
Active Intrusion Management for Web Server Software: Case WordPress

Patrik Paarnio

Department of Business Management and Analytics
Arcada University of Applied Sciences

Helsinki, Finland
e-mail: patrik.paarnio@gmail.com

Magnus Westerlund
Department of Business Management and Analytics

Arcada University of Applied Sciences
Helsinki, Finland

e-mail: magnus.westerlund@arcada.fi

Sam Stenvall
Department of Business Management and Analytics

Arcada University of Applied Sciences
Helsinki, Finland

e-mail: sam.stenvall@nordsoftware.com

Göran Pulkkis
Department of Business Management and Analytics

Arcada University of Applied Sciences
Helsinki, Finland

e-mail: goran.pulkkis@arcada.fi

Abstract—Methods for active management of intrusion
attacks against WordPress web sites are proposed for
improved real-time web security. Intrusion management is
defined to be active when both intrusion responses and
forensic investigations are proactive and/or automatically
triggered by intrusion attacks. Booby traps as active defense
against intrusion attacks using return-oriented
programming and other related research is briefly surveyed.
Active intrusion management techniques such as booby
trapped patches to publicly known vulnerabilities in
WordPress plug-ins and redirection scripts for WordPress
plug-ins are proposed. Experimentation results with
proposed booby trapped patches and proposed redirection
scripts are presented and evaluated.

Keywords – active intrusion prevention; active intrusion
detection; web site vulnerability; WordPress vulnerability;
booby trap.

I. INTRODUCTION

A fully secure network must be able to resist any type of
intrusion attack and all vulnerabilities in the network must
be eliminated, while it is sufficient for an attacker to find
only one network weakness. Current defense methods,
such as firewalls, antivirus software, and intrusion
detection systems (IDS) cannot prevent all types of
intrusion attacks. Most current defense methods react
rather passively on intrusion attacks with intrusion alert
messages to a human network administrator or to a
computer doing network administration. Thus, a current
IDS can often only detect occurred intrusion and related
network damage. Forensic information of an intrusion
attack can also usually only be traced afterwards from log
files and from other system state changes caused by the
attack.

Securing or hardening Content Management Systems
(CMS) has become a struggle for web site administrators.
The exploitation of CMS systems such as Joomla and
WordPress is extraordinarily easy due to rapid
development of plug-ins for the systems, bad software
engineering practices (e.g., lack of quality assurance for
plug-ins), and the ease of use (in-depth technical skills are

not required for installing and using the software). This
allows a potential attacker to scan for public installations
and their corresponding vulnerabilities with minimal risk
to be detected as a threat. We consider current passive
intrusion management methods often too limited in ability
to secure installations.

Intrusion management is defined to be active when
both intrusion responses and forensic investigations are
proactive and/or automatically triggered by intrusion
attacks. This paper presents active intrusion management
of web server software based on WordPress. We present
using an exploratory case study methodology for
developing an understanding of the underlying system
deficiencies. This method allows us to gain deeper insights
into chains of cause and effect, in the specific software, to
answer the research question of how to improve security in
WordPress through active intrusion management.

The paper is organized as following; we start with
related research by introducing return-oriented
programming as a method for both performing attacks and
as a defense mechanism for implementing “booby traps”.
The third section then develops an analogy for open source
web software based on a case study for WordPress. In the
fourth section we report preliminary research results,
before concluding in the final section.

II. RELATED RESEARCH

Prevention, detection, and responding to intrusion attacks
has for many years been an important research topic.
Intrusion responses are created through notification,
manually, and automatically. Four desirable features of an
ideal intrusion response system have been proposed:
automated responses, proactivity, adaptability, and cost
efficiency [1].

Active intrusion defense is based on automated
intrusion responses. In [2], it is proposed an intrusion
management system based on intelligent decision making
agents invoking response executables and scripts for
different intrusion attack types. Active defense based on
distributing new access control policies to firewall nodes
in a network once intrusion is detected is presented in [3].

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

Active defense called honey-patching against attempt
to exploit network software vulnerabilities is proposed in
[4]. A honey-patch redirects attacks to an unpatched
decoy, which collects relevant attack information and also
allows attacks to succeed in order to deceive attackers.

A Linux distribution based on Ubuntu LTS, the Active
Harbinger Distribution, includes many preinstalled and
configured tools for active defense against malicious
activity such as network scanning and connecting to
restricted services. The functions of these tools “range
from interfering with the attackers’ reconnaissance to
compromising the attackers’ systems. [5]

In a guide to intrusion detection and prevention
systems, automated intrusion attack responses are
characterized as a technique, which “can respond to a
detected threat by attempting to prevent it from
succeeding”. Such intrusion attack responses can

 stop the intrusion attack by terminating the
network connection or user session being used by
the attack or by blocking all access to the target
of the attack,

 change the security environment of the target of
the intrusion attack, for example by reconfiguring
a firewall or a router or by applying a patch to a
vulnerability exploited by the attack, or

 change the intrusion attack process from
malicious to benign, for example by removing
malicious file attachment from e-mail messages
before they reach their recipients [6].

Active defense called “booby trapping” against code-
reuse intrusion attacks based on return-oriented
programming (ROP) [7] is presented in [8].

A. Return-Oriented Programming (ROP)

In a ROP attack the attacker takes over program flow
control in a network connected computer without
injection of malicious program code. ROP gadgets i.e.,
short instruction sequences terminating with a RETN
assembly instruction (return from procedure) are linked
together from the control stack. RETN fetches the return
address from the control stack, which is manipulated in a
ROP attack.

A ROP attack requires some buffer overflow
vulnerability. The attack starts with injection and
execution of program code, which overwrites a return
address of a RETN instruction on the control stack. The
resulting execution of RETN is a jump to another gadget
selected by the attacker. The ROP attack is implemented
by execution of a gadget chain. [7][9]

A ROP attack can succeed only if two preconditions
are fulfilled: the flow control of a program must be
acquired and in the program there must be gadgets, which
can be linked together in an attack. A ROP attack is
prevented when at least one precondition is absent.
Elimination of all buffer overflow possibilities in a
program prevents a ROP attack to start. Replacement of all
RETN instructions in a program with other subprogram
return instructions prevents a ROP attack to proceed. An
indirect defense against ROP attacks is Address Space
Layout Randomization (ALSR), in which instruction
addresses in the program are changed. Then, a ROP attack
cannot find needed gadgets at expected addresses, but can
still search needed gadgets with brute force methods [10].

To detect an ongoing ROP attack the RETN execution
frequency can be monitored to issue an alert if a preset
threshold value is exceeded [11] [12].

B. Booby Trapping

Booby trapping software is active defense based on ROP
functionality against intrusion attacks using ROP. A
booby trap is program code inserted into a computer
program as binary gadget changes at compile time or at
load time of binaries in such a way that the functionality
of the program remains unchanged. A booby trap can thus
be executed only by ROP attacks against the changed
program. A booby trap is program code and cannot
therefore be deactivated by an intrusion attack. The
program code of a booby trap can send an alert to a
network administrator, register the IP address of the
intrusion attack source, redirect the attack to a honeypot,
even launch a counterattack, etc. [8]

Insertion of booby traps at compile time requires
access to the original source code of a program. Insertion
of booby traps at load time is possible using suitable
machine code jump instructions without access to the
original source code. Booby traps can be inserted at binary
addresses of exploitable gadgets or randomly to possibly
trap intrusion attacks, which scan programs to find
exploitable gadgets. Figure 1 illustrates binary code
changes with inserted booby traps in a program [8].

Figure 1. Binary changes with insertion of two booby traps in a

program with four exploitable gadgets.

III. ACTIVE INTRUSION MANAGEMENT FOR WEB

SERVERS – CASE WORDPRESS

The basic concept of ROP attacks does generally not apply
to web applications. While ROP attacks against the
Apache web server itself have been implemented and
evaluated [13], protection against such attacks will not
prevent attacks against web server code. Web server
application code is easily booby trapped by modifying the
source code, since the code is generally not pre-compiled.

A WordPress [14] installation on Apache or on some
other web server platform has several known
vulnerabilities, which have been patched. It can also be
considered highly likely that there are several still publicly
unknown zero-day vulnerabilities prone to intrusion
attacks. The reasons of the high vulnerability of WordPress
is the modular software architecture with a multitude of

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

possible, potentially vulnerable plug-ins and the open
source code, which anyone can examine to find exploitable
vulnerabilities. The large global WordPress user base is
also a stimulating feature for intrusion attacks against
WordPress installations.

Program vulnerability patches can be booby trapped to
trigger collection of forensic information about intrusion
attack attempts based on available exploits. Collected
forensic information can be used to create proactive
responses to possible future intrusion attacks, for example
by blacklisting source IP addresses related to detected use
of exploits. Attempts to exploit patched or even publicly
unknown vulnerabilities in non-existing (i.e., not installed)
plug-ins can be redirected to honeypots or to sandbox
environments where responses and/or forensic
investigations are automatically triggered. An Internet
connected WordPress installation with patched vulnerable
plug-ins on an Apache web server has been used in booby
trapping experiments described in this chapter

A. Booby Trapped WordPress Vulnerabilities

Vulnerabilities are patched before being booby trapped. A
potential intruder shouldn’t know that vulnerabilities have
been patched [4]. The vulnerable version of a module is
used with manual source code changes. Source code
comparison of the vulnerable version with the patched
version shows how the source code should be changed. A
booby trap to register forensic information in a text file
[15], for example logging IP addresses of intrusion attack
attempts, is included in the beginning of the changed
source code. The PHP code of such a booby trap is seen in
Figure 2 and is denoted in later examples by booby_trap().

1) WordPress Wp Symposium 14.11:
The vulnerable file UploadHandler.php (see Figure 3) in
the plug-in WordPress Wp Symposium 14.11 accepts for
upload files of any type, which means that a malicious
shell code file can be uploaded.

In [16], an exploit script is published, which creates a
backdoor to protected files on a WordPress site with an
uploaded shell code.

Figure 2. Booby trap code.

Figure 3. The vulnerable UploadHandler.php.

Figure 4. The patched UploadHandler.php with an inserted booby trap.

The exploit is a Python script, which is tested before the
plug-in is booby trapped. The exploit script gives the
name and path of the backdoor if the upload succeeds.
Using the backdoor, the file passwd can be retrieved with
the command ?cmd=cat+/etc/passwd.

Shell code upload is prevented by applying the patch
shown in Figure 4. Attempts to upload files of
unpermitted types create error messages after patching. A
booby trap in the beginning of the patch code logs the IP
addresses of attempts to exploit the patched vulnerability.

2) WordPress Shopping Cart 3.0.4:
The file banneruploaderscript.php in the plug-in
WordPress Shopping cart 3.0.4 should check that only a
logged in administrator is allowed to upload files to a
WordPress site. However, any logged in user is allowed to
upload files since in the condition of the if-statement is an
or-clause instead of an and-clause (see Figure 5).

The published exploit script in [17] is a web form,
which uses banneruploaderscript.php to upload files into
the folder ./wp-content/plugins/wp-
easycart/products/banners/ of a WordPress site. Upload of
files of any type is allowed since
banneruploaderscript.php trusts administrators and
therefore an attacker is allowed to upload malicious files.

The vulnerability is patched by changing the or-clause
to an and-clause in the condition of the if-statement in
banneruploaderscript.php. After patching, a booby trap,
which logs the IP addresses of attempts to exploit the
patched vulnerability, is inserted (see Figure 6).

Figure 5. The vulnerable banneruploadscript.php.

Figure 6. The patched banneruploadscript.php with an inserted booby

trap.

$userresult = mysql_query($usersqlquery);
$users = mysql_fetch_assoc($userresult);
booby_trap();
if ($users && is_user_logged_in()) {
 $filename = $_FILES[“Filedata”][“name”];
 $filetmpname = $_FILES[“Filedata”][“tmp_name”];
 $fileType = $_FILES[“Filedata”][“type”];
 $fileSizeMB = ($_FILES[“Filedata”][“size”] / 1024 / 1000);}

$userresult = mysql_query($usersqlquery);
$users = mysql_fetch_assoc($userresult);
if ($users || is_user_logged_in()) {
 $filename = $_FILES[“Filedata”][“name”];
 $filetmpname = $_FILES[“Filedata”][“tmp_name”];
 $fileType = $_FILES[“Filedata”][“type”];
 $fileSizeMB = ($_FILES[“Filedata”][“size”] / 1024 / 1000);}

class UploadHandler {
 …
 booby_trap ();
 'inline_file_types'=>
'/ \.(mp4|zip|doc|docx|ppt|pptx|xls|xlsx|txt|pdf|gif|jpe?g|png)$/i',
 ‘accept_file_types’=>
'/ \.(mp4|zip|doc|docx|ppt|pptx|xls|xlsx|txt|pdf|gif|jpe?g|png)$/i',
 …
}

class UploadHandler {
 …

'inline_file_types'=>
'/ \.(mp4|zip|doc|docx|ppt|pptx|xls|xlsx|txt|pdf|gif|jpe?g|png)$/i',

 ‘accept_file_types’=> '/.+$i’,
 …
}

$ipadress = $_SERVER['REMOTE_ADDR'];
$webpage = $_SERVER['SCRIPT_NAME'];
$browser = $_SERVER['HTTP_USER_AGENT'];
$file = 'attack.log';
$fp = fopen($file, 'a');
$date = date('d/F/Y h:i:s');
fwrite($fp, $ipadress.' - ['.$date.'] '.$webpage.' '.$browser."\r\n");

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

Figure 7. The vulnerable function mfbfw_admin_options.

Figure 8. An injected piece of JavaScript.

3) Fancybox for WordPress:
The plug-in Fancybox for WordPress 3.0.2 has a cross-
site scripting (XSS) vulnerability in the function
mfbfw_admin_options (see Figure 7) in the file
fancybox.php. This function doesn’t validate input data
and therefore permits script injection. An attacker can
send the script with a web form. The script is injected on
the body of a web site and is always triggered when this
web page is browsed.

This vulnerability permits arbitrary JavaScript to be
injected and executed on every page where Fancybox is
used. The vulnerability stems from the fact that the
function mfbfw_admin_options doesn’t perform the
necessary checks on the POST data, which allows a
malicious user to inject arbitrary code into the settings for
the Fancybox plug-in. The injected script is visible in the
source code of the WordPress site (see Figure 8).

Figure 9. The patched function mfbfw_admin_options with an inserted

booby trap.

Figure 10. The vulnerable function wpdm_ajax_call_exec.

Figure 11. The patched function wpdm_ajax_call_exec with an inserted

booby trap.

In the patched source code the input data is validated
by checking the source of script injection request (see
Figure 9). A booby trap to log attempts to exploit the
patched vulnerability is inserted before the if statement.

Figure 12. Rewrite rules for redirecting requests for missing resources.

4) WordPress Download Manager 2.7.4;
In December 2014 a serious vulnerability in WordPress
Download Manager was reported [18]. This vulnerability,
for which an exploit script is published in [19] permits
remote execution of program code. The script exploits the
vulnerable function wpdm_cajax_call_exec (see Figure
10) in the file wpdm-core.php. The function
wpdm_cajax_call_exec receives functions sent by a user
from the graphical user interface and executes these
functions without verification about their existence in the
program. This means that an attacker can inject
WordPress functions for execution in the program. The
exploit script in [19] injects the WordPress function
wp_Insert_user, which creates web site users for inputted
user names, passwords, and user roles. An attacker can
therefore create an administrator for a vulnerable
WordPress site.

The functionality of the Python exploit script for
WordPress DownLoad Manager 2.7.4 is tested on a
vulnerable WordPress site. The WordPress site address is
a parameter of the script. After successful script
execution, the user information of the created
administrator, which has been registered in the database of
the WordPress site, is shown.

The patched source code shown in Figure 11, now
permits execution of a function only if it exists in the
program. A booby trap to log attempts to exploit the
patched vulnerability is inserted in the patched source
code. An attempt to exploit the patched vulnerability also
returns an error message.

B. Redirecting Bad Requests to a Booby Trap

Manually booby trapping all plug-ins used on a typical
WordPress installation requires much manual labor. There
are simply too much possible vulnerabilities to patch, and
it also makes the update process more complicated as the
booby traps have to be reapplied after every plug-in
update. Since booby trapping plug-ins using this approach
requires the attack vector to be known (in order to insert
the booby trap at the right location) it does not offer any
protection against zero-day attacks.

jQuery(“a.fancybox”).fancybox({
…
‘padding’: </script><script>alert(Owned by someone) </script>,
…
});

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule .* wp-boobytrap.php

function wpdm_ajax_call_exec(){
booby_trap();
 if (isset($_POST['action']) && $_POST['action'] ==
 'wpdm_ajax_call') {
 if ($_POST['execute']=='wpdm_getlink')
 wpdm_getlink();
 else
 echo "function not defined!";
 die(); }}

function wpdm_ajax_call_exec(){
 if (isset($_POST[‘action’]) && $_POST[‘action’] ==
 ‘wpdm_ajax_call’){
 if (function_exists($_POST[‘execute’]))
 call_user_func($_POST[‘execute’], $_POST);
 else
 echo “function not defined!”;
 die();}}

function mfbfw_admin_options(){
 $settings = get_option(’mfbfw’);
 booby_trap();
 if (isset($_GET['page']) && $_GET['page'] ==
 'fancybox-for-wordpress') {
 if (isset($_REQUEST['action']) && 'reset' ==
 $_REQUEST['action'] &&
 check_admin_referer('mfbfw-options-options’)){
 $defaults_array = mfbfw_defaults();
 update_option('mfbfw', $defaults_array);
 wp_safe_redirect(add_query_arg('reset', 'true'));
 die; }}}

function mfbfw_admin_options(){
 $settings = get_option(’mfbfw’);
 if (isset($_GET['page']) && $_GET['page'] ==
 'fancybox-for-wordpress') {
 if (isset($_REQUEST['action']) && 'reset' ==
 $_REQUEST['action']) {
 $settings = stripslashes_deep($_POST[‘mfbfw’]);
 $settings = array_map(‘convert_chars’, $settings);
 update_option('mfbfw', $settings);
 wp_safe_redirect(add_query_arg('reset', 'true'));
 die; }}}

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

We have studied an alternative approach that is based
on two novel ideas. The first is to redirect requests for
missing resources (e.g., files belonging to plug-ins that are
not installed) to a special script which handles the
requests. This script acts as the booby trap and can be
made to do different things depending on the objective.
During our testing we have configured it to log the
requested URLs together with certain request parameters
such as the query string and eventual POST data. If the
objective would be to gather as much forensic data about
potential intrusion attempts as possible the script could be
programmed to emulate known exploits in order to make
the attacker believe he actually succeeded. This type of
emulation is often necessary since many exploits first
attempt to detect whether the actual exploit would succeed
or not; the payload itself may not be delivered if the
detection fails.

Redirecting requests for missing files to an arbitrary
request handler is not a new idea. It is used by many web
frameworks, for example the Yii framework [20] and Fat-
Free Framework [21], to force requests to go through the
main index file of the web application itself. The same
method is used here (see Figure 12), but for a different
purpose.

By redirecting bad requests many types of attacks
against a WordPress installation can be avoided. Even
though the attacks caught by the redirection wouldn’t
have succeeded anyway (since the requested resource
would not have been found) we have the opportunity to
prevent further attacks (some of which may actually
succeed) since we now can classify the IP address that
made the request as malicious. This defense mechanism
can thus be made a proactive part of the server’s security
system if it is used to automatically reconfigure the
server’s firewall to block further connection attempts from
the implicated IP addresses.

Figure 13. Rewrite and substitution rules for faked query strings.

Since this method of redirection is triggered only by
requests for missing resources it obviously does nothing
to prevent attacks against plug-ins that are installed and in
use by the web site. Such attacks can potentially be
mitigated using manual booby trapping, but as mentioned
earlier this is very time consuming and can be error prone
depending on where the booby trap has to be inserted.

We have explored the possibility of renaming installed
plug-ins so that requests using a plug-in’s standard URL
in a potential exploit would end up being redirected to the
booby trap. For this approach to be feasible, no manual
modifications to the plug-ins or WordPress itself can be
done, since that would make their respective update
processes very cumbersome; the same modifications
would have to be re-applied every time a plug-in is
updated. Our research has shown that this task can be
accomplished, at least partially, without editing any
existing source code, using something we call faked
redirection.

We have identified three ways in which an exploit
may end up running code belonging to a WordPress plug-
in:

 Requests directly to a file belonging to the plug-in
 Using hooks defined by the plug-in. The request

goes to index.php and is internally routed to a
function in the plug-in

 Using POST requests to index.php with execution
paths similar to those of hooks.

The idea is to rewrite all URLs that can lead to plug-in
code execution by non-standard names. Requests for the
rewritten URLs would then be internally redirected to the
original locations, while requests that have not been
rewritten would be redirected to the booby trap.

This way, normal site usage is unaffected since all
requests go through the modified URLs, but an attacker
attempting to leverage an exploit against a plug-in would
fail and end up in our booby trap.

The concept is easier to grasp using an example. Let’s
take the popular WordPress Download Manager plug-in
as an example. Normally, the plug-in resides in
wp-content/plugins/download-manager, and one of the
hooks it uses is called wpmdl. We now substitute all
occurences of wp-content/plugins/download-manager
with
wp-content/plugins/faked-download-manager and all
occurences of wpdml with fake-wpdmdl.

Since we do not want to modify any files belonging to
WordPress itself or one of the plug-ins, we use a
combination of the mod_substitute and mod_rewrite
Apache modules. mod_substitute is used to modify the
URLs when the content is served to the browser, while
mod_rewrite handles the task of reversing the substitution
and eventually redirecting requests to the booby trap.
Figure 13 illustrates how faked redirection is used to
booby trap the wpdmdl hook that WordPress Download
Manager uses.

IV. EXPERIMENTAL RESULTS

Experiments with booby trapped patches to vulnerabilities
in WordPress modules and with redirection scripts are
presented in this chapter.

1) Results with Booby Trapped WordPress Plug-ins:
Intrusion attempts have produced data in log files. Some
booby trapped plug-ins utilize WordPress functionality,
which is reflected in the contents of log files.

The log from the booby trapped plug-in WordPress
Symposium 14.11:
80.220.110.12 - [16/March/2015 08:17:32] /wp-
content/plugins/wp-symposium/server/php/index.php
Mozilla/5.0 (Windows NT 6.1; WOW64)

mod_substitute
AddOutputFilterByType INFLATE;SUBSTITUTE;DEFLATE
text/html text/javascript
Substitute "s|\?wpdmdl|\?fake-wpdmdl|i"
mod_rewrite
RewriteEngine On
stop processing when a rewrite has taken place
and the target exists
RewriteCond %{ENV:STOP} =1
RewriteCond %{REQUEST_FILENAME} -f [OR]
RewriteCond %{REQUEST_FILENAME} –d
RewriteRule ^ - [L]
replace the query string
RewriteCond %{QUERY_STRING} ^(.*)fake-wpdmdl(.*)
RewriteRule (.*) $1?%1wpdmdl%2 [L,E=STOP:1]
direct requests containing wpdmdl will be
caught here
RewriteCond %{QUERY_STRING} wpdmdl
RewriteRule .* wp-boobytrap.php

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/36.0.1985.125 Safari/537.36

The log shows the path to the web page, to which the
intrusion attempt has tried to upload a shell code. The
exploit script fakes the information about the attacker’s
web browser with a predefined header. Booby trapping
the patch of this vulnerable plug-in is successful, since
forensic information about exploitation attempts is logged
but normal administrative activities are not logged.

The log from the booby trapped plug-in WordPress
Shopping Cart 3.0.4 :
80.220.110.12 - [01/April/2015 11:22:31] /wp-
content/plugins/wp-
easycart/inc/amfphp/administration/banneruploaderscript.php
Mozilla/5.0 (Windows NT 6.1; WOW64; rv:36.0)
Gecko/20100101 Firefox/36.0

The log shows the web page, which is used by the web
form for file upload. The information about the intruder’s
web browser is public, since the intrusion attempt is made
from the intruder’s computer without any intermediate
activity. The booby trap was not triggered by normal
administrative activity.

The log from the booby trapped plug-in Fancybox for
WordPress 3.0.2:
80.220.110.12 - [01/April/2015 10:37:07] /wp-admin/index.php
Mozilla/5.0 (Windows NT 6.1; WOW64; rv:36.0)
Gecko/20100101 Firefox/36.0
80.220.110.12 - [01/April/2015 10:49:33] /wp-
admin/plugins.php Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:36.0) Gecko/20100101 Firefox/36.0
80.220.110.12 - [01/April/2015 10:49:34] /wp-admin/admin-
ajax.php Mozilla/5.0 (Windows NT 6.1; WOW64; rv:36.0)
Gecko/20100101 Firefox/36.0
80.220.110.12 - [01/April/2015 10:50:14] /wp-admin/admin-
post.php Mozilla/5.0 (Windows NT 6.1; WOW64; rv:36.0)
Gecko/20100101 Firefox/36.0

Fancybox is an administrative tool. All administrative
activity is logged, not only the use of adminpost.php in an
exploit web form. Booby trapping the patched
vulnerability in Fancybox is therefore not recommended.

Part of the log from the plug-in WordPress Download
Manager 2.7.4:
80.220.110.12 - [31/March/2015 02:58:16] /index.php
Mozilla/5.0 (Windows NT 6.1; WOW64; rv:36.0)
Gecko/20100101 Firefox/36.0
1.171.73.177 - [31/March/2015 03:26:37] /index.php
128.61.240.66 - [31/March/2015 03:53:49] /index.php
netscan.gtisc.gatech.edu

Each access to index.php has been logged, which
includes all visits to the main web page of the WordPress
site. Booby trapping a patch on the main page of a web
site is not recommended.

2) Results with Redirection:
A honeypot WordPress installation was left running in an
attempt to log potential exploit attempts. Redirection of
request for missing resources was highly successful and
many malicious requests were logged, including many
aimed at exploiting software other than WordPress.
Here’s an excerpt showing attempts to detect vulnerable
versions of two WordPress plug-ins, which were not
installed on the server:
2015-04-03T11:45:10+00:00: Unhandled request for "//wp-
content/plugins/revslider/temp/update_extract/revslider/info.php
": $_GET = [], $_POST = [], $FILES = []

2015-04-03T11:45:10+00:00: Unhandled request for "//wp-
content/uploads/wpallimport/uploads/d0bc023bca54df2d0c54efe
7b9e29311/info.php": $_GET = [], $_POST = [], $FILES = []
2015-04-05T17:41:36+00:00: Unhandled request for "//wp-
content/plugins/revslider/temp/update_extract/revslider/info.php
": $_GET = [], $_POST = [], $FILES = []

Initial testing shows that the faked redirection
technique has the potential to catch malicious requests:
2015-05-20T08:36:10+00:00:
ExploitMocker\RequestHandler\Base\DefaultHandler -
Unhandled request for "/?wpdmdl=13": $_GET =
{"wpdmdl":"13"},
$_POST = [], $FILES = []
2015-05-20T08:36:19+00:00:
ExploitMocker\RequestHandler\Base\DefaultHandler -
Unhandled request for "/?wpdmdl=15": $_GET =
{"wpdmdl":"15"},
$_POST = [], $FILES = []

Without the faked redirection technique in place, the
above requests would have succeeded since they are
perfectly valid.

V. CONCLUSIONS

Booby trapping, originally proposed for active defense
in network hosts against intrusion attacks based on return-
oriented programming, has been shown to provide active
forensics and proactive intrusion defense for attempts to
exploit some patched vulnerabilities in WordPress web
sites. However, for some vulnerabilities, booby trapping
methodology must be further developed to distinguish
between intrusion attempts and normal administrative
activity.

If used as an active defense mechanism, redirecting
requests for missing resources has the potential to catch
attackers before they are able to attempt a successful
exploit, assuming that the attackers have to try many
exploits until they would find one that has the potential to
work.

The technique is easy to implement on existing
installations since it is not tied to any particular WordPress
plug-ins that are installed on the server. Faked redirection
can improve this even further since it can force attackers
into the booby trap even if they attempt to leverage
exploits that are currently unpatched. However, unlike
when merely redirecting missing resources, this technique
requires some manual configuration for each plug-in that
the operator wants to protect.

Security in WordPress could be improved by enforcing
and maintaining an internal registry for plug-ins storing
their access methods, e.g. file system location. This would
allow the web site administrator to randomly re-locate any
installed plug-in, in a similar fashion to our faked re-
direction method, without worrying that something may go
wrong with the installation. This technique would
essentially mitigate the effects of many zero-day
vulnerabilities for WordPress installations utilizing third-
party plug-ins, by allowing completely unique installation
environments.

The plug-in renaming technique could be easier to
implement, if plug-in authors would design their plug-ins
with the possibility of renaming them in mind. The plug-
ins we tested were quite unsuitable for this since their
source code contained references to hard-coded plug-in
URLs. The application to other similar CMS software

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

needs to be further investigated to draw general
conclusions. Still, based on our previous experience the
technique holds promise as a more general solution for
implementing active intrusion management into CMS
software.

REFERENCES
[1] N. Stakhanova, S. Basu, and J. Wong, “A Taxonomy of

Intrusion Response Systems,” Int. J. Information and
Computer Security, vol. 1, no. 1/2, 2007, pp. 169-184.

[2] C. Carver, J. M. Hill, J. R. Surdu, and U. W. Pooch, “A
Methodology for Using Intelligent Agents to provide
Automated Intrusion Response,” Proc. IEEE System, Man,
and Cybernetics Information Assurance and Security
Workshop, West Point, IEEE Press, 2000, pp. 110-116.

[3] S. Dai and Y. Du, “Design and Implementation of Dynamic
Web Security and Defense Mechanism based on NDIS
Intermediate Driver,” Proc. 2009 Asia-Pacific Conference
on Information Processing, IEEE Press, 2009, pp. 506-509.

[4] F. Araujo, K. Hamlen, S. Biedermann, and S.
Katzenbeisser, “From Patches to Honey-Patches:
Lightweight Attacker Misdirection, Deception, and
Disinformation,” Proc. 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS '14), ACM,
2014, pp. 942-953.

[5] ADHD provides tools for active defense,
http://sourceforge.net/projects/adhd/ [retrived: August,
2015]

[6] K. Scarfone and P. Mell, “Guide to Intrusion Detection and
Prevention Systems (IDPS),” Special Publication 800-94
Rev. 1 (Draft), NIST National Institute of Standards and
Technology, U.S. Department of Commerce, 2012.

[7] M. Prandini and M. Ramilli, “Return-Oriented
Programming,” IEEE Security & Privacy, vol. 10, no 6,
Nov.-Dec. 2012, pp. 84-87.

[8] S. Crane, P. Larsen, S. Brunthaler, and M. Franz, ”Booby
Trapping Software,” Proc. New Security Paradigms
Workshop (NSPW’13), ACM, 2013, pp. 95-106.

[9] R. Roemer, E. Buchanan, H. Shacham, and S. Savage,
“Return-Oriented Programming: Systems, Languages, and
Applications,” ACM Trans. Information and System
Security (TISSEC) – Special Issue on Computer and
Communications Security, vol. 15, 2011, pp. 2-34.

[10] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E.
Kirda, “G-Free: Defeating Return-Oriented Programming
through Gadget-less Binaries,” Proc. 26th Annual
Computer Security Applications Conference (ACSAC '10),
ACM, 2010, pp. 49-58.

[11] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender:
A Detection Tool to Defend Against Return-Oriented
Programming Attacks,” Proc. 6th ACM Symposium on
Information, Computer and Communications Security
(ASIACCS ’11), ACM, 2011, pp. 40-51.

[12] R. Skowyra, K. Casteel, H. Okhravi, N. Zeldovich, and W.
Streilein, “Systematic Analysis of Defenses against Return-
Oriented Programming,” in Research in Attacks, Intrusions,
and Defenses, Lecture Notes in Computer Science, vol.
8145, Springer, 2013, pp 82-102.

[13] L. Liu, J. Han, D. Gao, J. Jing, and D. Zha, “Launching
Return-Oriented Programming Attacks against Randomized
Relocatable Executables,” Proc. 10th International
Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), IEEE Press, 2011, pp.
37-44.

[14] WordPress Portal. https://wordpress.org/ [retrived: August,
2015]

[15] PHPBook. How to log ip adresses in PHP,
http://www.phpbook.net/how-to-log-ip-adresses-in-
php.html [retrived: August, 2015]

[16] C. Viviani, WordPress Wp Symposium 14.11 -
Unauthenticated Shell Upload Exploit,

http://www.exploit-db.com/exploits/35543/ [retrived:
August, 2015]

[17] K. Szurek, WordPress Shopping Cart 3.0.4 - Unrestricted
File Upload, http://www.exploit-db.com/exploits/35730/
[retrived: August, 2015]

[18] M. Nadeau, Security Advisory – High Severity– WordPress
Download Manager,
http://blog.sucuri.net/2014/12/security-advisory-high-
severity-WordPress-download-manager.html [retrived:
August, 2015]

[19] C. Viviani, WordPress Download Manager 2.7.4 - Remote
Code Execution Vulnerability,
http://www.exploit-db.com/exploits/35533/ [retrived:
August, 2015]

[20] Yii framework The Fast, Secure and Professional PHP
Framework. http://www.yiiframework.com/ [retrived:
August, 2015]

[21] Fat-Free Framework A powerful yet easy-to-use PHP
micro-framework designed to help you build dynamic and
robust web applications - fast! http://fatfreeframework.com
[retrived: August, 2015]

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

