
Mutation Testing: Guideline and Mutation Operator Classification

Lorena Gutiérrez-Madroñal

UCASE research group
University of Cádiz

Spain, Cádiz
Email: lorena.gutierrez@uca.es

Juan José Domı́nguez-Jiménez

UCASE research group
University of Cádiz

Spain, Cádiz
Email: juanjose.dominguez@uca.es

Inmaculada Medina-Bulo

UCASE research group
University of Cádiz

Spain, Cádiz
Email: inmaculada.medina@uca.es

Abstract—Mutation testing has been found to be effective to assess
test suites quality and also to generate new test cases. In fact, it
has been applied to many languages. Unfortunately there is no
research work which focuses its attention on detect deficiencies in
the mutation testing studies already done. Moreover, the mutation
operators classification has not been tackled at all. When has a
mutation testing study an enough grade of maturity? It has not
been found an study which determines the grade of maturity of
a mutation testing study. We propose a classification of mutation
operators which lets us know if it is necessary to define more
mutation operators, and also lets us determine if the mutation
operators are good enough to consider mature the mutation
testing study. The evaluation results show the benefits of the
proposed classification. This classification lets the developer do
a good evaluation of the programming language under mutation
testing, as well as its defined mutation operators. The mutation
testing process described in this paper and the mutation operators
classification have been developed and analyzed with real cases.
New mutation operators for Event Processing Language have
been defined and used as examples to understand the proposed
mutation operators classification.

Keywords–Mutation testing; mutation testing guideline, muta-
tion operators classification.

I. INTRODUCTION

With the success of the application of mutation testing
to a number of common implementation languages [1]–[8],
this paper presents the elaboration of a formal guide which
lets the developer follow the right process to do a mutation
testing study (MTS) of a new language, as well as a mutation
operators classification to evaluate the grade of maturity of the
MTS.

Mutation testing [9]–[11] is a fault-based testing technique
providing a test criterion: the mutation score, which can be
used to measure the effectiveness of a test suite in terms of
its ability to detect faults. Mutants will be generated from
applying mutation operators to the program under test. These
mutation operators introduce slight syntactical changes into the
program that should be detected by a high-quality test suite.

The majority of the mutant generation systems generate
all the possible mutants, and normally include a vast array of
mutation operators. Each mutation operator generates a large
number of mutants which need to be run against the test suite
to determine whether they can be told apart from the original
program in some of its test cases (that means whether they are
killed by the test suite or not). The entire process can take a
long time for nontrivial programs.

Why are we proposing a guide to do an MTS? Nowadays,
programming languages are adapted or created to cover new
functionalities, solve problems or for new systems. Moreover
mutation-based testing is a well-know and effective testing
approach to reveal code-level vulnerabilities [9], [12]–[16]
and has been applied for many traditional implementation
languages, in which some deficiencies in mutation testing
process have been found. The quality and efficiency of the pro-
grams, implemented or part-implemented with these program
languages, could be proved and improved after a mutation
testing study. For these reasons, we present a formal pattern
for a MTS.

Each programming language under MTS should have a
mutation operators classification. However, no research work
which covers or studies mutation operators classifications has
been found. Some definitions of the mutation operators are
based on another ones because they have a similar behavior,
in other cases the definitions are the same because these could
be applied to languages with the same nature or the mutation
operators definitions are about general changes that can be
done whatever the nature of the programming language. In [17]
a similar idea is proposed comparing mutation operators for
Fortram, C and Java. One of Marthur’s conclusions is ”A basic
understanding of mutation operators, and experience in using
them, helps a tester understand the purpose and strength of
each operator. Further, such understanding opens the door for
the construction of a completely new class of operators should
one need to test an application written in a language for which
no mutation operators have ever been designed!”. That means
that it is necessary to study the already defined mutation opera-
tors to avoid the duplication and define new mutation operators
for new programming languages. The proposed classification
helps, not only to organize the mutation operators, but also
to determine if there exist mutation operators definitions with
a similar behavior, and as consequence if it is necessary to
define more operators to cover specific characteristics of the
programming language.

It is not an easy task to determine the grade of maturity
of an MTS. The mutation operators definitions are the key to
evaluate the maturity of an MTS. A grade of maturity definition
for mutation testing studies is proposed. That definition will
make use of the classification presented also in this paper.

Following the study by Gutiérrez-Madroñal et al. [5],
some new mutation operators for Event Processing Language
(EPL) [18] have been defined in this paper. Their definitions

171Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

not only are included in the list of EPL mutation operators
but also they help to explain the proposed mutant operators
classification.

The structure of the rest of the paper is as follows: Section
2 introduces mutation testing and a description of the main
steps involved in the process. Section 3 describes the process
to follow to do an MTS, its goals and the relation between
them, as well as the proposed classification of the mutation
operators (explained with real and new mutation operators). In
Section 4 are defined the new EPL mutant operators which are
classified with the proposed classification. This classification is
also applied and analyzed in Section 5 with mutation operators
defined in different mutation testing studies. This section also
includes the grade of maturity definition for mutation testing
studies as well as the characteristic of its definition. And
finally, in Section 6, the conclusions and future work are
presented.

II. MUTATION TESTING BACKGROUND

Mutation testing [9]–[11] is a fault-based testing technique
that introduces simple syntactic changes in the original pro-
gram by applying mutation operators. Unlike other fault-based
strategies that directly inject artificial faults into the program,
the mutation method generates syntactic variations, mutants,
of the original program by applying mutation operators. Each
mutation operator represents “typical” programming errors,
that the developer could make. For example, a mutation system
replaces a relational operator (say >; i.e. a > 26) in the
original program with other operators (such as <,=, >=, <=
and <>; i.e., a < 26), which is intended to represent a
wrong instruction typed by the programmer. If a test case
is able to distinguish between the original program and the
mutant, it is said that this test case kills the mutant. On the
contrary, if no test case in the test suite is able to distinguish
between the mutant and the original program, it is said that
the mutant stays alive. An equivalent mutant always produces
the same output as the original program, hence it cannot be
told apart from the original program. The general problem of
determining if a mutant is equivalent to the original program
is undecidable [19]. There are so many factors to take into
account in order to find out if a mutant is equivalent. The
code length, the mutant itself, and the variables used in the
test case are good examples of it.

Mutation testing can be used in two ways. The first use is
to measure the quality of a test suite with its mutation score,
which is defined as the percentage of killed mutants. A formal
definition:

ms =
Km

Tm− Em
(1)

where Km is the number of killed mutants, Tm is the total
number of mutants, and Em is the number of equivalent
mutants. Normally the value of Em is not known, which is
a problem because it is necessary to manually inspect the
mutants to identify those that are equivalent. The second use
for mutation testing is to generate new test cases in order to
kill the surviving mutants, and thus improve the quality of the
initial test suite. In an ideal case the mutation score reaches

100% which indicate that the test suite is adequate to detect
all the faults modeled by the mutants.

One of the main drawbacks of mutation testing is the
high computational cost involved. Commonly there is a large
number of mutation operators that generate a wide numbers
of mutants, each of them must be executed against the test
suite. Under certain conditions described in an empirical study
by Offut et al. [20], the number of mutants has quadratic
complexity in program size.

From a theoretical point of view, the mutation testing
process is divided in four main steps: analysis of the program,
generation of mutants, execution of the mutants against the test
suite and outputs analysis (Figure 1). Each process requires
the previous results to be developed. And all of them, with
the exception of the last one, output analysis, need a mutant
system.

Figure 1. Phases of the Mutation Testing Process

The analysis can be defined as the part of the process where
the programming language is studied. The analysis result is
the number of occurrences of each mutation operator in the
program. At this point it is necessary to clarify that program
is used to denote the software under test, which could be
a complete program or some smaller unit, such as a query.
With this information, the mutant system moves to the next
step, generation of the mutants. The mutant system does slight
changes in the original program depending on the occurrences
of each mutation operator and their definitions. For example,
if the program under test were the next line of code “a +
6”, the analysis result will say that there is one occurrence of
an arithmetic operator. And if the mutation operator definition
says that each occurrence has to be changed by one of the
following set of elements: {-, /, * and %}, the number of
generated mutants based on the previous conditions will be
four. The execution of the mutants is the last task of the mutant
system. At this point the mutants are executed against the test
suite and just if their outputs can be distinguished between the
mutant and the original program, the mutant can be classified
as a killed mutant. The stillborn mutants also are automatically
classified, because if the mutant fails to be run against the test
suite or violates some static constraint defined by the language,
the mutant system will notify it. The stillborn mutants fail to
execute because of syntax errors or whatsoever conditions that
the mutation operators producing them may have introduced.
Finally in the output analysis the mutants are classified in order
to check if the 100% in the mutation score has been reached.

172Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

In other case the test suite has to be improved.

III. MUTATION TESTING PROCESS

We propose a guide which describes a formal process to
apply an MTS to a new language. Furthermore one of its steps
includes the proposed classification for the mutation operators.
Figure 2 shows the subtasks involved in each main step of the
mutation testing process, our guideline describes them.

Figure 2. Subtasks of each Mutation Testing Step

A. Language selection

Depending on the programming language, some consider-
ations should be taken into account. If the chosen program-
ming language is based on another programming language,
they should be compared (i.e., Event Processing Language
(EPL) [18], an SQL-like language and SQL [5]), especially
if this base programming language has an MTS. Otherwise,
it should be recommendable start the MTS with the base
programming language. If there is an MTS for the chosen
programming language new contributions can be significant,
i.e., some contributions may be done if the new MTS was fo-
cused on the changes of the latest version of the programming
language. If the chosen programming language is not involved
in any of the previous situations, it has to be in consideration
its availability as well as its popularity. This means that it is
a common programming language and it is easy to find open
programs for a further study. Its availability and its popularity
are important, because both will influence the MTS, i.e., it is
a privative programming language which is used by a private
company its grammar could be not accessible.

B. Grammar study

The programming language has to suffer an exhaustive
survey. Each code line has to be considered and covered with
all the possibilities. This part of the progress is linked with the
next one because based on the grammar, the mutation operator
definitions will be made. Studying the grammar let us know
the right changes (mutations) that could be done according to
the context. For example in a SQL query:

update table_A set field_A =
field_B * (select count (*) from table_B)

The first * correspond to an arithmetic operator, which could be
replace by another +, -, / and %. On the contrary the last one is
a wildcard that can not be replace by any of the last arithmetic
operators. If this kind of situations were not considered, the
resulting mutation programs would be syntactically wrong as
well as the mutations would not represent common errors that
a developer could make.

C. Definition of the operators

Before doing a formal definition, it has to be checked if
there is a definition in other language that could be directly
applied, or applied with a slight modification. After studying
the grammar, the mutation operators can be defined. The
operators have to represent typical programming errors such as:
change the variable name for another, type a wrong (logical,
arithmetic) operator, add or subtract one unit to a number,
date or time, duplicate or forget a part of code and so on. The
mutation operator definition has to explain how the mutation
has to be done, and also each special situation that could
happen. Sometimes, it is preferable to introduce an example
for a visual understanding.

If the mutation operator has a similar behavior as another
one that is already defined, it is preferable to use the same
name but with a slight modification. For example, the SQL mu-
tation operator “JOI, JOIN Clause”, which definition says [21]:

JOI; JOIN Clause - Each occurrence of a join-type keyword
(INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN,
FULL OUTER JOIN, CROSS JOIN) is replaced by each of
the others. When a join-type is replaced by CROSS JOIN, the
search-conditions under the ON keyword are removed. When
CROSS JOIN is replaced by another join-type, an ON clause
is added and its corresponding join-condition is created based
on the primary keys of the joined tables.

This definition is the base for ”EJOI” definition, a mutation
operator of EPL (Event Processing Language) [5]:

EJOI; JOIN clause - It is applicable for INNER JOIN, LEFT
OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER
JOIN. Each one of them is replaced by the others.

The name has been slightly modified because is a new
definition but based on an existing one. In this case, the key
word CROSS JOIN is not in EPL grammar.

D. Implementation of the operators

Once the operators have been defined, the next step is their
implementation in the mutation system. These implementations
have two elements. The first one is for detecting the operators
in the program, which is included in the analysis step of
the mutation testing process. Each mutation operator has a
function which localizes each occurrence of the mutation
operator in the program. This code is influenced by the studied
grammar because it determines if the mutation operator is well
located. The analysis output is the number of occurrences of
each mutation operator. If in an analysis output the number
of occurrences of a mutation operator is zero, this mutation
operator is not applied.

The second element in the mutation operator implementa-
tion is the generation of the mutants. This code is influenced
by the mutation operator definition, which says what have to
be done to do the mutation. Every change generates a mutant,
so if a definition of a mutation operator says that you can make
five possible changes to the original instruction, five mutants
will be generated. If the goal is to generate all the possible
mutants, there has to be a control in order to generate the
correct mutants as well as the exact number of mutants. Its
output is a set of generated mutants.

173Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

E. Classification of the operators and SoMO classification

This part of the process has to be done after the definitions
of mutation operators, but it would be recommendable to do
it after their implementation as their behavior could no be the
expected one.

The authors usually present their mutation operators group-
ing them by the nature of the change proposed; for example
if the mutation operator changes values in the code, they
are group in the category ”Value mutation operators”, if
the changes are replacements, its category is ”Replacement
mutation operators” and so on. In this paper the approach
goes a step further by proposing the SoMO (Sets of Mutation
Operators) classification for the mutation operators which
divides them in the following sets: traditional, nature and
specific. The following lines describe each set and show an
example for a better comprehension.

The first set of mutation operators is traditional. The
mutation operators of this set can be found in the majority of
the MTSs of any language. It is easy to discover the follow-
ing mutation operators types: ”Relational mutation operator”,
”Arithmetic mutation operator”, ”Logical mutation operator”
or any other with a similar name. In some studies this set
of mutation operators is called traditional, for this reason the
SoMO classification uses the same name for this first set.

Other set of mutation operators to consider is the one which
covers the mutation operators that do the changes in line/s of
code according to the nature of the programming language. If
the programming language is an object oriented one, is likely
that the object oriented mutation operators will be found, such
as ”Heritage mutation operators” or ”Polymorphism mutation
operators” and so on. In the case of a query language, ”Query
mutation operators” will exist, for example mutation operators
which affect select clauses or where conditions. The SoMO
classification includes this type of mutation operators in the
nature set.

And finally, the last set of mutation operators is the one
which involves the mutation operators whose changes are
based on the finality of the programming language. These
types of mutation operators are common in new programming
languages which have been created recently and/or have been
created based on a traditional programming language. For
example, the base or origin of query languages is SEQUEL
(Structured English Query Language) [22], now known as
SQL. The majority of query languages are based on SQL, in
fact they are defined as SQL-like languages. Some of them are
created for specific tools or functionalities like GQL (Google
Query Language) created for developing tools which use the
Google App Engine or the Google Cloud Datastore [23], [24],
or EPL (Event Processing Language) for dealing with high
frequency time-based event data [18], YQL (Yahoo! Query
Language) to query, filter, and combine data from different
sources across the Internet [25], and so on. If a study of
mutation testing of these query programming languages is
done, it is likely to find mutation operators which would be
included in the first set as well as in the second set of mutation
operators previously mentioned. But some of them can not
be included in any of them because the changes are done
in a specific part of code which can be only found in this
programming language. These mutation operators are included

in SoMO classification in specific set.

So the different sets of mutation operators (SoMO) are:

• Traditional mutation operators: They could be applied
to any programming language no matter its nature.

• Nature mutation operators: They just could be applied
according to the nature of the programming language.
These operators are defined according to syntactic-like
language faults.

• Specific mutation operators: They can not be applied
to any other programming language. These operators
are defined according to non syntactic-like language
faults. That means that the mutations are done in the
part of the language which differs from the rest of the
languages.

What is the main contribution of the SoMO classification?
SoMO classification is focused on the vulgarity or exclusivity
of the mutation operators.

Lets define for each set of SoMO classification a GQL
mutant operator (for the App Engine of Google). First set,
traditional mutation operators:

GROR; Google relational operator replacement - Each occur-
rence of one of the relational operator {<,<=, >,>=,=, ! =}
is replaced by each of the other operators.

Relational operators can be found in several programming
languages (their symbols could be different), no matter their
nature.

For the second set of SoMO, nature mutation operators:

GSEL; Google SELECT clause - Each occurrence of one of
the SELECT or SELECT DISTINCT keywords is replaced by
the other.

This definition is the same that SEL mutation operator
definition of SQL [21]. This reaffirms the necessity of SoMO
classification, in this case it is not necessary the GSEL defini-
tion because there is a programming language with the same
nature that already have that definition.

And for the third set of SoMO, specific mutation operators:

FRM; From clause - The optional FROM clause limits the
result set to those entities of the given kind. A query without
a FROM clause is called a kindless query and cannot include
filters on properties. When this happens, the mutation consists
in removing the FROM clause.

This mutation operator can just be applied to GQL because
of its grammar and finality, so it is included in the specific
mutation operators set.

What programming languages can be classified using
SoMO classification? All the programming languages which
are under an MTS can be classified by SoMO. If it is a
base or traditional programming language such as Fortran,
COBOL or Pascal, the specific mutation operators set will
not have mutation operators. On the other hand, if it is a new
programming language such as Ruby, Objective C, GQL, the
specific mutation operators set will have mutation operators.

174Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

F. Killing criteria and output definition

This part of the study it is very important. If it is not done,
there is just a list of definitions and generated mutants without
any goal. In this section is where the conditions to consider
when a mutant is killed are explained. There are two steps to
develop the killing criteria:

1) According to the mutation operator definition, the
mutant expected output should be determined.

2) Execute the original program and the mutant program
and check if the mutant output is the expected one. If
the mutant output is different, it is necessary to study
the behavior of the mutant to determine the killing
criteria.

The criteria to take a mutant apart depend on the output
definition. For example, if EPL is the programming language
for which the killing criteria wants to be done, it is necessary
to take into account its nature. Let us consider the difference
of the number of events as the EPL output definition. If
the number of events obtained by the original program and
the mutants are checked, the mutant outputs which differ in
the time of response are equivalent according to the output
definition, and this is fault. On the other hand, if the killing
criteria is the latency of events between original and mutants,
the mutant outputs which differ in the number of events are
equivalent. So for EPL, the output definition must cover not
only the number of events but also the latency between the
original and the mutants.

It has to be defined a killing criteria for each mutation
operator. Following with the EPL example, for the mutation
operators which affect the time of response, their killing
criteria are the latency between original and mutant, and for
the ones which affect the amount of events in their output, their
killing criteria are the differences in the number of events.

G. Mutant Classification

Once the killing criteria as well as the output definition are
completed, it is time to execute all the mutants against a test
suite which covers all the mutation operators defined before.
Depending on the number of mutation operators defined and
the generated mutants, the computational cost will be affected.
When the execution is finished, the mutant outputs can be
analyzed. Part of this analysis can be automated, in particular
to determine if the mutant is killed, alive or stillborn. But it
has also a manual part that is focused on the mutants that
are still alive. This part consists in to discern whether these
mutants are equivalent or it is necessary to improve the test
suites. In [26] is described a technique called constraint-based
test data generation which overcomes partially the equivalent
mutant problem.

In the literature there are some definitions which will help
the manual analysis in which the equivalent mutants have to
be separated:

Equivalent mutant: A mutant is equivalent when there is
not a test case which after applying it, the original program
output and mutant program output can be differentiated. This
means that there is not a single test case can kill the mutant.

Stubborn non-equivalent mutant: A mutant is stubborn
non-equivalent when there is no test case in a test suite which

after applying it, the original program output and mutant
program output can be differentiated yet. This means that there
is not an adequate test suite which detect the mutant, but it is
not equivalent.

Equivalent mutants should not be confused with stubborn
non-equivalent mutants, the set of equivalent and stubborn non-
equivalent mutants is called potentially equivalent mutants. So
if there are stubborn non-equivalent mutants in the study, the
test suite has to be revised and a new test case which solves
the stubborn non-equivalent mutants issue must be defined.

The automatic analysis can differentiate if the mutants are
alive, killed or invalid. In the set of the killed mutants other
definitions about their resistance have to be considered:

Weak mutant: A mutant is weak when is killed by every
test case.

Resistant mutant: A mutant is resistant when is killed by
a single test case.

Hard to kill mutant: A mutant is hard to kill when it is a
resistant mutant, and the test case which kills it, just kills the
resistant mutant.

This classification can be done automatically if in a matrix
M (a row for each generated mutant R and a column for each
test case of the test suite T), the status of the mutants after their
execution are saved. The status can be considered as follows:
0 in mi,j means that the mutant in the i-row is alive for the
test case in the j-column, 1 is use killed mutants and 2 for
invalid mutants.

So it is easy to identify a weak mutant, because the value
sum of its row is equal to the number of test cases in the test
suite T used in the MTS:∑T

j=1 mi,j = j

For a resistant mutant the sum of the elements of its row
is equal to 1:∑T

j=1 mi,j = 1

And finally a hard to kill mutant can be detected if the sum
of the elements of its row and the sum of the elements of the
column of the test case which kills it, are both equal to 1:∑T

j=1 mi,j = 1 and
∑R

i=1 mi,j = 1

H. Final Analysis

The previous mutant classification helps to discard some
mutants that are not important in the MTS such as equivalent
mutants and weak mutants. Detecting stubborn non-equivalent
is a hard task because it has to be done manually. It is necessary
to discover the path to the mutation and check the different
modules and code lines which are affected because of the
change, so in order to kill the mutant a new test case should
be developed. To determine if a mutant is equivalent it is also
necessary to do a manual analysis in the code, which has
to be so exhaustive as the one for stubborn non-equivalent
mutants because many stubborn non-equivalent mutants could
be discarded.

175Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

IV. ANALYSIS OF REAL STUDY CASES

In [5] a set of mutation operators for EPL is presented, to
obtain these results the six first steps of the described guideline
were followed. The classification of the operators just covers
their categories, so a SoMO classification have to be applied
to differentiate the traditional, nature and specific mutation
operators.

In this section, we first show a briefly background about
EPL, then a discussion of new EPL mutation operators divided
in categories is proposed. After their definition, mutation
killing criteria for the proposed operators are presented. And
finally, a SoMO classification, recovering the EPL mutation
operators presented in [5].

A. Event Processing Language

Event Processing Language (EPL) is a SQL like query
language. However, unlike SQL that operates on tables, EPL
operates on continuous stream of events. As a result, a row
from a table in SQL is analogous to an event present in an event
stream. Example applications for EPL queries can be found in
business process management and automation, finance, net-
work and application monitoring and sensor network systems.
These systems require processing of events in real-time.

Despite the fact that EPL is a SQL like language, consid-
erable dissimilarities have been notice between EPL and SQL.
Thus, in [5] were developed mutation operators due to specific
features of EPL (pattern expression, sliding window of length
and time, batch processing). Other point presented in [5] uses
mutation testing to reveal vulnerabilities in event processing
queries to assess the quality of input event streams. EPL was
chosen as our case of study to develop mutation operators
and killing criteria to generate high quality event streams and
malicious inputs. In order to complete that study as well as to
explain and to show the benefits of SoMO classification, new
EPL mutation operators are proposed.

B. EPL Mutation Operators

Extension View Set Operators

SWVI; Sorted Window View increase - This view (ext:sort)
sorts by values returned by the specified expression or list of
expressions and keeps only the top (or bottom) events up to
the given size. This view retains all events in the stream that
fall into the sort range. The mutation consists in increasing the
window size by one, so this will increase in one the specified
events in the view. See an example in Table I.

SWVD; Sorted Window View decrease - The mutation consists
in decreasing by one the number of the specified events in the
view, so this will decreased by one the window size. See Table
I.

SWVR; Sorted Window View Replacement - An expression
may be followed by the optional asc or desc keywords to
indicate that the values returned by that expression are sorted
in ascending or descending sort order. The mutation consists in
replacing each specified sort keyword by the other, or remove
it. Table I shows an example of SWVR.

RWVI; Ranked Window View increase - This view (ext:rank)
retains only the most recent among events having the same

TABLE I. SORTED WINDOW VIEW OPERATORS EXAMPLES

Original SELECT sum(price) FROM StockEvent.ext:sort(10, price desc)
SWVI SELECT sum(price) FROM StockEvent.ext:sort(11, price desc)

Mutant SWVD SELECT sum(price) FROM StockEvent.ext:sort(9, price desc)
SWVR SELECT sum(price) FROM StockEvent.ext:sort(10, price)

value for the criteria expression(s), sorted by sort criteria
expressions and keeps only the top events up to the given size.
This view is similar to the sorted window in that it keeps only
the top (or bottom) events up to the given size, however the
view also retains only the most recent among events having
the same value(s) for the specified uniqueness expression(s).
The mutation increases by one the number of specified events.
An example in Table II.

RWVD; Ranked Window View decrease - The mutation de-
creases by one the number of the specified events in the view,
so the window size is decreased by one. See Table II.

RWVR; Ranked Window View Replacement - The sort criteria
expressions may be followed by the optional asc or desc
keywords to indicate that the values returned by that expression
are sorted in ascending or descending sort order. The mutation
consists in replacing each specified sort keyword by the other,
or remove it. See Table II for an example.

TABLE II. RANKED WINDOW VIEW OPERATORS EXAMPLES

Original SELECT sum(price) FROM StockEvent.ext:rank (symbol, 8,
price desc)

RWVI SELECT sum(price) FROM StockEvent.ext:rank (symbol, 9,
price desc)

Mutant RWVD SELECT sum(price) FROM StockEvent.ext:rank (symbol, 7,
price desc)

RWVR SELECT sum(price) FROM StockEvent.ext:rank (symbol, 8,
price asc)

TOVI; Time-Order View increase - This view (ext:time order)
orders events that arrive out-of-order, using timestamp-values
provided by an expression, and by comparing that timestamp
value to engine system time. The mutation increases the
specified timestamp by one second.

TOVD; Time-Order View decrease - The mutation decreases
the specified timestamp by one.

Table III shows examples of the previous mutation operators.

TABLE III. TIME-ORDER VIEW OPERATORS EXAMPLES

Original SELECT * FROM TimeEvent.ext:time order (arrivalTime, 8 sec)
Mutant TOVI SELECT * FROM TimeEvent.ext:time order (arrivalTime, 9 sec)

TOVD SELECT * FROM TimeEvent.ext:time order (arrivalTime, 7 sec)

Pattern Expression Operators

NRK; Not in regexp Keyword - The regexp keyword is a
form of pattern matching based on regular expressions. The
result of a regexp expression is of type Boolean. If the input
value matches the regular expression, the result value is true.
Otherwise, the result value is false. The mutation removes or
inserts the keyword ’not’ before the keyword ’regexp’. In the
Table IV there is an example.

Operator replacement

176Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

TABLE IV. NRK OPERATOR EXAMPLE

Original SELECT * FROM PersonEvent WHERE name not regexp ’.*Jack.*’
Mutant SELECT * FROM PersonEvent WHERE name regexp ’.*Jack.*’

FRR; Filter Ranges Replacement - Ranges come in the fol-
lowing 4 varieties. The use of round () or square [] bracket
dictates whether an endpoint is included or excluded. The low
point and the high-point of the range are separated by the colon
: character. The mutation consists in changing a round bracket
by a square one and viceversa, the possible outputs: {(), (], [)
and []}. Table V shows an example of FRR.

TABLE V. FRR OPERATOR EXAMPLE

Original mypackage.Event(x not in [0:100])
Mutant mypackage.Event(x not in [0:100))

SQL Injection Attack Operators

LCR; Limit Clause Remove - The limit clause is used to limit
the query results to those that fall within a specified range.
This operator removes the limit clause in the query. The Table
VI has a LCR example.

TABLE VI. LCR OPERATOR EXAMPLE

Original select age, count(*) from PersonEvent group by age order by
count(*) desc limit 10

Mutant select age, count(*) from PersonEvent group by age order by
count(*) desc

OPR; Offset Parameter Remove - The limit clause has an
optional offset parameter which specifies the number of rows
that should be skipped at the beginning of the result set. This
operator removes the offset parameter in the query. Table VII
shows an example of the OPR mutation operator.

TABLE VII. OPR OPERATOR EXAMPLE

Original select age, count(*) from PersonEvent group by age order by
count(*) desc limit 10 offset 2

Mutant select age, count(*) from PersonEvent group by age order by
count(*) desc limit 10

Killing Criteria

The Table VIII shows the list of operators and their
corresponding killing criteria. The total number of events
reported by an original query (O) and a mutated query (M)
are compared in order to decide if a mutant is killed or not. A
mutant is killed if the number of reported events is not equal
to the original query. Some operators (SWVR, RWVR) require
defining a different killing criterion; in these cases a mutant is
killed if the order of the reported events by the original and
the mutated query is different.

C. EPL SoMO classification

The EPL SoMO classification is showed in Table IX
(including the new EPL mutation operators and the defined
in [5]). The first column shows the sets, the second column
shows the mutation operators which are included in each set
and the third shows the percentage of operators involved.

TABLE VIII. KILLING CRITERIA

Category Operator Killing criteria

EVS SWVI, SWVD, RWVI,
RWVD, TOVI, TOVD Event count between O and M.

SWVR, RWVR Event sort between O and M.
PEP NRK Event count between O and M.
SQIJ LCR, OPR Event count between O and M.

TABLE IX. EPL SoMO CLASSIFICATION

Set Mutation Op. %
Op.

Traditional

RLOP, OEDIP, OEDDP, LINC, LDEC, TINC, TDEC,
TRUN, SQNC, SQUP, EABS, EAOR, EROR, EUOI,
ENLF, ENLI, ENLO, TOVI, TOVD, RWVI, RWVD,
SWVI, SWVD, NRK, FRR

41’67

Nature

SQRC, SQFD, EAGR, ESEL, EGRUE, EGRUA,
EJOI, EORDE, EORDK, EORDS, ESUBRI, ESUB-
RII, ESUBRIII, ESUBIBII, ESUBIBIII, ESUBIIBI,
ESUBIIBIII, EBTW, ELKEWC, ELKEWR, ELKECA,
ELKECB, ELKEAE, ELKEAB, LCR, OPR

43’3

Specific RREP, CEOP, ESIRF, ESIRL, RGEP, BATL, BATT,
SWVR, RWVR 15

The EPL SoMO classification includes more than 40% of
the mutation operators in both the nature and the traditional
set and a 15 percent in the specific set.

V. SOMO CLASSIFICATION ANALYSIS FOR OTHER
STUDIES

Lets do the SoMO classification with the following mu-
tation testing studies: XML Schema [27], [28], HTML [29],
JSP [29], WS-BPEL 2.0 [30], [31], SOAP [32], PHP [33] and
XACML [34]. All of them have something in common with
markup languages: are markup languages, are like a markup
language or are written in markup languages.

Table X shows the percentage of mutation operators clas-
sified in the different sets. The first column is the name of the
domain in which the study has been done, the second, third
and fourth are the percentage of mutation operators in each set
respectively and finally the total number of mutation operators.

TABLE X. SoMO CLASSIFICATION FOR OTHER STUDIES

Domain % Set Total
Traditional Nature Specific

XML 17’9 82’1 0 28
HTML 0 100 0 8
JSP 0 0 100 3
WS-BPEL 38’24 26’47 35’3 34
SOAP 25 0 75 7
PHP 86’4 13’6 0 44
XACML 0 36’4 63’6 11

As it was expected the traditional and base markup lan-
guages XML and HTML have not any mutation operators in
their specific set. The newest programming languages have
the highest percentage of mutation operators in the specific
set, with the exception of PHP which has the majority of its
mutation operators in the traditional set. According to the PHP
study it is an ongoing work and more mutation operators will
be added over the time, so it seems to be a huge MTS. Another
point to highlight on the PHP study is the 13’6% value in its
nature set, this percentage is not because the markup language
nature, it is because the influence from Java, C, C++, Perl and

177Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

Python. PHP MTS needs definitions for mutation operators of
the specific set because these are the important and interesting
ones, in other case this study would be incomplete given
the fact that the mutation operators already defined do not
contribute to a PHP MTS.

JSP is a programming language based on a markup lan-
guage and SOAP is a protocol written using a markup lan-
guage, but as we can see, they have no mutation operator in
their nature set. The reason of the non-existence of mutation
operators in the nature set could be because their authors
considered them already defined, or maybe, the study was not
focused on defining a set of mutation operators. However, in
contrast to JSP and SOAP, WS-BPEL and XACML studies
have mutation operators in their nature set. The ones which
belong to this set are those whose changes are done in a part of
the syntax-like markup language (i.e., remove targets, change
the targets order).

The WS-BPEL study is the only one which contemplates
mutation operators in all the sets, this is because this study
is a complete MTS and WS-BPEL is a new programming
language. As it was said in section 3.5, if a programming
language is new, its specific set will have mutation operators, in
other case (it is not a new programming language) its specific
set will have no mutation operators.

In the majority of the cases, it is very difficult to determine
if all the mutation operators in an MTS have been defined,
although the interesting thing to know is if the already defined
mutation operators are good enough to consider the MTS
mature. The number of defined mutation operators and the
SoMO classification let us define the grade of maturity of
an MTS. In order to give a grade of maturity definition,
some considerations have to be taken into account. Due to
WS-BPEL MTS has an exhaustive, huge and tested mutation
operators list and MuBPEL [4], a mutation tool for WS-
BPEL language which has been used to verify this study, WS-
BPEL study can be considered a finished and mature MTS.
Considering WS-BPEL a mature MTS and after studying its
SoMO classification, a grade of maturity definition of an MTS
can be explained:

Grade of maturity of an MTS: The grade of maturity
of an MTS is measured with its SoMO sets. When the
percentage of its traditional set is about 40%, and the sum
of the percentages of its nature and specific sets is about 60%,
it can be said that the defined mutation operators are good
enough to consider the MTS mature.

Why these percentages? When an MTS is started, it is
normal to begin with traditional mutation operators definitions.
These mutation operators are easy to identify and they are
already considered as common mistakes that a developer could
make. On the other hand, nature and specific sets can not
be separated because, depending on the similarity of the
programming language to the one in which is based on, these
percentages can change. If a programming language has a high
percentage of mutation operators in the nature set that means
that the original programming language and the new one are
very similar. But if the new programming language syntax does
not allow those changes, it means that the languages are not
so similar.

According to the grade of maturity definition for an MTS,

the previous mutation operators definitions for the EPL MTS
described in this paper, we can consider it as a mature MTS
(see the percentages in Table IX). The EPL MTS has a vast
mutation operators list and satisfies the grade of maturity
definition of an MTS (About 40% of mutation operators belong
to the traditional set and the rest of them belong to the nature
and specific sets). In accordance with the grade of maturity
definition, the XML study needs mutation operators of the
traditional set to be a mature MTS. On the other hand, the
PHP study needs mutation operators of the nature and specific
sets (as it was previously indicated). The rest of MTSs have a
low number of mutation operators definitions so this definition
can not be applied to them.

If a comparison is made between the SoMO classifications
of WS-BPEL and EPL, as the percentage of the nature set
in EPL is higher than in WS-BPEL, it can be stated that EPL
programming language is more similar to SQL than WS-BPEL
to XML.

VI. CONCLUSION AND FUTURE WORK

Doing an MTS is an exhaustive task and it is necessary
to know the steps to follow and their goals. Due to the com-
putational cost which involves the execution of the mutants,
it is interesting to have no errors along the mutation testing
process which can affect the results. This paper proposes a
mutation testing guideline, with real examples in each step
(including mutation operators definitions for EPL), and their
goals. Moreover, the SoMO classification divides the mutation
operators in traditional, nature and specific sets, and it also
determines if the MTS has a enough grade of maturity. The
percentage of each SoMO set determines not only what kind
of programming language is under study, but also if it is an
ongoing study. This helps us to determine what set of mutation
operators need to be completed.

The definitions of new EPL mutation operators have been
used to explain one of the steps of the mutation testing process
(mutation operator classification), as well as to clarify how
SoMO classification has to be applied. Adding these operators
to the EPL MTS, this MTS meets the grade of maturity
definition and indicates that it is a mature MTS.

In future, we plan to finalize the EPL MTS in which an
EPL tool will be developed. This tool will help to determine
if mutation-based testing reveals code-level vulnerabilities not
only in traditional implementation languages, but also in event
processing queries. This process assesses the quality of input
event streams and generates event streams that can reveal
implementation bugs in queries.

The presented grade of maturity definition for an MTS
needs to be checked with other real mutation testing studies
to verify and adjust (in case to be necessary) the proposed
percentages for SoMO classification. This definition will be
polished applying the SoMO classification in other MTSs
which are focused in different programming paradigms, such
as query languages or object oriented languages. This will help
to accurate the proposed percentages of the grade of maturity
definition.

178Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

ACKNOWLEDGMENT

This work has been funded by the Ministry of Science and
Innovation (Spain) under the National Program for Research,
Development and Innovation, Project MoDSOA TIN2011-
27242.

REFERENCES

[1] W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-based
testing of database application programs with conceptual data
model,” in Proceedings of the Fifth International Conference
on Quality Software, ser. QSIC ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 187–196. [Online]. Available:
http://dx.doi.org/10.1109/QSIC.2005.27

[2] M. E. Delamaro and J. C. Maldonado, “Proteum - a tool for the
assessment of test adequacy for C programs: User’s guide,” in PCS’96:
Conference on Performability in Computing Systems, 1996, pp. 79–95.

[3] S. Hussain, “Mutation clustering,” Master’s thesis, King’s College
London, 2008.

[4] A. Garcı́a-Domı́nguez, A. Estero-Botaro, J.-J. Domı́nguez-Jiménez,
I. Medina-Bulo, and F. Palomo-Lozano, “Mubpel: una herramienta
de mutación firme para ws-bpel 2.0,” in Actas de las XVII
Jornadas de Ingenierı́a del Software y Bases de Datos, A. Ruiz
and L. Iribarne, Eds., Almerı́a, Spain, 2012. [Online]. Available:
http://sistedes2012.ual.es/sistedes/jisbd

[5] L. Gutiérrez-Madroñal, H. Shahriar, M. Zulkernine, J. Dominguez-
Jimenez, and I. Medina-Bulo, “Mutation testing of event processing
queries,” in Software Reliability Engineering (ISSRE), 2012 IEEE 23rd
International Symposium on, 2012, pp. 21–30.

[6] K. N. King and A. J. Offutt, “A FORTRAN language system for
mutation-based software testing,” Software - Practice and Experience,
vol. 21, no. 7, 1991, pp. 685–718.

[7] Y. Ma, J. Offutt, and Y. R. Kwon, “MuJava: An automated class
mutation system,” Software Testing, Verification and Reliability, vol. 15,
no. 2, 2005, pp. 97–133.

[8] J. Tuya, M. Suarez-Cabal, and C. de la Riva, “Sqlmutation: A tool to
generate mutants of sql database queries,” in Mutation Analysis, 2006.
Second Workshop on, 2006, pp. 1–1.

[9] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” Computer, vol. 11, no. 4, 1978,
pp. 34–41.

[10] R. Hamlet, “Testing programs with the aid of a compiler,” Software
Engineering, IEEE Transactions on, vol. SE-3, no. 4, 1977, pp. 279–
290.

[11] M. Woodward, “Mutation testing - its origin and evolution,”
Information and Software Technology, vol. 35, no. 3, 1993, pp. 163 –
169. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0950584993900536

[12] Y. Jia and M. Harman, “Higher order mutation testing,” Information
and Software Technology, vol. 51, no. 10, 2009, pp. 1379–1393.

[13] J. Domı́nguez-Jiménez, A. Estero-Botaro, A. Garcı́a-Domı́nguez,
and I. Medina-Bulo, “Evolutionary mutation testing,” Information
and Software Technology, vol. 53, no. 10, 2011, p. 1108–1123.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S095058491100084X

[14] A. Estero-Botaro, J. Domı́nguez-Jiménez, L. Gutiérrez-Madroñal, and
I. Medina-Bulo, “Evaluación de la calidad de los mutantes en la prueba
de mutaciones,” in Actas de las XVI Jornadas de Ingenierı́a del Software
y Bases de Datos, A Coruña, Spain, 2011.

[15] M. Polo Usaola and P. Reales Mateo, “Mutation testing cost reduction
techniques: A survey,” Software, IEEE, vol. 27, no. 3, 2010, pp. 80–86.

[16] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate tool
for testing experiments? [software testing],” in Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference on, 2005,
pp. 402–411.

[17] A. P. Mathur, Foundations of Software Testing, 1st ed. Addison-Wesley
Professional, 2008.

[18] EsperTech, “Event processing with wsper and nesper,” Last access
nov, 2013. [Online]. Available: http://esper.codehaus.org/

[19] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and
adequacy,” ACM Comput. Surv., vol. 29, no. 4, Dec. 1997, pp. 366–427.
[Online]. Available: http://doi.acm.org/10.1145/267580.267590

[20] A. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation of
selective mutation,” in Software Engineering, 1993. Proceedings., 15th
International Conference on, 1993, pp. 100–107.

[21] J. Tuya, M. Suarez-Cabal, and C. de la Riva, “Mutating database
queries,” Information and Software Technology, vol. 49, no. 4, 2007,
pp. 398 – 417. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0950584906000814

[22] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english
query language,” in Proceedings of the 1974 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control, ser.
SIGFIDET ’74. New York, NY, USA: ACM, 1974, pp. 249–264.
[Online]. Available: http://doi.acm.org/10.1145/800296.811515

[23] Google, “Google query language in google app engine,” Last
access nov, 2013. [Online]. Available: https://developers.google.com/
appengine/docs/python/datastore/gqlreference

[24] ——, “Google query language in google cloud datastore,” Last access
nov, 2013. [Online]. Available: https://developers.google.com/datastore/
docs/concepts/gql

[25] Yahoo!, “Yahoo query language,” Last access nov, 2013. [Online].
Available: http://developer.yahoo.com/yql/

[26] A. Offutt and J. Pan, “Detecting equivalent mutants and the feasible
path problem,” in Computer Assurance, 1996. COMPASS ’96, Systems
Integrity. Software Safety. Process Security. Proceedings of the Eleventh
Annual Conference on, 1996, pp. 224–236.

[27] J. B. Li and J. Miller, “Testing the semantics of w3c xml schema,”
in Computer Software and Applications Conference, 2005. COMPSAC
2005. 29th Annual International, vol. 1, 2005, pp. 443–448 Vol. 2.

[28] L. Franzotte and S. R. Vergilio, “Applying mutation testing in xml
schemas,” in SEKE, K. Zhang, G. Spanoudakis, and G. Visaggio, Eds.,
2006, pp. 511–516.

[29] U. Praphamontripong and J. Offutt, “Applying mutation testing to
web applications,” in Software Testing, Verification, and Validation
Workshops (ICSTW), 2010 Third International Conference on, 2010,
pp. 132–141.

[30] A. Estero Botaro, F. Palomo Lozano, and I. Medina Bulo,
“Mutation operators for WS-BPEL 2.0,” in ICSSEA 2008: Proceedings
of the 21th International Conference on Software & Systems
Engineering and their Applications, 2008. [Online]. Available:
http://neptuno.uca.es/redmine/wiki/gamera

[31] A. Estero-Botaro, J. Boubeta-Puig, V. Liñeiro-Barea, and I. Medina-
Bulo, “Operadores de mutación de cobertura para ws-bpel 2.0,” in
XVII Jornadas de Ingenierı́a del Software y Bases de Datos (JISBD
- SISTEDES 2012), Almerı́a, Spain, 2012.

[32] R. Wang and N. Huang, “Requirement model-based mutation testing
for web service,” in Next Generation Web Services Practices, 2008.
NWESP ’08. 4th International Conference on, 2008, pp. 71–76.

[33] padraic, “Mutagenesis,” Last access dec, 2013. [Online]. Available:
https://github.com/padraic/mutagenesis

[34] E. Martin and T. Xie, “A fault model and mutation testing of
access control policies,” in Proceedings of the 16th International
Conference on World Wide Web, ser. WWW ’07. New York,
NY, USA: ACM, 2007, pp. 667–676. [Online]. Available: http:
//doi.acm.org/10.1145/1242572.1242663

179Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

