k+1

 = xi
k
 + vi

k+1
   (6) 

 

where w is the inertia parameter that weights the previous 

particle’s momentum; c1 and c2 are the cognitive and social 

parameter of the particles multiplied by two random 

numbers r1 and r2 uniformly distributed in [0 - 1], and are 

used to weight the velocity respectively towards the 

particle’s personal best, (pi - xi
k
), and towards the global 

best solution, (g* - xi
k
), found so far by the whole swarm. 

Then the new particle position is determined simply by 

adding to the particle’s current position the new computed 

velocity, as shown in Figure 2.  

 
Figure 2.  New particle position in PSO 

The PSO coefficients that need to be determined are the 

inertia weight w, the cognitive and social parameters c1 and 

c2, and the number of particles in the swarm. We can 

interpret the motion of a particle as the integration of 

Newton’s second law where the component c1 r1 (pi - xi
k
) + 

c2 r2 (g* - xi
k
) are the attractive forces produced by springs 

of random stiffness, while w introduces a virtual mass to 

stabilize the motion of the particles, avoiding the algorithm 

to diverge, and is typically a number such that w ≈ [0.5 - 

0.9]. It has been shown, without loss of generality, that for 

most general problems the number of parameters can even 

be reduced by taking c1 = c2 ≈ 2. 

 

D. Quantum Particle Swarm Optimization 

Although much simpler to formulate than GA, classical 

PSO has still many control parameters and the convergence 

of the algorithm and its ability to find a near-best global 

solution is greatly affected by the value of these control 

parameters. To avoid this problem a variant of PSO, called 

Quantum PSO (QPSO) was formulated in 2004 by Sun and 

al. [7], in which the movement of particles is inspired by 

quantum mechanics. 

The rationale behind QPSO stems from the observation that 

statistical analyses have demonstrated that in classical PSO 

each particle i converges to its local attractor ai defined as 

ai = (c1 pi + c2 g*) / (c1 + c2)        (7) 

where pi and g* are the personal best and global best of the 

particle. The local attractor of particle i is a stochastic 

attractor that lies in a hyper-rectangle with pi and g* being 

two ends of its diagonal, and the above formulation can also 

be rewritten as 

 ai = r pi + (1 – r) g*   (8) 

where r is a uniformly random number in the range [0 - 1]. 

In classical PSO, particles have a mass and move in the 

search space by following Newtonian dynamics and 

updating their velocity and position at each step. In quantum 

mechanics, the position and velocity of a particle cannot be 

determined simultaneously according to uncertainty 

principle. In QPSO, the positions of the particles are 

determined by the Schrödinger equation where an attractive 

potential field will eventually pull all particles to the 

location defined by their local attractors. The probability of 

particle i appearing at a certain position at step k+1 is given 

by: 

xi
k+1

 = ai + β |xmbest
k 
– xi

k
| ln(1 / u), if v ≥ 0.5       (9) 

xi
k+1

 = ai – β |xmbest
k 
– xi

k
| ln(1 / u), if v < 0.5       (10) 

 

where u and v are uniformly random numbers in the range 

[0 - 1], xmbest
k
 is the mean best of the population at step k 

defined as the mean of the best positions of all particles 

 xmbest = (1 / N)  ∑i=1
N
 pi    (11) 

β is called contraction-expansion coefficient and controls 

the convergence speed of the algorithm. 

The QPSO algorithm has been shown to perform better than 

classical PSO on several problems due to its ability to better 

explore the search space and also has the nice feature of 

requiring one single parameter to be tuned, namely the β 

coefficient. The exponential distribution of positions in the 

update formula makes QPSO search in a wide space. 

Moreover, the use of the mean best position xmbest, each 

particle cannot converge to the global best position without 

considering all other particles, making them explore more 

thoroughly around the global best until all particles are 

closer. However, this may be both a blessing and a curse; it 

may be more appropriate in some problems but it may slow 

the convergence of the algorithm in other problems. Again, 

there is a very fine balance between exploration / 

exploitation. How large is the search space, and how much 

time is given to explore before returning a solution. 

E. Dealing with Constraints 

Many real world optimization problems have constraints, 

for example the available amount of certain resources, the 

boundary domain of certain variables, etc. So an important 

question is how to incorporate constraints in the problem 

formulation. 

In some cases, it may be simple to incorporate the feasibility 

of solutions directly in the formulation of a problem. If we 

18Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology



know the boundary domain of a certain dependent variable 

and the proposed solution violates such domain we can 

either reject the solution or modify it by constraining the 

variable within the boundaries. For example, suppose a time 

variable must satisfy the time interval between 9:00 and 

13:00, while the proposed solution would place it at 14:34. 

One way to deal with the above violation is to constrain the 

variable to its upper bound (UB) 13:00 and reevaluate the 

objective function. This will be probably worse than before, 

but at least it will be feasible and need not be rejected 

altogether. 

A second way is to incorporate the constrains directly in the 

formulation of the objective function through the addition of 

a penalty element so that a constrained problem becomes 

unconstrained. If f(x) is the objective function to be 

minimized, and subject to the constraints x in domain [xlower, 

xupper], we rewrite the objective function as 

 

 f'(x) = f(x) + ∑i=1
N
 wi gi(x)  (12) 

 

gi(x) measure the amount of constraint violation and is zero 

if x is within the domain boundaries, or it is some function g 

(x - xlower), (xupper - x) otherwise. wi are the penalty weights 

that needs to be large enough to skew the choice of the 

fittest solutions towards the smallest penalty component, 

typically in the range 10
9
 - 10

15
. 

Note that the two approaches described above to deal with 

constraints need not be mutually exclusive and can both be 

incorporated in the formulation of a problem; some 

constraints may very well be modeled with the first method, 

while other are modeled with the penalty method. 

 

F. Nature Inspired Random Walks and Lévy Flights 

A random walk is a series of consecutive random steps 

starting from an original point: xn = s1+…+ sn = xn-1 + sn, 

which means that the next position xn only depends on the 

current position xn-1 and the next step sn. This is the typical 

main property of a Markov chain. Very generally we can 

write the position in random walks at step k+1 as 

 

 x
k+1

 = x
k
 + s σk     (13) 

 

where σk is a random number drawn from a certain 

probability distribution. In mathematical terms, each 

random variable follows a probability distribution, for 

example a Gaussian (normal) distribution is the most well-

known because many physical phenomena obey this 

distribution and the random walk becomes the Brownian 

motion. But if the step length obeys other non-Gaussian 

distributions we have to deal with a more generalized form 

of random walks. 

Various studies have shown that the random walk behavior 

of many animals and insects have the typical characteristics 

of the Lévy probability distribution and the random walk is 

called Lévy fight [8] [9] [10]. The Lévy distribution has the 

nice mathematical feature of being both stable and heavy-

tailed. A stable distribution is such that any sum n of 

random number drawn from the distribution is finite and can 

be expressed as 

 

 ∑i=1
n
 xi = n

1/α
 x     (14) 

 

where α is called the index of stability and controls the 

shape of the Lévy distribution with 0 < α ≤ 2. Notably, two 

value for α are special cases of two other distribution, the 

Gaussian distribution for α = 2, and the Cauchy distribution 

for α = 1. 

The heavy-tail characteristic implies that the Lévy 

distribution has an infinite variance decaying at large x to 

λ(x) ~ |x|
-1- α

 

 
Figure 3.  Cauchy 

Figure 3. shows the shapes of the Gaussian, Cauchy, and 

Lévy distribution with α = 1.5. The difference becomes 

more pronounced in the logarithmic scale showing the 

asymptotic behavior of the Lévy and Cauchy distribution 

compared with the Gaussian. 

Due to the stable property, a random walker following the 

Lévy distribution will cover a finite distance from its 

original position after any number of steps. But also due to 

the heavy-tail (divergence of the variance), extremely long 

jumps may occur, and typical trajectories are self-similar, on 

all scales showing clusters of shorter steps interspersed by 

long excursions, as shown in Figure 4. In fact, the trajectory 

of a Lévy flight has fractal dimension df = α. 

 

 
Figure 4.  Levy’s flight 

In that sense, the Gaussian distribution in Figure 5. 

represents the limiting case of the basin of attraction of the 

so-called generalized central limit theorem for α = 2 and the 

motion of the walker follows a Brownian path.  

 

19Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology



 
Figure 5.  Brownian path 

Due to the remarkable properties of stable, heavy-tailed 

distributions it is now believed that the Lévy statistics 

provides a framework for the description of many natural 

phenomena in physical, chemical, biological, economical 

systems from a general common point of view. For instance, 

the foraging behavior of bacteria and higher animals relies 

on the advantages of Lévy distributed excursion lengths, 

which optimize the search compared to Brownian search 

giving a better chance to escape from local optima. 

 

 
Figure 6.  the trajectories of a Gaussian (left) and a Lévy (right) walker 

The Figure 6. above shows the trajectories of a Gaussian 

(left) and a Lévy (right) walker. Both trajectories are 

statistically self-similar, but the Lévy motion is 

characterized by island structure of clusters of small steps, 

connected by long steps. 

G. Step Size in Random Walks. 

In the general equation of a random walk x
k+1

 = x
k
 + s σk , a 

proper step size, which determines how far a random walker 

can travel after k number of iterations, is very important in 

the exploration of the search space. The two component that 

make up the step are the scaling factor s and the length of 

the random number in the distribution σk, A proper step size 

is very important to balance exploration and exploitation, 

too small a step and the walker will not have a chance to 

explore potential better places, on the other hand too large 

steps will scatter the search from the focal best positions. 

From the theory of isotropic random walks, the distance 

traveled after k steps in N dimensional space is 

 

 D = s ∙ √k N          (15) 

 

In a length scale L of a dimension of interest, the local 

search is typically reasonably limited in the region L / 10, 

that is D = L / 10, which means that the scaling factor 

 

 s ≈ 0.1 L / √k N    (16) 

 

In typical metaheuristic optimization problems, we can 

expect the number of iterations k in the range 100 – 1000. 

For example, with 100 iterations and N=1 (a one 

dimensional problem) we have s = 0.01 L, and to another 

extreme with 1000 iterations and N=10 we have s = 0.001 

L. Therefore a scaling factor between 0.01 – 0.001 is 

basically a reasonable choice in most optimization 

problems. L is still kept independent as each dimension of 

the problem may very well have a very different length 

scale. 

V. QUANTUM INSPIRED PARTICLE SWARM ALGORITHM 

WITH LÉVY FLIGHTS 

After several experimental and simulated alternative 

metaheuristic approaches, we have come to the definition of 

a novel variant of the PSO algorithm that can be described 

as Quantum inspired PSO with Lévy flights (QPSOL). The 

algorithm tries to capture and exploit some of the best 

characteristics of various algorithms described in the 

previous sections. The result being an algorithm that 

provides a good balance between exploration and 

exploitation that gives quasi-optimal solutions within a very 

short time even with limited computing power. In fact, the 

Home Gateway (HG) is a low power ARM embedded 

system running a Java Virtual Machine in the OSGi 

framework. 

The two main assumptions of the QPSOL algorithm are: 

first, as in Quantum PSO, particles have no mass and move 

around their attractor within a probability distribution. 

Secondly, rather than follow the quantum physics that uses 

the exponential distribution, in QPSOL particles move 

according to the nature-inspired Lévy distribution. From our 

experiments and simulations, the quantum inspired PSO, 

coupled with the Lévy distribution, has proven to 

outperform the classical PSO and traditional QPSO. 

For our purposes, the Lévy distribution coefficient α chosen 

in QPSOL is actually the Cauchy coefficient α = 1. The 

Cauchy random generator is much simpler than the more 

general algorithm for Lévy generation and that is a 

determining factor in runtime execution. Since the random 

generation needs to be executed for an umpteen number of 

times (i.e., the dimension of the problem, by the number of 

particles in the swarm, by the number of iterations of the 

algorithm), the computing speed of the random generation is 

of paramount importance. From our experiments, within a 

given time limit allotted to the algorithm to find a solution, 

the Cauchy version of the algorithm is able to execute 

almost twice the number of iterations than the general Lévy 

version. Therefore, even if there was an optimal coefficient 

α that provides better results for the same number of 

iterations, it will be outperformed by the Cauchy variant that 

with more allowed iterations finds better solutions. Since 

Cauchy is simply a special case of the general Lévy 

20Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology



distribution, henceforth we will continue to refer to the 

algorithm as a Quantum PSO with Lévy flights QPSOL. 

A. QPSOL for Scheduling Appliances 

As any population based metaheuristic algorithm, each 

particle represent a complete solution to the problem, i.e., a 

complete schedule for all the Power Profiles of the 

appliances. Since each Power Profile is itself composed by a 

sequence of phases, we model each particle (complete 

solution) as a set of N sub-particles, where N is the number 

of Power Profiles and where each sub-particle represents the 

schedule for the energy phases of that Power Profile. Below 

we report the Java code of the evolution of the sub-particles 

in the swarm and it represents the core of the QPSOL 

algorithm. 

The Lévy light of a sub-particle is a loop on the sequence of 

the energy phases. First, the maximum delay for each phase 

is determined. The maximum delay for the first phase (index 

== zero) is actually the maximum slack interval of the 

whole Power Profile as imposed by the user. 

The maximum delay of each subsequent phase is the 

minimum between its maximum delay as per Power Profile 

specification, and the remaining slack for the whole 

remaining phases updated at each step after a phase is 

moved with the Lévy flight. 

After calculating the maximum delay for each phase i, the 

Lévy flight is performed with these equations: 

 

ai = r pi + (1 – r) g*  (17) 

xi = ai + β (ai
 
– xi) λi  (18) 

 

where r is a random number with uniform distribution in [0 

- 1], λi is a random number with Cauchy (Lévy) distribution, 

and β is the constriction coefficient that controls the step 

size of the flight. Finally, the maximum delay constraint is 

enforced on the new position of the sub-particle to keep its 

feasibility by resetting the delay to zero if the flight exceed 

the allotted maximum delay. 

Borrowing from QPSO, the attractor of the sub-particle ai 

can be thought of as a point randomly chosen in the hyper-

plane that connects the particle’s best position and the 

global best position. This attractor is the next starting point 

for the Lévy flight, and the next equation updates the sub-

particle position with the value of the attractor modified by 

the flight, which is itself a random number generated with 

Cauchy distribution multiplied by the value (ai
 
– xi), i.e., the 

difference between the attractor and the current position. 

This value provides the scaling factor of the flight around 

the attractor and is crucial in the balance between 

exploration of new solutions and exploitation focusing in 

the proximity of the current solution. 

On the other hand the β parameter need not be modified in 

the course of the algorithm and is tied to a probability 

density function “attitude” to generate large numbers, for 

instance with Cauchy (α = 1) we set β = 0.35, while with a 

general Lévy with α = 1.4, which we have found as a good 

Lévy coefficient, we set β = 0.75. 

Finally, note that contrary to QPSO formulation, we always 

execute the random flight “away from” the current position 

xi. In fact (ai
 
– xi) is indeed a signed value that provides the 

direction of the attractor away from the current position. We 

have found through experiments that this gives better results 

in the exploration, trying to explore away from current 

“beaten track”. 

B. Modeling Constraints and Objective Function 

An important aspect of the algorithm is the formulation of 

the objective function and the time and energy constraints. 

As described before, feasibility time constraints are 

enforced directly when updating the particles positions 

within their lower and upper bound limits. 

Energy constraints are instead formulated as penalty 

components of the objective function to be minimized, 

which is defined as the sum of three elements with their 

respective weighting coefficients: 

minimize: f(x) = w1O(x) + w2C(x) + w3T(x) 

where w1, w2, and w3 are the weight coefficients assigned 

respectively to the overload amount O(x), the energy cost 

C(x), and the tardiness in the execution T(x). 

The overload is the penalty component: if there is power 

overload the constraint is violated and therefore all other 

components can be ignored as their contribution would me 

trifle to the whole objective function f(x). As such w1 is 

chosen large enough to privilege constraints satisfaction 

before anything else, w1 ≈ 10
9
. 

w2 is the weight of the energy cost and is normalized to the 

value 1. Finally the tardiness component is an added 

contributing element to the objective function and 

corresponds to perceived user comfort and tends to privilege 

schedule solutions that complete sooner rather than later 

(tardiness of the execution). The relation between w2 and w3 

is the “sensible” balance between low energy cost on the 

one hand and low tardiness on the other. We typically set w3 

small enough (e.g., 10
-3

) so as to attribute much more 

importance to energy cost, but still prefer earliest 

completions within a very small cost difference. 

VI. SIMULATION AND RESULTS 

We ran a number of simulation modeling the same 

scheduling problem both in the QPSOL algorithm and a 

pure mathematical model with commercial linear 

programming (LP) solvers, namely XPress and CPLEX. 

The scheduling problem was formalized with 4 instances of 

washing-machine power profiles, each profile being made 

of 4 phases, and 3 instances of dish-washing-machines each 

made of 5 phases, for a total of 31 independent variables to 

optimize in the scheduling problem instance. 

Due to the hard problem space for the brute-force exact 

algorithms, the scheduling horizon was limited to 12 hours 

and the time slots at multiples of 3 minutes, otherwise, with 

21Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology



one-minute slot time, no feasible solutions were found even 

in 7 days of uninterrupted run. 

Running 96 hours, XPress found a solution at a cost of € 

2.57358. With the same problem and running 1 hour 

CPLEX found a solution at € 2.59123. Finally the QPSOL 

was given a bound time of 15 seconds, and run 10 times to 

have reliable statistics, finding a best solution at € 2.7877, 

with an average cost of € 2.9351 for the 10 times. 

 

 
Figure 7.  QPSOL simulation results: appliance scheduling with constant 

overload threshold, variable tariff, no photovotaic. 

 
Figure 8.  QPSOL simulation results: appliance scheduling with constant 

overload threshold, variable tariff, photovotaic. 

The results obtained using linear programming and exact 

solvers are very important as they fix theoretical optima for 

benchmarking the convergence and performance of the 

metaheuristic approach of the QPSOL. Results show that 

although QPSOL finds a worse solution than the theoretical 

optimum by a 8 – 13 %, the very short allotted time to find a 

solution is anyway a very promising approach. In Figure 7. 

and Figure 8. are reported simulation results when 

considering appliance scheduling with constant overload 

threshold, variable tariff, and with the absence and presence 

of photovoltaic generation respectively. 

An interesting use case is the scheduling of an entire 

apartment house where tenants share a common contract 

with the utility provider in which the energy consumption of 

the apartment house as a whole must be below a given 

“virtual” threshold that changes in time. Figure 9. shows 

such scenario. The curved red line represents the virtual 

threshold that the apartment house should respect. All 

energy above such threshold will not cause an overload but 

its cost grows exponentially with the net effect of 

encouraging a peak shaving of profile allocation. The case 

study of Figure 10. is a scheduling of 15 apartments, with 3 

appliances each, for a total of 45 appliances. The apartment 

house is also provided with common PV-panels. 

 

Figure 9.  QPSOL simulation results: appliance scheduling for different 

apartments with variable overload threshold, variable tariff, photovotaic. 

 
Figure 10.  QPSOL simulation results: overload  avoidance and 

optimization of cost 

The 3 case studies described here show the remarkable 

flexibility of the QPSOL algorithm, and many other 

metaheuristic algorithms for that matter, i.e. the ability to 

adapt the algorithm to the unique attributes of a given 

problem and not based on predefined characteristics. In a 

rapidly changing world, algorithmic paradigms that are the 

most flexible to new conditions and can contribute to a 

time-based competitive advantage are more likely to be 

utilized. In such volatile environments, the utility of an 

algorithm framework will not be derived from the ability to 

solve a static problem. Instead it will be the ability to adapt 

22Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology



to changing problem conditions that is likely to define the 

success or failure in the optimization algorithms of 

tomorrow. 

Exact and formal techniques decompose the optimization 

problems into mathematically tractable domains involving 

precise assumptions and well-defined problem classes. 

However many practical optimization problems are not 

strictly members of these problem classes, and this becomes 

especially relevant for problems that are non-stationary 

during their lifecycle. Mathematical techniques not only 

place constraints on the current problem definition but also 

on how that problem definition can change over time. Under 

these circumstances, long-term algorithm survival / 

popularity is less likely to reflect the performance of the 

canonical algorithm and instead more likely reflects success 

in algorithm design modification across problem contexts 

[20]. 

VII. CONCLUSION 

This document describes an innovative Quantum inspired 

PSO with Lévy flights metaheuristic algorithm for 

scheduling home smart appliances, capturing all relevant 

appliance operations. With appropriately dynamic tariffs 

and short-term load forecasting, the proposed framework 

can propose a schedule for achieving high cost savings and 

overloads prevention. Good quality approximate solutions 

can be obtained in a short amount of computation time, in 

the order of about 2 seconds an almost optimal approximate 

solution can be obtained. 

Finally, the proposed framework can be extended to 

incorporate solar power forecasting in the presence of a 

residential PV system by tuning the objective function and 

using the solar energy forecaster as further input to the 

scheduler. 

ACKNOWLEDGMENT 

This work has been partially supported by INTrEPID, 
INTelligent systems for Energy Prosumer buildIngs at 
District level, funded by the European Commission under 
FP7, Grant Agreement N. 317983. 
The authors would like to thank Prof. Della Croce of 
Operational Research department of the Politecnico di 
Torino for the valuable insights and contribution on the 
linear programming solvers. 

 

REFERENCES 

[1] Energy@Home project, “Energy@Home Technical 
Specification version 0.95,” December 22, 2011. 

[2] K. Cheong Sou, J. Weimer, H. Sandberg, and K. Henrik 
Johansson, “Scheduling Smart Home Appliances Using 
Mixed Integer Linear Programming,” 50th IEEE Conference 
on Decision and Control and European Control Conference 
(CDC-ECC), Orlando, FL, USA, December 12-15, 2011. 

[3] J. Holland, “Adaptation in Natural and Artificial systems”, 
University of Michigan Press, Ann Anbor, 1995. 

[4] F. Glover, and M. Laguna, “Tabu Search”, Kluwer Academic 
Publishers, Boston, 1997. 

[5] S. Kirkpatrick, C. D. Gellat, and M.P. Vecchi, “Optimization 
by Simulated Annealing”, Science, 220, pp. 671-680, 1983. 

[6] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization”, 
in: Proc. of the IEEE Int. Conf. on Neural Networks, 
Piscataway, NJ, pp. 1942-1948, 1995. 

[7] J. Sun, B. Feng, and W. Xu, "Particle swarm optimization 
with particles having quantum behavior," in IEEE Congress 
on Evolutionary Computation, pp. 325-31, 2004. 

[8] X. Yang, “Nature-Inspired Metaheuristic Algorithms”, 
Luniver Press, 2008. 

[9] X. Yang  “Review of metaheuristics and generalized 
evolutionary walk algorithm’, Int. J. Bio-Inspired 
Computation, vol. 3, No. 2, pp. 77-84,  2011. 

[10] A. Chechkin, R. Metzler, J. Klafter, V. Gonchar, 
“Introduction to the theory of lévy flights.” In: Klages R, 
Radons G, Sokolov IM (eds) Anomalous Transport: 
Foundations and Applications, Wiley-VCH, Berlin, 2008. 

[11] D. Ionescu, A. Juan, J. Faulin, and A. Ferrer, “A Parameter-
Free Approach For Solving Combinatorial Optimization 
Problems Through Biased Randomization Of Efficient 
Heuristics”, in Proceedings of the Conference on Numerical 
Optimization and Applications in Engineering (NUMOPEN-
2010), Barcelona, Spain. October 13-15, 2010. 

[12] R. Kolisch, and S. Hartmann, “Heuristic Algorithms for 
Solving the Resource-Constrained Project Scheduling 
Problem: Classification and Computational Analysis”, pp. 
147–178, Kluwer, Amsterdam, the Netherlands, Kluwer 
academic publishers, 1999.  

[13] R. Kolisch, and S. Hartmann, “Experimental Investigation of 
Heuristics for Resource-Constrained Project Scheduling: An 
Update”, European Journal of Operational Research 174, pp. 
23-37, Elsevier,  2006. 

[14] J. W. Taylor, “Short-Term Electricity Demand Forecasting 
Using Double Seasonal Exponential Smoothing” Saïd 
Business School University of Oxford - Journal of 
Operational Research Society, vol. 54, pp. 799-805, 2003. 

[15] J. W. Taylor and P. E. McSharry, “Short-Term Load 
Forecasting Methods: An Evaluation Based on European 
Data”, IEEE Transactions on Power Systems, vol. 22, pp. 
2213-2219, 2008. 

[16] J. W. Taylor “Short-Term Load Forecasting with 
Exponentially Weighted Methods”, IEEE Transactions on 
Power Systems, vol. 27,  pp. 458-464, February 2011. 

[17] Í. Goiri, K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen, J. 
Guitart, J. Torres, and R. Bianchini “GreenSlot: Scheduling 
Energy Consumption in Green Datacenters”, SC’11, Seattle, 
Washington, USA, November 2011. 

[18] N. Sharma, J. Gummeson, D. Irwin, and P. Shenoy, “Cloudy 
Computing: Leveraging Weather Forecasts in Energy 
Harvesting Sensor Systems”, SECON 2010, Boston, MA, 
June 2010. 

[19] P. Bacher, H. Madsen, and H. A. Nielsen,  “Online Short-term 
Solar Power Forecasting”, Sol. Energy, vol. 83, pp. 1772–
1783, 2009. 

[20] J. M. Whitacre “Survival of the flexible: explaining the recent 
dominance of nature-inspired optimization within a rapidly 
evolving world”, Journal Computing, Vol. 93, Issue 2-4 , pp 
135-146 2009. 

23Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology


