
An Authorisation and Access Control Framework for
Information Sharing on the Semantic Web

Owen Sacco
DERI, National University of Ireland, Galway

owensacco@deri.org

John G. Breslin
National University of Ireland, Galway

john.breslin@nuigalway.ie

Abstract—The Semantic Web brought about open data formats
which give rise to an increase in the creation and consumption of
structured data. This structured data is easily accessible from
SPARQL endpoints, which are considered as the main Web
Services in the Semantic Web. Most SPARQL endpoints are
publicly available and do not provide fine-grained authorisa-
tion and access control enforcement to protect user’s personal
information. Although a substantial amount of work exists on
access control and authorisation on the Web, these cannot be
applied directly to structured data due to the different nature
of how the data is formatted. In this paper, we present our
authorisation and access control framework for Web Services in
the Semantic Web. We present several vocabularies that model
the different aspects of the authorisation sequence. We also
extend our Privacy Preference Manager (PPM) that handles the
authorisation sequence for clients accessing the resource owner’s
personal information in RDF stores.

Keywords–Access Control, Authorisation, Privacy, Semantic
Web.

I. INTRODUCTION

The Semantic Web [13] provides formats to enrich infor-
mation on the Web by annotating Web data with additional
meaning that can be processed by machines to offer enhanced
services for data sharing and interoperability amongst different
data sources. This enables Web agents or Web enabled devices
to process this meaning to carry out complex tasks automat-
ically on behalf of users. Moreover, by means of Semantic
data, information can be merged easily from heterogeneous
sources based on the relationships amongst the data, even
if the underlying data schemas differ. The most commonly
used meta-formats for the Semantic Web is the Resource
Description Framework (RDF) [11]. RDF describes resources
on the Web and the relationships between them in the form of
graph models. RDF uniquely identifies resources on the Web,
such as people, events, blog posts, reviews and tags by means
of Uniform Resource Identifiers (URIs). Each resource can
link to other resources by referring to the URI of the specific
resource. The advantage of linking resources is that different
datasets can be linked and hence create the Web of Data.

RDF data can be queried using SPARQL [9]. SPARQL
queries take the form of a set of triple patterns called a
basic graph pattern. Most RDF data stores contain a SPARQL
Endpoint which accept incoming SPARQL queries over HTTP
and return back SPARQL query results. SPARQL Endpoints
can be considered as the main Web Services in the Semantic
Web. The majority of SPARQL Endpoints follow the RESTful
architecture and are publicly accessible.

Web Services allow third-party applications to access and
use personal information of end-users. This brought about a
need for authorisation mechanisms that allow users to authorise
applications to use their information on their behalf. The
most common authorisation method is OAuth [3] that provides
resource owners to authorise clients to use their protected
resources on their behalf without sharing their credentials with
the client.

Most SPARQL Endpoints do not use authorisation mecha-
nisms such as OAuth to protect sensitive resources since most
SPARQL Endpoints are publicly available. Although the idea
behind the Semantic Web is to publish open datasets, this
causes a risk to sensitive and personal resources. Several access
control models have been proposed, however, most of them do
not provide fine-grained authorisation mechanisms for RDF
graphs.

In this work, we present our Authorisation and Access
Control framework that builds upon our previous work [24].
This framework provides an OAuth architecture for personal
information that can be accessed from Web Services in the
Semantic Web. Therefore, our framework provides a fine-
grained authorisation and access control platform for RDF
graphs. Our work is based on the attribute-based access control
(ABAC) model since the nature of the Semantic Web is
to provide an open environment without knowing a priori
who will access the data. In this work, we propose several
vocabularies to model each authorisation process including
credentials and the scope of what a client can access. We also
present how this framework is implemented on top of SPARQL
Endpoints. Although our main focus for this research paper is
on personal data in the Semantic Web, our work can be applied
to any use case that requires authorisation for data from Web
Services in the Semantic Web.

This paper is structured as follows: Section II provides
an overview of some related work. Section III provides an
overview of our authorisation and access control framework.
In Section IV, we explain how the authentication in this
framework functions. Section V presents our vocabularies for
describing both the client and the Web Service authorisation
component preferences. In Section VI, we explain our vocab-
ularies that model the scope, which provides the necessary
permissions for the client (authorised by the user) to access
the user’s personal information. In Section VII, we explain
in detail the authorisation process using the vocabularies
described in this paper. Section VIII concludes the paper.

23Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology



II. RELATED WORK

The authors in [26] propose a method that uses OAuth
to authorise clients to access data from triple stores. This
work uses usernames and passwords for authentication rather
than leveraging the benefits of WebID. Moreover, the OAuth
protocol implemented in this work does not use client creden-
tials. Furthermore, the access control ontology presented in this
work does not provide fine-grained access control on protected
resources but restricts SPARQL clauses. This ontology is also
a role-based model that relies on pre-defined access control
policies bound to the user’s roles.

Similarly, the OpenLink Software Virtuoso [12] RDF store
provides OAuth for its SPARQL endpoint. Although this store
uses WebID for authentication, the user can authorise or
decline the requested SPARQL query rather than fine-grained
authorisation for specific resources.

The eXtensible Access Control Markup Language [20] is
an XML based language for expressing a large variety of
access control policies. Although the XACML is widely used
[16], [18], it does not provide the necessary elements to define
fine-grained access control statements for structured data. It
also does not contain enough semantics to describe what the
actual access restriction is about and also does not semantically
define which attributes a client or requester must satisfy. More-
over, this method does not provide an authorisation method to
authorise third-party applications to use resource owner’s data
on their behalf.

The Protocol for Web Description Resources (POWDER)
[2] is designed to express statements that describe what a
collection of RDF statements are about. The descriptions
expressed using this protocol are text based and therefore do
not contain any semantics that can define what the description
states.

The authors in [19] propose a privacy preference formal
model consisting of relationships between objects and subjects.
The proposed formal model however does not provide any
authorisation mechanism for third-party applications to access
RDF stores. The authors in [15] propose an access control
framework by specifying privacy rules using the Semantic
Web Rule Language (SWRL) [1]. This approach also does
not provide any authorisation mechanisms for third-party
applications to access SPARQL Endpoints. Moreover, this
approach relies that the system contains a SWRL reasoner.
In [17] the authors propose a relational based access control
model called RelBac which provides a formal model based
on relationships amongst communities and resources. This
approach requires to specifically define who can access the
resource(s) but does not provide any authorisation mechanism
for third-party applications to access SPARQL endpoints.

The authors in [14] propose an expressive logic-based
technique for the specification of security properties. However,
this approach requires another language and framework in
order to process security policies, unlike our work that uses
RDF to express the polices that can be processed by the
SPARQL engine.

III. AUTHORISATION AND ACCESS CONTROL
FRAMEWORK – OVERVIEW

The Authorisation and Access Control Framework, illus-
trated in Figure 1, provides authentication and authorisation

Figure 1. The Authorisation and Access Control Framework

mechanisms for RDF data. It is designed to be deployed over
SPARQL Endpoints as a Web Service to control and filter
data accessed by third-party clients. The authorisation flow
in this framework follows the OAuth 2.0 [3] sequence. This
Authorisation and Access Control framework is developed
within the Privacy Preference Manager (PPM).

The PPM [22], [24] is an access control manager that
provides users to create fine-grained access control policies,
known as privacy preferences, for RDF data. The manager
also filters requested data by returning back only a subset of
the data which is granted access as specified by the privacy
preferences. The PPM was developed as a Web application
either as a centralised Web application hosted on a centralised
server or in a Federated Web environment where users could
host their own manager on servers where they desire.

The PPM provides users to login to their manager and
create their privacy preferences for their RDF data. Moreover,
they could also login to other user’s manager and request data.
The PPM would return back only that data which the user is
granted access – based on the privacy preferences.

The PPM also offers an API which could be integrated
within other applications. However, the PPM does not pro-
vide any Web Service API whereby third-party applications
could call the PPM over HTTPS to benefit from the access
control features which it offers. Moreover, it does not provide
any authorisation methods to enable users to authorise third-
party applications which information they could access and
consume. Therefore, we have extended the PPM to provide
RESTful methods where third-party applications could send
their SPARQL query to the manager and receive back the
filtered RDF data. Furthermore, we have extended the PPM
with an authorisation component to handle the authorisation
process of third-party applications.

The PPM is designed to handle the requests sent to
SPARQL Endpoints from client applications using the REST-
ful architecture. The PPM handles the requests by (1) request-
ing the resource owner (i.e. user) to authenticate with the PPM;
(2) requesting the resource owner to authorise the client which
data it can consume; and (3) sends back a filtered subset of
the data which the client is authorised to access. The SPARQL
Endpoints should be configured to accept requests sent only
from the PPM.

The authentication and authorisation sequence in our
framework, as illustrated in Figure 2, consists of: (1) the
resource owner (i.e. user) requests a service from the client;
(2) the client sends a request for temporary credentials to the
PPM – the request includes the client credentials that identify

24Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology



Figure 2. The Authorisation and Access Control Sequence

the client, and the temporary credentials identify the authorisa-
tion sequence; (3) the temporary credentials are granted to the
client; (4) the client redirects the resource owner to the PPM
– the redirect request includes the client’s callback URI and
the temporary credentials; (5) the resource owner authenticates
with the PPM; (6) the resource owner authorises the client by
selecting which scope and permissions that will be granted
to the client; (7) the PPM sends back the temporary token
including a verifier to the client; (8) the client then exchanges
the verified temporary token to the access token credentials
by sending a request to the PPM – the request includes the
temporary token and the verifier; (9) the PPM sends back the
access token credentials to the client; (10) the client then sends
the SPARQL query (together with the access token credentials)
to the PPM; (11) the PPM sends the SPARQL query to the
SPARQL Endpoint and the SPARQL Endpoint sends back the
query result; (12) the PPM sends back the client only a filtered
result set based on what the resource owner had authorised the
client which data it can access; and (13) the client renders the
service and displays the results to the resource owner.

IV. AUTHENTICATION

Most Web applications request users to provide a username
and password in order to authenticate themselves into the
system. In Semantic Web applications, the WebID protocol
[25] is used as an authentication method. It provides a mech-
anism whereby users can authenticate using FOAF and X.509
certificates over SSL. The digital certificates contain the public
key and a URI that points to the location where the FOAF
profile is stored. The WebID authentication mechanism parses
the WebID URI from the certificate and retrieves the FOAF
profile from its location. The public key in the certificate and
the public key in the FOAF profile are checked to grant the
user access if the public keys match. The WebID certificates
can be self-signed certificates.

Once the resource owner is redirected to authenticate with
the PPM, the resource owner is requested to provide a We-
bID certificate. The PPM’s authentication module handles the
WebID authentication process by using a WebID verifier that
checks that the keys in both the certificate and the FOAF profile
match. The advantage of using URIs to identify resource
owners is that it eliminates the users to register or create

Figure 3. Credentials Ontology (CO)

multiple accounts on various servers. If the keys match, then
the resource owner is authenticated with the PPM.

Definition 1: Authentication. Let PPM be a PPM in-
stance, Cert an SSL digital signed certificate, O a resource
owner identified by a URI and P a resource owner’s FOAF
profile. Let Certificate(Cert,O) mean that Cert is the SSL
certificate of O, Profile(P,O) mean that P is the profile
of O, V erify(Cert, P ) mean that the public key in Cert is
verified with the public key in P and Authenticate(PPM,O)
mean that O is authenticated with PPM . Thus, Authentication
is defined:

Certificate(Cert,O) ∧ Profile(P,O) ∧ Verify(Cert,P)
⇒ Authenticate(PPM,O) (1)

V. MODELLING AUTHORISATION PREFERENCES

In this section we present: (1) the Credentials Ontology
(CO) which is a light weight vocabulary to describe both the
client and the Web Service (i.e. the PPM) credentials; (2) the
Client Authorisation Preferences Ontology (CAPO) which is
a light weight vocabulary to describe the client details when
a client registers with the PPM; and (3) the Web Service
Authorisation Preference Ontology (WSAPO) which is a light
weight vocabulary to describe the details of the Web Service
authorisation component (i.e. the PPM) to be used by the client
during the authorisation process.

A. Credentials Ontology (CO)
The Credentials Ontology (CO) [7], illustrated in Figure

3, is a light weight vocabulary to describe three types of cre-
dentials: (1) temporary or request token credentials; (2) client
credentials; and (3) access token credentials.

The temporary or request token credentials identify an
authorisation sequence. These tokens are randomly generated
for each authorisation request. The client credentials identify
a particular client. These credentials are created when a client
registers with a PPM in order to be able to access the
data stored within the SPARQL Endpoint. The access token
credentials are generated by the PPM each time after the
resource owner authorises the client to use his/her personal
data on his/her behalf. The access token credentials identify
the scope and permissions which the resource owner granted
the client at a particular instance.

25Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology



The Credentials Ontology (CO) provides the following
classes and properties to describe the three types of credentials:

• co:Credentials is the main class of CO and the cre-
dentials described using this vocabulary will be instances
of this class.

• co:TemporaryCredentials is a class that describes
the temporary or request token credentials. This class
provides the co:hasTemporaryToken property that
defines an identifier for an authorisation request. This
identifier is generated whenever the client requests an au-
thorisation sequence. The co:hasTemporarySecret
property defines the shared secret generated by the PPM
for the authorisation request. This shared secret is used for
signing the authorisation requests. This class also provides
a co:hasTemporaryVerifier property that defines
a verification identifier generated by the PPM once the
resource owner authenticates and completes the authori-
sation process.

• co:ClientCredentials is a class that describes
the client credentials. This class provides the
co:hasConsumerKey property that defines an
identifier for a client sending requests to the SPARQL
Endpoint through the PPM. This identifier is generated
when the client registers with the PPM to consume
the data from the SPARQL Endpoint. Therefore, the
client must store this identifier and use it whilst sending
requests to the PPM. This class also provides the
co:hasConsumerSecret property that defines the
shared secret generated by the PPM. This shared secret
is also generated when the client registers with the PPM
and it is used for signing the requests. Similar to the
consumer key, the client must store this shared secret.

• co:AccessTokenCredentials is a class that de-
scribes the access token credentials. This class pro-
vides the co:hasAccessToken property which de-
scribes the identifier to the client’s authorised scope
and permissions authorised by the resource owner. This
class also provides co:hasAccessSecret property
which describes the shared secret for signing the re-
quests after the authorisation process is complete. Both
the access token and the access secret are
generated by the PPM after the resource owner com-
pletes the authorisation sequence. This class also provides
co:appliesToWebID property which links the access
token credentials to the resource owner’s WebID URI who
authorised the client.

B. Client Authorisation Preferences Ontology (CAPO)
The Client Authorisation Preferences Ontology (CAPO)

[5], illustrated in Figure 4, is a light weight vocabulary
that describes client details which are stored in the CAPO
repository – as illustrated in Figure 1. These details are created
once the client is registered with the Web Service (i.e. the
PPM). The client details are used by the PPM to verify clients
during the authorisation process.

The CAPO vocabulary provides the following classes and
properties:

• capo:Client is the main class of CAPO and instances
of this class define clients that can make use of the
authorisation sequence of the Web Service (i.e. the PPM).

Figure 4. Client Authorisation Preferences Ontology (CAPO)

Figure 5. Web Service Authorisation Preferences Ontology (WSAPO)

• capo:hasDomain is a property that defines the client’s
domain. This is used as additional security to allow
requests received only from this domain.

• capo:hasHosting is a property that defines the URI
where the client is hosted on.

• capo:hasCallback this property defines the client’s
callback URI. Although the callback URI is passed within
the requests, this is also used for additional security since
the callback URI in the request must match the callback
URI defined using this vocabulary.

• capo:hasCredentials this property defines the
client’s credentials defined using the Credentials Ontology
(CO) which are generated on registration with the Web
Service (i.e. the PPM).

• capo:hasHomepage this property defines the client’s
homepage.

Other terms could be used from other vocabularies to define
other details such as dcterms:title defines the title given
to a client; dcterms:description defines the client’s
description; dcterms:created defines the date when the
client’s details were registered; and dcterms:creator de-
fines the creator of the client’s details.

C. Web Service Authorisation Preferences Ontology (WSAPO)
The Web Service Authorisation Preferences Ontology (WS-

APO) [10], illustrated in Figure 5, is a light weight vocabulary
that describes the details of the Web Service authorisation
component which are stored in the WSAPO repository – as
illustrated in Figure 1. These details are used by the client
during the authorisation process.

The WSAPO vocabulary provides the following classes and
properties:

• wsapo:WebService is the main class of WSAPO and
instances of this class define Web Services that provide
the authorisation architecture such as the PPM.

26Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology



• wsapo:hasCredentials this property defines the
client’s credentials defined using the Credentials Ontology
(CO) which are generated on registration with the Web
Service (i.e. the PPM). These are used to identify the
client during the authorisation sequence.

• wsapo:hasTemporaryTokenEndpoint is a prop-
erty that defines the Web Service’s temporary token
credentials endpoint. This allows a client to request for
temporary token credentials.

• wsapo:hasAccessTokenEndpoint is a property
that defines the Web Service’s access token credentials
endpoint. This allows a client to exchange verified tem-
porary token credentials to access token credentials.

• wsapo:hasAuthoriseEndpoint is a property that
defines the Web Service’s authorisation endpoint. This
allows a client to use the authorisation architecture by
sending the temporary credential tokens to this endpoint.
Once the authorisation is complete, the Web Service
will return verified temporary token credentials (i.e. the
temporary token credentials together with the verifier).

Other terms could be used from other vocabularies to define
other details such as dcterms:title defines the title given
to a Web Service; dcterms:description defines the Web
Service’s description; dcterms:created defines the date
when the Web Service authorisation component details were
created; and dcterms:creator defines the creator of the
Web Service authorisation component details.

VI. MODELLING PERMISSIONS

Apart from modelling the details of both the client and
the Web Service (i.e. the PPM), the authorisation scope and
permissions which the resource owner grants the client in
order to access the protected resources should be modelled as
well. The scope and permissions are modelled using the Client
Permissions Ontology (CPO) – explained in this section. This
light weight vocabulary uses the Privacy Preference Ontology
(PPO) to model the permissions.

A. Privacy Preference Ontology (PPO) – Overview
The Privacy Preference Ontology (PPO) [8], [21], [23]

- is a light-weight Attribute-based Access Control (ABAC)
vocabulary that allows users to describe fine-grained privacy
preferences for restricting or granting access to non-domain
specific Linked Data elements, such as Social Semantic Data.
Among other use-cases, PPO can be used to restrict part
of FOAF profiles records only to clients or users that have
specific attributes. It provides a machine-readable way to
define settings such as “Provide my personal phone number
only to my family” or “Grant write access to my technical
blog only to my co-workers”.

As PPO deals with RDF(S)/OWL data, a privacy pref-
erence, defines: (1) the resource, statement, named graph,
dataset or context it must grant or restrict access to; (2) the
conditions refining what to grant or restrict (for example defin-
ing which resource as subject or object to grant or restrict);
(3) the access control privileges; and (4) a SPARQL query,
(AccessSpace) i.e. a graph pattern representing what must
be satisfied by the client or user requesting information. The
access control type includes the Create, Read and Write
(which also includes Update, Delete and Append) access
control privileges.

Figure 6. Client Permissions Ontology (CPO)

B. Client Permissions Ontology (CPO)
The Client Permissions Ontology (CPO) [6], illustrated in

Figure 6, is a light weight vocabulary that describes the scope
and permissions which the resource owner grants to the client.
The scope and permissions are used by the PPM to grant
(or deny) the client access to the resource owner’s protected
resources.

The CPO vocabulary provides the following classes and
properties:

• cpo:ClientPermission is the main class of CPO
and instances of this class define the scope and permis-
sions the resource owner has granted a particular client.

• cpo:appliesToClient this property defines which
client (as described using the CAPO vocabulary) the
scope and permissions apply to.

• cpo:hasPermission is a property that defines
the scope and permissions defined using the PPO
vocabulary. For example, if the client wants to
have access to a particular resource, for instance
an email address, the cpo:hasPermission would
define a ppo:PrivacyPreference that would
ppo:appliesToResource the email address with an
acl:Read access control privilege.

• cpo:hasCredentials this property defines the tem-
porary token credentials and the access token credentials
defined using the Credentials Ontology (CO) once these
are generated by the PPM and granted to the client.

• cpo:expireDateTime this property defines when the
scope and permissions expire.

Other terms could be used from other vocabularies to
define other details such as dcterms:created defines
the date when the scope and permissions were created and
dcterms:creator defines the creator.

VII. AUTHORISATION

Whenever the resource owner requests a service from the
client, the client reads the temporary token endpoint URI from
the WSAPO datastore for that particular Web Service (i.e.
PPM). The client sends a request for the temporary token
credentials from this endpoint URI and once retrieved, the
client redirects the resource owner to authenticate with the
PPM.

Once the resource owner is authenticated using WebID as
explained in section IV, the PPM first checks within the CPO
datastore whether there are any valid access token credentials
already granted to that client by that resource owner for

27Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology



the same request. If valid access token credentials exist, the
temporary token credentials are verified and sent to the client.
Moreover, the client’s permissions defined using CPO are
created containing the verified temporary token credentials, the
access token credentials that already exist and the permissions
which were already granted. Otherwise, the PPM checks if
there are any privacy preferences in the PPO store created
by the resource owner that authorise the client access to
the protected resources. If privacy preferences exist, then the
client’s permissions defined using CPO are created that link
to these privacy preferences. The temporary token credentials
are also verified and sent to the client.

When neither any valid access token credentials or privacy
preferences exist, then the resource owner is presented with
an authorisation page whereby the PPM requests the user to
authorise the client’s request. The requested SPARQL query
is first parsed using the ARC2 [4] SPARQL query parser and
presented to the resource owner. The resource owner either au-
thorises the client the whole request; or selects which protected
resources the client can access; or denies the whole request.
Moreover, the resource owner selects the temporality of the
permissions by specifying the expiry date and time. However,
any authorised credentials can be revoked any time. Depending
on the resource owner’s decision, the client’s permissions are
defined using CPO and the temporary token credentials are
verified. The client then exchanges the verified temporary
token credentials to access token credentials by requesting the
access token endpoint URI.

Whenever the client sends the SPARQL query together
with the access token credentials to the PPM, the PPM will
send back only what the client is granted to access; based on
the client’s permissions defined using CPO.

Definition: Authorisation. Let C be a client, O a re-
source owner identified by a URI, R a resource and A
an access control privilege. Let Request(C,R) mean that
C requested R, Resource(R,O) mean that R is the re-
source of O, Assign(A,O) mean that A is assigned by
O, AssignAccess(R,A) mean that R is assigned access A
and Authorise(R,C) mean that C is authorised R. Thus,
Authorisation is defined:

Request(C,R) ∧ Resource(R,O) ∧ Assign(A,O)
∧ AssignAccess(R,A) ⇒ Authorise(R,C) (2)

VIII. CONCLUSION AND FUTURE WORK

SPARQL endpoints, which are the most commonly used
Web Services in the Semantic Web, are publicly accessible
and do not provide any authentication, authorisation and ac-
cess control functionality. Therefore, in this paper we have
presented our authorisation and access control framework
that provides resource owners to authorise third-party appli-
cations to consume their resources within RDF stores on
their behalf. We have presented several vocabularies, namely:
(1) the Credentials Ontology (CO); (2) the Client Authori-
sation Preferences Ontology (CAPO); (3) the Web Service
Authorisation Preferences Ontology (WSAPO); and (4) the
Client Permissions Ontology (CPO) that model several aspects
of the authorisation sequence. We have also extended the
Privacy Preference Manager (PPM) to handle the authorisation
sequence for SPARQL endpoints.

As future work, we will enhance the PPM to assert the
trustworthiness of third-party applications. The authorisation
sequence will become more autonomous since clients will have
to satisfy a trust value threshold in order to be authorised to
consume the resource owner’s protected resources.

ACKNOWLEDGMENT

This work is funded by the Science Foundation Ireland
under grant number SFI/08/CE/I1380 (Lı́on 2) and by an
IRCSET scholarship co-funded by Cisco systems.

REFERENCES

[1] SWRL: A Semantic Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL, 2004. [Online; accessed 31-
July-2015].

[2] Protocol for Web Description Resources (POWDER). http://www.w3.
org/TR/powder-dr, 2009. [Online; accessed 31-July-2015].

[3] OAuth 2.0 Authorization Framework. http://tools.ietf.org/html/rfc6749,
2012. [Online; accessed 31-July-2015].

[4] ARC 2 RDF Store. https://github.com/semsol/arc2, 2013. [Online;
accessed 31-July-2015].

[5] Client Authorisation Preferences Ontology (CAPO). http://vocab.deri.
ie/capo#, 2013. [Online; accessed 31-July-2015].

[6] Client Permissions Ontology (CPO). http://vocab.deri.ie/cpo#, 2013.
[Online; accessed 31-July-2015].

[7] Credentials Ontology (CO). http://vocab.deri.ie/co#, 2013. [Online;
accessed 31-July-2015].

[8] Privacy Preference Ontology (PPO). http://vocab.deri.ie/ppo#, 2013.
[Online; accessed 31-July-2015].

[9] SPARQL Query Language for RDF. http://www.w3.org/TR/
sparql11-overview, 2013. [Online; accessed 31-July-2015].

[10] Web Service Authorisation Preferences Ontology (WSAPO). http://
vocab.deri.ie/wsapo#, 2013. [Online; accessed 31-July-2015].

[11] Resource Description Framework (RDF). https://www.w3.org/RDF,
2014. [Online; accessed 31-July-2015].

[12] OpenLink Software Virtuoso Universal Server. http://virtuoso.
openlinksw.com, 2015. [Online; accessed 31-July-2015].

[13] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284:34–43, 2001.

[14] E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo. A logic-based
approach for enforcing access control. J. Comput. Secur., 8(2,3):109–
139, Aug. 2000.

[15] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B. Thurais-
ingham. A Semantic Web Based Framework for Social Network Access
Control. In Proceedings of the 14th ACM Symposium on Access Control
Models and Technologies, SACMAT ’09, 2009.

[16] S. Franzoni, P. Mazzoleni, S. Valtolina, and E. Bertino. Towards a fine-
grained access control model and mechanisms for semantic databases.
In ICWS 2007, 2007.

[17] F. Giunchiglia, R. Zhang, and B. Crispo. Ontology Driven Community
Access Control. Trust and Privacy on the Social and Semantic Web,
SPOT’09, 2009.

[18] R. Hebig, C. Meinel, M. Menzel, I. Thomas, and R. Warschofsky. A
web service architecture for decentralised identity- and attribute-based
access control. In ICWS 2009., 2009.

[19] P. Kärger and W. Siberski. Guarding a Walled Garden Semantic Privacy
Preferences for the Social Web. The Semantic Web: Research and
Applications, 2010.

[20] Oasis. eXtensible Access Control Markup Language (XACML) Version
3.0. 2009.

[21] O. Sacco and J. G. Breslin. PPO & PPM 2.0: Extending the privacy
preference framework to provide finer-grained access control for the
web of data. In I-SEMANTICS ’12, 2012.

[22] O. Sacco and A. Passant. A Privacy Preference Manager for the Social
Semantic Web. In Semantic Personalized Information Management
Workshop, SPIM’11, 2011.

28Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology



[23] O. Sacco and A. Passant. A Privacy Preference Ontology (PPO) for
Linked Data. In Linked Data on the Web Workshop, LDOW’11, 2011.

[24] O. Sacco, A. Passant, and S. Decker. An Access Control Framework
for the Web of Data. In IEEE TrustCom-11, 2011.

[25] H. Story, B. Harbulot, I. Jacobi, and M. Jones. FOAF + SSL : RESTful
Authentication for the Social Web. Semantic Web Conference, 2009.

[26] D. Tomaszuk and H. Rybiński. OAuth+UAO: A Distributed Identifica-
tion Mechanism for Triplestores. In ICCCI, 2011.

29Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology


