
Deductive Data Warehouses and Aggregate (Derived) Tables

Kornelije Rabuzin, Mirko Malekovic, Mirko Cubrilo
Faculty of Organization and Informatics

University of Zagreb
Varazdin, Croatia

{kornelije.rabuzin, mirko.malekovic, mirko.cubrilo}@foi.hr

Abstract - In one of our previous papers, the idea of deduc-
tive data warehouses has been introduced. It was shown how
to use Datalog rules to perform Online Analytical Processing
(OLAP) analysis on data. In this paper, we show how to use
Datalog rules to specify the data warehouse model (data
mart) as well as how to add rules that produce aggregate and
derived tables that are normally used to speed up the process
of retrieving data. Since it is good to have aggregate and
derived tables (to speed up queries), the main drawback is
that they require extra storage. Consequently implicit defini-
tion of such tables may seem interesting.

 Keywords: data warehouse; deductive data warehouse;
Datalog; aggregate tables; derived tables; data mart.

I. INTRODUCTION

Data warehouses are popular due to the fact they can
efficiently store large amounts of data and data can be
analyzed by means of front-end business intelligence tools
(Business Objects, QlikView, etc.) that support different
ways of analysis including drill down, roll up, slice, dice,
etc. One can find many different definitions of what a data
warehouse is. According to Kimball et al. [2] it is “a sys-
tem that extracts, cleans, conforms, and delivers source
data into a dimensional data store and then supports and
implements querying and analysis for the purpose of deci-
sion making."

Over the years many companies implemented many
(partial) applications and/or information systems that cov-
ered only one aspect of business. This was a common sce-
nario in the past any many companies have similar prob-
lems today because of such an approach. The main prob-
lem is that these companies possess many heterogeneous
applications and information systems that were built by
means of incompatible technologies (different program-
ming languages were used as well as different ways of
storing data) and it becomes hard (expensive) and some-
time almost impossible to integrate data from all sources.
Now, one may ask why data integration is important? The
answer is obvious, especially today, when we know that
data must be integrated and compared in order to make
good decisions and in order to understand what is really
going on.

When building a data warehouse many different steps
have to be carried out, but one process that is quite crucial
is the so-called Extract Transform Load (ETL) process.
The goal of the ETL process is to extract data (from differ-
ent (non)relational sources), to transform data (data has to
be cleaned, business rules have to be obeyed, missing val-
ues have to be found, some attributes have to be merged,
some values have to be split, different formats have to be
unified, etc.) and to load data into the data warehouse. A

few good books [3][4][5][7] have been written on data
warehouses and ETL; here we just want to emphasize the
importance of the ETL process but we will skip the details.
All information technology (IT) people, especially those
who were working on data warehousing projects, know
what end users are capable of doing and what mistakes and
bad data transactional sources do often contain.

Since the ETL process is very important, we tried to
develop a web ETL tool that had an educational compo-
nent as well. The main idea was to build a tool that could
help users to build a data warehouse and to guide them
during the ETL process. More details about the tool can be
found in [6]; this is a paper that is under a review at this
point in time.

When we talk about the data warehouse data model, we
distinguish two types of tables (Fig. 1):

• Fact tables contain facts, i.e., numbers that are
used to quantify business processes (number of
sold items, number of items in stock, etc.). They
contain much larger number of records and small
number of attributes.

• Dimension tables (dimensions) contain much larg-
er number of attributes that are used to analyze da-
ta in different ways and much smaller number of
records (when compared to fact tables).

Figure 1. Star schema

When we discuss different data loading techniques, one
should keep in mind that data loading is different and it
depends on whether a data warehouse already contains
some data or not. We have to take care about dimension
and fact tables and we have to achieve some level of paral-
lelism, if possible. Because of that we distinguish:

• initial load (a data warehouse is empty and all data
have to be inserted),

• incremental load (we change existing records and
add new ones) and

• complete reload, i.e., refresh (some or all data are
deleted and re-loaded again).

Dimension Fact table

Dimension

Dimension

Dimension

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

Deductive databases are databases that use deductive
rules to produce new information. They usually contain a
set of facts (they would correspond to rows in a table), a
set of rules (rules produce new piece of information) and
certain integrity constraints that have to be satisfied. One
of the main advantages of deductive databases (in the past)
was the ability to specify recursive rules. Furthermore, it
was possible to view in recursive queries as well. In recent
years, recursive queries have been implemented in differ-
ent database management systems as well. Here, we list a
few courses and their prerequisites (Fig. 2):

Figure 2. Deductive database – an example

In [1], the idea of deductive data warehouses has been
proposed. Things are similar to deductive databases but
some important distinctions exist and they are explained in
the paper. The paper also shows how to perform OLAP
analysis on data, i.e., how to use Datalog rules to analyze
data. In [8], the idea was extended in order to show how
some other types of analysis could be implemented by
means of Datalog rules as well.

In this paper, we show how Datalog rules can be used
in order to reduce the size of a data warehouse. More pre-
cisely, we show how to implement implicit aggregate and
derived tables. Although they are not physically imple-
mented as such, their existence is sometimes effective to
perform reasoning on data. Furthermore, we show that
view materialization can significantly improve perfor-
mances.

There are several different papers that explore the use
of Datalog and its role in data warehousing. Boulicaut et
al. [10], use rules in a similar way, but they focus on
knowledge discovery. Neumayr et al. [11] use Datalog to
reason over multidimensional ontologies. Aligon et al. [12]
explore how to summarize and query logs of OLAP que-
ries. However the term deductive data warehouses is new
and papers on the topic cannot be found.

This paper is structured as follows: first the deductive
data warehouse is described. Then we say a few words
about aggregate tables, their role and ways how to imple-
ment them. In the next section, we say a few words about
derived tables. In both sections we show how deductive
rules can be used to specify derived and aggregate tables.
Then we show some experimental results. Finally, the
conclusion is presented.

II. DEDUCTIVE DATA WAREHOUSES

In this section, we say a few words regarding deductive
data warehouses. Deductive data warehouses are quite
similar to deductive databases, i.e., they both contain facts,
rules and integrity constraints. When talking about deduc-
tive data warehouses, integrity constraints are not so im-
portant as in deductive databases because ETL designers
are responsible that rules are obeyed and quality of data is
ensured.

In [1], it was shown how Datalog rules can be used to
simulate and perform data analysis including slice, drill
down, what if, etc. The term used to describe the model
was new. The idea seems to be important in the same way
that deductive databases are important for data analysis in
regular databases. Some rules (from [1]) are given below
(Fig. 3). The first rule was used to find users. The second
rule was used to perform drill down/roll up analysis on
data. The third rule was used to perform what-if analysis
on data. In [8], the idea was extended and some more
complex rules were added to perform the Recency Fre-
quency Monetary (RFM) analysis.

Figure 3. Datalog rules

In [1], a small example was used to show how deduc-
tive rules can be used to perform OLAP analysis on data.
The scenario model was quite simple; users performed
some actions on certain dates and we needed to analyze the
number of actions (this is a part of a real project). For that
purpose several tables were defined (Fig. 4):

Figure 4. Data model

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

Some of the rules that were used to analyze data are
listed above (Fig. 3). These rules were used to perform
simple queries that are not so common in data warehouses,
as well as some more complex queries. Some other rules
were defined as well, but for more information we refer to
[1] and [8].

In this paper we extend the idea and we show that Dat-
alog rules can be used for other purposes as well, primarily
for specifying aggregate and derived tables. In the next
section, we show how to use rules to specify aggregate
tables that are used to improve performances.

III. AGGREGATE TABLES

When we discuss tables that contain aggregate data,
their purpose is quite simple. Since fact tables usually
contain very large number of records, queries that use fact
tables with large number of records can take too long.
Although people that use data warehouses know that time
needed to get results is much greater than the time needed
when a query is posed against a transactional database, this
doesn’t mean that we are not interested in reducing that
time. Since fact tables could contain millions of records,
aggregation of a large number of records can last several
minutes (or dozens of minutes). That is why we use tables
with aggregated data, i.e., data that are pre-calculated and
stored in order to improve query performances. By using
tables with aggregated data queries can be answered much
sooner, but on the other hand the size of a data warehouse
grows (in addition to initial load of data and taking into
account incremental loads that have to be carried out on a
daily or weekly basis). But this is a trade-off that one does
in order to speed up the access to relevant information.

Once aggregate tables are added into the system, data
in aggregate tables have to be maintained as well. We do
not discuss aggregate table maintenance any further (one
can extract data from original sources or one can use tables
from the data warehouse), but it is important that queries
that are executed on aggregate tables return the same re-
sults as queries that use fact tables. Just to have in mind,
when one uses aggregate and derived tables performances
can be improved up to several hundreds or thousands time
because the number of records (and I/O operations) be-
comes significantly reduced [9].

Once aggregate tables are created, the system needs to
know how and when to use them. Although aggregate
tables are created, that doesn’t mean that it makes sense to
use them always, but in some occasions (most certainly)
they should be used. In order to use aggregate tables (when
needed), there should exist a component that is called ag-
gregate navigator [9]. It has a number of tasks, but the
most important one is to know which aggregate table to
use and when.

One Business Intelligence (BI) tool that is used in this
paper is Business Objects XI. This tool has a construct
called @Aggregate_Aware that is used to specify that
aggregate table exists and that it should be used in certain
queries (Fig. 5):

Figure 5. Business Objects XI - @Aggregate_Aware

When talking about aggregate tables, the most common
scenario is to create such a table by means of a query that
uses GROUP BY clause and SUM() as an aggregate func-
tion.

In this example, we show how to create a rule that (in
fact) represents an aggregate table (log file analysis scenar-
io), but it is not materialized (Fig. 6). Datalog Educational
System (DES) was used to implement the rules and results
are presented below the rules (the first row means that user
1, Smith Peter, committed 645 actions in January):

Figure 6. Data aggregation

Now, when we want to compute the sum of the number
of actions on a quarter (year) level (hierarchy), the idea is
that the system uses user_month_agg table and not the fact
table any more. Namely, the original fact table (called log)
could be transactional. This would mean that every action
that user did in the past was stored in the fact table on a
certain date and time. However, the log table that we have
stores the number of actions for each day, so it is a period-
ic snapshot fact table.

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

In Business Objects XI it is quite easy to use hierar-
chies and such reports are easy to produce. In Designer
tool one creates a hierarchy (we see Hierarchies Editor in
Fig. 7):

Figure 7. Business Objects XI - Hierarchies Editor

Once hierarchies are specified, one can use them in
Desktop Intelligence tool. Mouse over quarter column
offers drill down to a lower (Month) level (Fig. 8):

Figure 8. Number of actions (quarter level)

We can see the month level results (Fig. 9) that are on-
ly a few mouse clicks away:

Figure 9. Number of actions (month level)

In order to calculate the number of actions on a quarter
level by means of Datalog rules, we could define a rule
(uq) that looks like this (Fig. 10):

Figure 10. Number of actions – quarter level

The rule uses the log fact table and groups the records
in order to get the result. The first row means that in the
first quarter the user 1, Smith Peter, committed 1855 ac-
tions, etc. In DES, it took 17 seconds to answer the query.
We can see that results in DES and in Business Objects XI
are the same, as one could expect (Fig. 8 and Fig. 10).

But since we already have a rule that calculates the
sum of actions on a month level, months could be easily
aggregated to a higher (quarter) level. For a beginning let
us add a rule that merges months and quarters (Fig. 11):

Figure 11. Number of actions – month level

The first row means that the first user (Smith Peter)
committed 645 actions in the first month of the first quar-
ter, etc. Once months are joined with the date dimension,
we can aggregate on other attributes using the date dimen-
sion (Fig. 12):

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

Figure 12. Number of actions – user quarter

When called, DES needed 17 seconds to calculate the
result (we restarted the program in between). So, implicit
definition does not seem to be helpful except it just reduc-
es the rule as such. Namely, this rule is used to give the
same result (i.e., the number of actions on a quarter level),
but it does not use the log fact table any more. It uses the
implicit definition aggregate table, i.e., the user_date view.
In the next section we try to see what could happen if the
rule was materialized.

IV. MATERIALIZED VIEWS – EXPERIMENTAL RESULTS

 However, if the view was materialized (physically),
the time need to calculate the answer should be much
smaller. The next SQL statement was used to materialize
the view (Fig. 13):

Figure 13. View materialization (SELECT INTO statement)

This statement created a table called uqa. Once the
view was materialized (in the form of a table), the results
were calculated much sooner (it took less than a second).
The next rule uses uqa table to perform the grouping and
to calculate the result:

Figure 14. Using materialized view (uqa) in a rule

Of course, one has to have in mind that once data are
aggregated to a higher level, some lower level queries
cannot be answered any longer because the details are lost.
More on materialized views can be found in [14].

Based on the previous discussion these would be some
basic prerequisites that the aggregate navigator should
possess. It should be capable to recognize that aggregate
tables exist and it should be able to use them in situations
when it makes sense. Here, we could extend the approach
in order to make a Datalog aggregate navigator implemen-

tation but this could be done in our future papers. In the
next section, we show how derived tables could be used.

V. DERIVED TABLES

In this section, we present different types of derived ta-
bles ([9]) and we show how to implement some of them in
Datalog.

When talking about derived tables, several types can be
distinguished. Pre-joined table is a table that consists of
several tables that are joined together in order to speed up
the querying. Further on, one can define derived tables that
contain only a portion of data coming from original tables,
etc. However, one has to have in mind that they may be-
come quite big and they may require additional space.

The first example is used to demonstrate how Datalog
rules can be used to create pre-joined tables. The rule name
dm stands for data mart and it means that the rule would
contain data from three different tables (users, log and
dates), i.e., it would represent a complete data mart (only
several rows are shown in the result):

Figure 15. Data mart specification

We can see that data from three different tables can be
accessed easily, from a single (implicit) data mart. Howev-
er, the time needed to calculate the data mart was a little
less than 20 seconds.

Further on, we can define a rule that contains only a
portion of data from the original fact table; one has to add
a condition A=1 (Fig 16.):

Figure 16. Partial fact table

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

Here we select only one portion of the fact table, more
precisely only rows that refer to action_id = 1 (actions in
the paper were events such as read, update and insert).
There are other possible ways to produce derived tables
(one can combine two of the already mentioned approach-
es) or define other derived tables. For example, one de-
rived table could be used to transform data (certain
measures) from original table if there was a need to do so,
etc.

VI. CONCLUSION

In this paper, it has been presented how deductive data

warehouses could use Datalog rules to specify aggregate
and derived tables. On a number of examples it was shown
how to use Datalog rules in order to explain how aggregate
navigator should behave and to demonstrate how other
types of derived tables could be built as well. A few re-
ports were built in DES as well as in Business Objects XI
and a small data warehouse was implemented in Post-
greSQL database management system. Implicit table defi-
nitions may seem to be interesting as they do not require
additional space, but only after view materialization we
noticed that performances were improved significantly.

Based on the previous results ([1]) it is now clear that
deductive data warehouses support OLAP analysis on data
and some other (more complex) analysis as well. In this
paper, we have shown how to add support for derived and
aggregate tables and we showed that view materialization
is good for data warehousing purposes.

In future papers one could look at how to implement
aggregate navigator in Datalog. Furthermore, one can see
that it is not practical to work with dimension tables that
have large number of attributes. Because of that one could
also explore and see how to create rules more easily and
how to pose goals more intuitively.

REFERENCES
[1] K. Rabuzin, “Deductive data warehouses,” IJDWM, in press.

[2] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleaning, Conforming, and
Delivering Data. Indianapolis, USA: Wiley Publishing, 2004.

[3] H. W. Inmon, Building the Data Warehouse – Third Edition. New
York, USA: John Wiley & Sons, 2002.

[4] C. Ballard, D. Herreman, D. Schau, R. Bell, E. Kim, and A. Va-
lencic, Data Modeling Techniques for Data Warehousing. [Online].
Available from:
http://www.redbooks.ibm.com/redbooks/pdfs/sg242238.pdf.
Retrieved on 16.04.2013.

[5] F. Silvers, Building and Maintaining a Data Warehouse. Boca
Raton, USA: CRC Press, 2008.

[6] M. Novak and K. Rabuzin, “Prototype of a web ETL tool,” un-
published.

[7] P. Ponniah, Data Warehousing Fundamentals: A Comprehensive
Guide for IT Professionals. New York, USA: John Wiley & Sons,
2001.

[8] K. Rabuzin, A. Lovrencic, and M. Malekovic, “Using deductive
data warehouses to analyze data”, The Business Review, in press.

[9] C. Adamson, Mastering Data Warehouse Aggregates, Solutions for
Star Schema Performance, USA: Wiley Publishing, 2006.

[10] J. F. Boulicaut, P. Marcel, and C. Rigotti, “Query driven
knowledge discovery via OLAP manipulations”, [Online]. Availa-
ble from: http://liris.cnrs.fr/~jboulica/bda01.pdf. Retrieved on
30.10.2013.

[11] B. Neumayr, S. Anderlik, and M. Schrefl, „Towards ontology-
based OLAP: datalog-based reasoning over multidimensional
ontologies”, DOLAP '12 Proceedings of the fifteenth international
workshop on Data warehousing and OLAP, 2012, pp. 41-48.

[12] J. Aligon, P. Marcel, and E. Negre, “Summarizing and querying
logs of OLAP queries”, Advances in Knowledge Discovery and
Management, 471, pp. 99-124, 2013.

[13] H. C. Tjioe and D. Taniar, “Mining Association Rules in Data
Warehouses”, IJDWM, vol. 1, pp. 28-62, 2005.

[14] J. V. Harrison and S. W. Dietrich, “Maintenance of materialized
views in a deductive database: an update propagation approach”,
[Online]. Available from:
http://www.public.asu.edu/~dietrich/publications/MaintenanceOfM
aterializedViews.pdf. Retrieved on 25.04.2013.

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

