
MeterGoat: A Low Cost Hardware Platform for Teaching Smart Meter Security

Jefferson Capovilla, Nelson Uto
GTSIC – Information Security Department

CPqD
Campinas, São Paulo, Brazil
{jrodrigo, uto}@cpqd.com.br

Danilo Suiama, Jose Resende
Management of Metering, Losses and Technology

ELEKTRO
Campinas, São Paulo, Brazil

{danilo.suiama, jose.resende}@elektro.com.br

Abstract—Smart meters play an important role in smart grid
architectures by enabling best operational efficiency, enhanced
usage monitoring and variable pricing structure, among other
advantages. On the other hand, meters have often been
deployed with several security vulnerabilities that can
compromise the mentioned benefits and result in cyber attacks.
Therefore, teams involved in the development of smart meters
should be trained in security aspects related to the area. In this
context, this paper describes the work in progress project
called MeterGoat, whose main objective is to develop an open
source and low cost hardware platform for teaching smart
meter security. In order to achieve this purpose, it deliberately
implements meter's functionalities in a vulnerable way,
providing a flexible framework for smart meter pentesting
including hardware and firmware weaknesses.

Keywords- Smart meter pentesting; trainning platform; cyber
attacks; vulnerability.

I. INTRODUCTION

Smart grids have the objective of transforming today's
power grid by providing an extra level of grid status control,
energy consumption profiles, powerful control mechanisms,
and flexible billing processes. However, these advantages
increase the overall complexity of the system, since it is
necessary to use more advanced components, in order to
maintain and transmit the information required by the utility
companies. A major drawback of this new scenario is the
high number of vulnerabilities reported on smart meters and
the underlying infrastructure, as can be seen in the papers of
Skopik et al. [1] and Carpenter et al. [2].

Clearly, there is a gap between the energy sector and
information technology field with respect to information
security. The main objective of this work in progress paper is
then to fill this gap by introducing a low cost and open
source hardware platform for teaching security aspects that
must be considered in the implementation of a smart meter.

We named it MeterGoat, after the Open Web Application
Security Project (OWASP) WebGoat project [3], which has
the same purpose, but in the scope of web applications.
MeterGoat will then implement the most relevant smart
meter's functionalities in a vulnerable way, allowing the
students to perform real attacks without affecting live
environments. In this way, they can fully understand why the
exploits are possible and avoid making the same mistakes in
real products they develop.

The remaining part of this paper is structured as follows:
Section II presents a few works related to security training
platforms and smart meter penetration testing. Section III
describes the MeterGoat project, outlining the vulnerabilities
that are being implemented and the hardware components we
are using. In Section IV, we list a few tools to compose the
toolkit for testing smart meter security. Section V gives an
overview of training scenarios, and, finally, Section VI
concludes the paper and discusses future work.

II. RELATED WORK

The recent demand of countries in substituting standard
energy meters by the smart version contributes to foster
research in Advanced Metering Infrastructure (AMI)
security, such as the AMI Penetration Test Plan [4], by the
National Electric Sector Cybersecurity Organization
Resource (NESCOR). That document proposes that the
security evaluation of smart meters should cover four main
areas: embedded devices, network communications, server
Operating System (OS), and server applications.

The work of Grand [5] complements the aforementioned
guideline, since, besides testing, it also covers the concept
of designing secure hardware for embedded systems,
introducing, in this way, security in the earlier phases of
development lifecycle. According to the author, in order to
have a more secure product, one needs, at least, to avoid
vulnerabilities in the enclosure, the circuit board, and the
firmware. In our project, we are using several examples of
insecure design given by Grand.

Regarding security training, one can find several open
source projects, which implement insecure web and mobile
applications, such as WebGoat, iGoat [6], and GoatDroid
[7]. However, to the best of the author’s knowledge, there is
no testbed related to smart meters, making it hard for those
interested in the area to learn how to test this type of device.
Thus, we believe that MeterGoat can help to fill this gap.

As we already mentioned, Webgoat is a deliberately
insecure web application, designed to teach penetration
testing. It contains more than 30 lessons that emulate
vulnerabilities commonly found in real applications. The
iGoat and the GoatDroid are quite similar projects,
presenting themselves as fully functional and self-contained
security training environments, for iOS and Android,
respectively. All three projects are maintained by OWASP.

180Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

III. THE METERGOAT PROJECT

This section presents the functional requirements of the
MeterGoat Project, as well as preliminary project decisions.

A. Hardware Architecture of Commercial Smart Meters

The hardware architecture of MeterGoat is based on
commercial smart meters that, in general, are composed of
the elements showed in Fig. 1: current and voltage sensors,
Analog-to-Digital Converters (ADC), Central Processing
Unit (CPU) for metrology calculations, Random-Access
Memory (RAM) for volatile data and firmware execution,
non-volatile storage, e.g. flash and Electrically-Erasable
Programmable Read-Only Memory (EEPROM), for
firmware and data storage, and communication peripherals
for maintenance and update procedures.

The majority of the microcontrollers contain integrated
memory in the System on Chip (SoC) itself. However, if
system functionalities require more memory than the default
amount, external memory chips can be used to increase the
overall capacity. Architectures that use microcontrollers
generally comply with low cost, low power, and compact
design requirements. On the other hand, systems that
demand high performance employ dedicated processors and
components, resulting in a more expensive device. Since
smart meters are produced in high volumes, the first,
cheaper, architecture is commonly adopted.

Anti-tampering mechanisms comprise a layer of defense
against a possible integrity violation of an equipment. In this
way, they must cope with any attempt, physical or electronic,
of adulteration, such as opening the device’s case, accessing
internal memory, and replacing components. These controls,
explained in detail in [5], are usually categorized into four
groups: resistance, evidence, detection, and response.

The Joint Test Action Group (JTAG) Debug, illustrated
in Fig. 1, provides a direct connection to most of the
components of a SoC. One can use it, through the JTAG
interface, to perform memory programming, boundary
scanning, and on-chip debugging. Although the security best
practice is to disable this interface, by physically damaging
the Printed Circuit Board (PCB) connection or by blowing
the JTAG fuse, several meters do not implement this
recommendation.

It is important to note that the architectural diversity,
presented in this section, determines the types of hardware

vulnerabilities that one may encounter on these devices,
since it provides different levels of access to metrological
information and code.

B. Hardware Architecture of MeterGoat

The MeterGoat architecture, depicted in Fig. 2, derives
from the models discussed in the previous section. We made
some simplifications in order to reduce the project final cost
and to obtain a modularization of the training platform, while
still implementing the main hardware and software security
weaknesses commonly found on real devices [8]. We briefly
explain the main components of our project below:

1) Microcontroller MSP430F5438 and Development Kit
Based on the architecture illustrated in Fig. 2, we selected

the Texas Instruments (TI) MSP-EXP430F5438 [9]
development kit and the corresponding microcontroller,
MSP430F5438 [10], for building MeterGoat. The later has,
as main features, a 256KB internal flash memory, 16KB
internal Static RAM (SRAM) memory, two Serial Peripheral
Interface (SPI) interfaces, and 87 Input/Ouput (I/O) pins.

The microcontroller above contains a hardware multiplier
that performs signed and unsigned operations with 8, 16, 24,
and 32-bit operands. This feature allows the optimization of
some metrologic operations, and, for this reason together
with the aforementioned characteristics, several smart meters
are built over this specific model or similar members from
the same family of microcontrollers.

The development kit also comes with a 138x110
grayscale Liquid Crystal Display (LCD) for measurement
display, a JTAG interface, a 5-position joystick, and two
push buttons for user interface control. Finally, it can be
powered in three different ways: Universal Serial Bus
(USB), Flash Emulation Tool (FET), and two AA batteries.

2) External Components
Since the objective of the MeterGoat project is not to

build a real smart meter, we are not using a high-priced
energy metering Integrated Circuit (IC) such as the
ADE7758 [11]. Instead, we are employing a programmable
pulse generator, in order to emulate the signal from the
voltage/current sensor, responsible for measuring energy
consumption, and sample it using a digital I/O pin. One of
the ways to generate such signal consists in assembling

Figure 1 - Smart Meter High Level Architecture

Figure 2 - MeterGoat High Level Architecture

181Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

discrete components and a LM555 timer [12] in a breadboard
or using an Arduino Uno microcontroller board [13].

We also use a breadboard to assemble and power the
external Flash and RAM memories. These components
communicate with the microcontroller using an SPI
interface.

3) Anti-tampering Mechanisms
We are implementing detection and response anti-

tampering mechanisms in MeterGoat. The former includes:
(i) anti-tampering switches, which one normally places on
the meter's case so they trigger when someone attempts to
open the chassis; (ii) temperature gradient measurement,
against attacks that freeze components in order to take
advantage of data remanence. This countermeasure will use
the internal temperature sensor included in MSP430F5438.

With regard to response mechanisms against tampering,
MeterGoat will implement passive zeroization, which
involves disconnecting power from volatile memory so that
content is lost, and active zeroization, which securely erase
sensitive data used by the system.

C. Exposed Interfaces

In order to perform an attack, it is fundamental to initially
identify the target's surface attack. In the case of smart
meters, one must consider external configuration ports,
network interfaces, buses, and electronic component pins, as
explained in the present section.

1) JTAG Interface
JTAG is a standard interface composed at minimum by

four pins, Test Mode Select (TMS), Test Data In (TDI), Test
Data Out (TDO), and Test Clock (TCK), that is commonly
used for interfacing with circuit boards, microprocessors, and
several other peripherals for debugging purposes. In
microcontrollers, the JTAG is also used to upload and store
the firmware in internal flash memory. As showed in Fig. 2,
by having access to an enabled JTAG interface, it is possible
to perform attacks such as memory dumps and firmware
extraction. For these reasons, the JTAG interface must
always be disabled in final products, otherwise an attacker
can dump and modify the component's contents.

2) External Flash/EEPROM Memory
These are discrete chips with the exclusive function of

non-volatile storage, usually providing no protection
whatsoever. When a smart meter architecture includes this
type of element in the project, it is possible to dump or
modify the entire memory content, that may contain
measurement data, configuration parameters, or the
firmware. This task can be performed with the chip soldered
on the PCB, if it uses the Inter-Integrated Circuit (I2C)
communication protocol (accepting multi-master on the bus).
Otherwise, the chip needs to be desoldered for direct pin
manipulation using the tools presented in Section IV.

3) External RAM
Consists in discrete chips with the exclusive function of

volatile storage, usually providing no native protection
against an attacker with physical access to them. When a
smart meter architecture includes this kind of element in the
project, it is possible to dump the memory addresses

accessed by the microcontroller through bus snooping. This
task can be done using the tools presented in Section IV.

4) Optical Interface
The optical port is often used by a smart meter for

configuration purposes. It is based on short range
communication, making vendors wrongly assume it is less
prone to sniffing and adulteration. A weak access control
system may allow an attacker to send commands to the meter
by this type of interface.

5) Network Interface
A smart meter can use a wired or a wireless network to

communicate with the central system or aggregators. If a
secure communication protocol is not employed, it is
possible to capture and alter information in transit as well as
inject packets.

6) Communication Interface
A smart meter can have several communication

interfaces such as USB, I2C, Universal Asynchronous
Receiver/Transmitter (UART), Controller Area Network
(CAN), SPI, etc., which do not provide any tamper
protection. Therefore, an attacker can use them to analyze
information being transmitted, dump accessible data, and
disturb the communication by injecting invalid packets or
random data.

D. Vulnerabilities on MeterGoat

In the first version of MeterGoat, we are implementing
all the vulnerabilities explained below:

• Unprotected interfaces – the exposed interfaces
described in Section III.C allows an attacker to dump
information from the meter as well as to send
commands to be performed by the device.

• Broken cryptographic algorithms – this class of
vulnerability includes the use of home-made
algorithms and classical cryptosystems, such as the
shift cipher and Vigenère's, for which cryptanalysis
is possible.

• Incorrect use of cryptograph – includes Electronic
CodeBook (ECB) block cipher mode of operation
for large messages, binary additive stream cipher
with key reuse, and use of a cryptographic
mechanism for a purpose different than the
originally intended [14].

• Insecure cryptographic key management –
consists in using predictable keys or known weak
keys such as those for DES [14], embedding
cryptographic keys in code, storing cryptographic
keys in cleartext files, the lack of use of a secure
static memory for key protection, and the absence of
a functionality for key substitution.

• Unprotected data at rest – consists in the storage of
sensitive information in cleartext form and the use of
an encoding mechanism such as Base64 instead of a
cipher.

• Insecure communication – encompasses cleartext
communication between client software and the
meter or through a protocol with known
vulnerabilities such as the one described in [15].

182Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

• Broken user authentication mechanism – includes
weak or absent password policy, flawed
authentication protocol, and insecure storage of
passwords.

• Authorization flaws – this type of problem arises
when the concept of a reference monitor is not
properly implemented, resulting, for instance, in
privilege escalation attacks and direct accesses to
resources.

• Lack of integrity mechanism – the absence of such
a security mechanism allows an attacker to replace
the firmware, altering or inserting functionalities,
and to tamper with metrology data.

• Firmware implementation flaws – involve
classical attacks such as buffer overflow, format
string attack, and integer overflow.

• Flawed anti-tampering mechanism – although
MeterGoat will not have a case at all, the idea of this
exercise is to show how a bad casing could be
explored to bypass anti-tampering controls.

IV. TRAINING TOOLKIT

The training toolkit comprises a selection of tools that
can be used in the evaluation of smart meter security. One
should not assume, however, ours is the only possible list,
since there are similar tools available for choosing. If one
decides to build its own set, one should select those that
cover as many features as possible.

We divided our list in three groups: interface identifier,
interface manipulator, and software. The former aids in
identifying pins and test points, verifying pin voltage, and
monitoring signal transitions. In this set, we recommend the
tools below:

• Multimeter - is an electronic instrument that
combines several measurement functions in a single
unit. Since it can measure a wide range of voltages
without being damaged, it is a robust equipment for
measuring pins and test points for the first time. It is
also used to find the connections between
components by using the continuity test feature.
When two points are electrically connected, a tone is
emitted.

• Oscilloscope - is used to observe the change of an
electrical signal over time. For reverse engineer, the
purpose is to verify signal transitions to check the
communication between the microcontroller and
other components for later bus sniffing.

• JTAGgulator - is an open source hardware tool that
assists in identifying JTAG pin (TMS, TDI, TDO,
TCK, TRST) connections from test points, vias, or
component pads on a target device [16].

The interface manipulator tools aid in obtaining
information stored in memory or transmitted through
interfaces and buses. In this category, we suggest the
following tools:

• Bus Pirate - performs serial bus manipulation.
Supports many serial protocols at 0-5.5 volts such as
1-Wire, I2C, SPI, and asynchronous serial [17].

• Logic Analyzer - performs bus sniffing by
recording, viewing, and measuring digital signals in
transit between components. It can understand
different protocols including serial, I2C, SPI, and
CAN.

• GoodFET - is an open source JTAG adapter, used
for TI MSP430 as a debugger and flash emulation
tool [18].

• MSP-FET430UIF - is the official equipment
provided by TI to MSP430 for JTAG debugging and
flash emulation tool [19].

Finally, in order to perform firmware analysis, one needs
a disassembler and a debugger, which support the platforms
employed by the smart meter. One of the best tools in this
category is the powerful IDA, but it has the disadvantage of
being relatively expensive. Unfortunately, no open source
counterpart works with the very specific processors used by
meters. Moreover, there is no disassembler at all for some
architectures, and, then, one would have to be built.

V. TRAINING SCENARIOS

The training scenarios we propose in this section are
based on references [4] and [5] and on security weaknesses
found in tests we performed against commercial smart
meters. Since security is a dynamic area, with new
vulnerabilities being discovered every day, the list of
lessons may be updated in future versions.

In order to make the most of the training, the student
must have basic knowledge of the following topics:
electrical circuits, communication protocols (e.g., I2C, SPI,
and serial), embedded systems, assembly and Python
languages, software reverse engineering, and cryptography.

Each lesson of the course covers the analysis of a
different part of a smart meter, resulting in four groups [4]:
(1) electronic components; (2) field technician interface; (3)
binary firmware; and (4) cryptographic mechanisms.

In the first part of the training, the students learn how to
identify the main components and to read the corresponding
datasheets, in order to map pins and understand their
functionalities. After that, we proceed to the reverse
engineer of the PCB, by identifying, with the help of a
multimeter and an oscilloscope, connections among
components, operating voltages, and signal transitions.
Techniques to identify and bypass a simple tamper detection
mechanism are taught using a multimeter. The idea is to
show how to detect a logic ‘1’ pin and to employ an extra
wire, with the purpose of keeping the signal high for the
port responsible for tamper monitoring.

The lecture ends with dumping of data from the non-
volatile memories and snooping of the bus connecting the
memory modules to the microcontroller, respectively, by
using Bus Pirate and Logic Analyzer. MeterGoat will store
and transmit information protected by a multitude of
mechanisms, so the students can practice string analysis,
entropy analysis, data decoding, and systematic key search.

For the second part of the course, MeterGoat provides a
serial port as a field technician interface. The instructor will

183Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

teach how it can be used to interact with the equipment,
using standard protocols, and how to implement these with
the Python language. This will be the base for teaching
protocol fuzzing and vulnerability exploitation.

The third group of lessons comprises binary firmware
extraction and analysis, through the manipulation of the
JTAG interface. The students will use GoodFET or MSP-
FET430UIF, in order to dump the simple firmware stored in
microcontroller’s internal memory of MeterGoat. Since
reverse engineering requires very advanced knowledge, we
will cover only the disassembly and analysis of a short piece
of authentication code.

Although advanced cryptanalysis is beyond the scope of a
course about smart meter security, one needs to know how
to identify basic mistakes in the implementation of
cryptographic mechanisms. For this reason, the lessons of
the fourth group are related to the most common
vulnerabilities in this area, mainly those resulting from
improper key management.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the work in progress project called
MeterGoat, whose main objective is to provide a low cost
platform for smart meter security training. The platform will
provide most of the functionalities and interfaces of real
smart meters, all implemented in a vulnerable way. It is
important to mention that we do not intend to build a real
meter. Thus, some of the functions will just be emulated, but
in a way that allows the student to learn about a given
security vulnerability we want to stress. The framework we
defined is very flexible and one can easily extend it to
include new types of vulnerabilities or variations of old
weaknesses.

Currently, we have already specified the full platform,
selected the list of components, and started the hardware
assembly and coding of the chosen firmware vulnerabilities.
We expect to spend six more months in this task, and, once
finished, we intend to provide the schematics and firmware
as an open source project. In this way, engineers and security
analysts will be able to build and use MeterGoat, totally free
of charge, for personal use, provided the user license be
respected.

The estimated cost for building the platform lies under
US$200, which is reasonable for this type of equipment. On
the other hand, the training toolkit is more expensive, and
one can expect to spend about US$1700, without a
disassembler/debugger.

ACKNOWLEDGMENTS

This research project has been carried out in partnership
between CPqD (independent institution focused on R&D and
innovation) and ELEKTRO (the eighth largest power supply
organization in Brazil) and relies on R&D financial resources
provided and managed by ANEEL.

We would like to give special thanks to Rafael de
Simone Cividanes, CPqD’s consultant, for coordinating the
project and reviewing this paper.

REFERENCES

[1] F. Skopik, Z. Ma, T. Bleier, and H. Gruneis, “A survey on
threats and vulnerabilities in smart metering infrastructures”,
International Journal of Smart Grid and Clean Energy, vol. 1,
no. 1, Sep. 2012, pp. 22-28.

[2] M. Carpenter, T. Goodspeed, B. Singletary, J. Searle, E.
Skoudis, and J. Wright, “Advanced metering infrastructure
attack methodology”, Mar. 2011, InGuardians, Inc. 2.0.

[3] WebGoat. Available from: https://www.owasp.org/index.php/
Webgoat_WebGoat_Project. Accessed: Feb. 26th, 2014.

[4] J. Searle, G. Rasche, A. Wright, and S. Dinnage, “AMI
Penetration Test Plan”. Available from:
http://www.smartgrid.epri.com/doc/AMI-Penetration-Test
Plan-1-0-RC3.pdf. Accessed: Apr. 11th, 2014.

[5] J. Grand, “Practical Secure Hardware Design for Embedded
Systems”, Proc. 2004 Embedded Systems Conference (ESC
04), Mar. 2004, pp. 1-25.

[6] iGoat. Available from: https://www.owasp.org/index.php/
OWASP_iGoat_Project. Accessed: Apr. 11th, 2014.

[7] GoatDroid. Available from: https://github.com/jackMannino/
OWASP-GoatDroid-Project/wiki. Accessed: Apr. 11th, 2014.

[8] InGuardians, Inc., “Advanced metering infrastructure attack
methodology”, Mar. 2011.

[9] MSP430F5438 Experimenter board. Available from:
http://www.ti.com/tool/msp-exp430f5438. Accessed: Feb.
26th, 2014.

[10] MSP430F5438 Features. Available from:
http://in.embeddeddeveloper.com/processors/3252/Texas-
Instruments/MSP430F5438.htm. Accessed: Feb. 26th, 2014.

[11] Analog Devices, “Poly phase multifunction energy metering
IC with per phase information”, ADE7758 datasheet, Oct.
2011.

[12] Texas Instruments, “LM555 Timer”, Mar.2013.

[13] Arduino Uno. Available from: http://arduino.cc/en/Main/
arduinoBoardUno. Accessed: Feb. 26th, 2014.

[14] A. Menezes, P. C. van Oorschot, and S. A. Vanstone,
“Handbook of applied cryptography”. CRC Press. Aug. 2001.

[15] N. AlFardam, D. Bernstein, K. Paterson, and J. Schuldt, “On
the security of RC4 in TLS”, Proc. of 22nd USENIX Security
Symposium. Aug. 2013, pp. 305-320.

[16] JTAGulator - open source hardware for OCD identification.
Available from: http://www.grandideastudio.com/portfolio/
jtagulator/. Accessed: Feb. 26th, 2014.

[17] Bus Pirate - open source hacker multi-tool. Available from:
http://dangerousprototypes.com/bus-pirate-manual/.
Accessed: Feb. 26th, 2014.

[18] GoodFET - JTAG debugger for TI MSP430. Available from:
http://goodfet.sourceforge.net/. Accessed: Feb. 26th, 2014.

[19] MSP-FET430UIF - Official JTAG debugger for TI MSP430.
Available from: http://www.ti.com/tool/msp-fet430uif.
Accessed: Feb. 26th, 2014.

184Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

