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Abstract—As business process models have a broad scope of
applications, e.g., in science or in business administration, the
problem of handling large amounts of process models arises.
One helpful tool for dealing with this amount of models is to
reduce it by using similarity measures in order to detect similar
models that can be merged. A set of similar models may be
replaced by one model. As a pure similarity of labels is often not
enough to compare process models, other process perspectives
are involved for calculating similarities. The current paper works
on the process models’ behavior, which is one such perspective.
A problem that arises when comparing two models and that is
covered in this paper is that one of a differing granularity of
process steps. Due to this granularity problem M-to-N mappings
are considered. The present paper provides a centroid-based and
so easily computable method for calculating behavioral similarity
values for process models, which is constructed for M-to-N
mappings, and a short evaluation of it.

Keywords–Business process model; Behavioral process model
similarity; M:N-Matching

I. INTRODUCTION

Not only for documentation purposes, business process
models have been established in a large amount of organiza-
tions. They also serve as supportal means for communication,
for training employees, and redesigning actual workflows [1].
These widely spread applications lead to vast process model
repositories in enterprises, that have to be managed somehow
[2]. One of these management purposes is to find similar
models in order to reduce the tremendous amount of repository
elements by detecting and merging similar models. Similar
models can emerge when the same process is modeled multiple
times, either for different end user groups or in different
variations for the same user group. The authors of [3] worked
out a total of nine categories for application fields of similarity
measures, amongst them process merging, facilitating reuse
of models [4], and service discovery. Also, process model
matching can be used in the fields of compliance and con-
formance checking, the latter especially in terms of (process)
log data, which can be seen as a number of sequential process
models. But usually, the models are developed by different
persons and thus have different levels of granularity, which
means, that process steps in different models are modeled with
a different fineness [5]. Especially for human tasks, it is not
prescribed how fine-grained the particular steps have to be, and
the detail level strongly depends on the purpose the model has
to fulfill, on the attributes of the executing agents, or simply
on the modeler’s preferences. Furthermore, the terminology,
i.e., the way of defining names, labels, etc. varies from model

to model, and hence a comparison of these models only using
their labels is challenging [6]. These two issues often lead
to the fact that actually very similar or even equal models
are not recognized as such. Because of this and due to the
wide variety of modeling languages and notations, like Event-
driven Process Chains (EPCs), Petri Nets, Unified Modeling
Language (UML) Activity Diagrams, Workflow Nets, the Busi-
ness Process Model and Notation (BPMN), or the Business
Process Execution Language (BPEL), perfect matches, i.e., a
true/false answer to the question if two models are the same,
cannot be expected. Instead, a degree of similarity, a value
between 0 and 1 where 0 means completely different and 1
is an indication for (virtually) identical models, depending on
the definition of the respective similarity measure, is desired.

These measures can be defined on different disjoint as-
pects of process models: on node information, on process
structure, and on execution semantics [2]. Node information is
attached to each process model element, especially activities,
and can again be split up into the description of process
model elements, assigned roles or agents, ingoing and out-
coming data objects, and operational means. Process structure
refers to graph structure when taking a process model as a
graph, and execution semantics refers to the question, how,
i.e., in which order and under which circumstances (parallel,
inclusive, exclusive, loop, etc.), process model elements may
be executed. A behavioral similarity usually relies on the
execution semantics of a process model. In order to take
into account all of this information about process models and
to allow for a wide range of modeling notations, we define
a process model as instanced in Definition 1. In principle,
each process model, whatever modeling notation is used, is
a graph consisting of bubbles and directed arcs. Bubbles
are elements like activities, events, and gateways, connected
through arcs. Execution order is thus more or less prescribed,
and human influence, i.e., decisions, are involved through
(exclusive or inclusive) gateways. Note that this holds for
imperative process models. Declarative process models, like
the Case Management Model and Notation (CMMN) [7], take
a different approach and allow for a greater human influence.

Definition 1 (Process Model). A process model is a tuple
G = (N,E, λ, δ) where N = A ∪ {start, end} ∪ SAND ∪
SXOR∪SOR is the finite, non-empty set consisting of all model
elements, and E ⊆ N2 is the set of all directed edges con-
necting the elements of N . Function λ assigns a description,
a data set, organizational, and operational resources to each
of the tasks in A. Function δ assigns constraint descriptions
to some edges.
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Set SAND is the set of all (split and merge) parallel gate-
ways. Sets SXOR and SOR are the sets of all (split and merge)
exclusive or inclusive gateways, respectively. start denotes the
start event of the process and end the end event. Every process
has exactly one start and one end event. The activity tasks are
summarized in set A. Functions λ and δ are mentioned for the
sake of completeness, but are not discussed further, as they
are not of importance for the behavior of a process model.
Task description, used data, assigned agents, assigned tools
and behavior can be treated separately when analyzing process
models, as these five perspectives are completely orthogonal
to each other [8]. Similarity of descriptions can be determined
via string-edit operations, see for example [9], whereas data,
organizational and operational similarity can be calculated with
set-based methods, like the Jaccard coefficient [10] [11]. A
more detailed definition of multi-perspective process models
can be found in [12]. The elements of set N are sometimes
also called nodes.

Definition 1 allows for many kinds of process models,
even if they do not provide information about all process
perspectives. For instance, if the non-human resources, that
is the operational perspective, is not given in the model, the
corresponding co-domain of function λ is left empty. Or if
inclusive gateways are not included, then it is set SOR = ∅.
Human influence on the behavior is covered by exclusive
(XOR) and inclusive (OR) gateways and the agents’ decisions
during the execution. At design level, however, this influence,
i.e., the decision at run time, does not affect the model
behavior. In imperative process models, behavior is strongly
restricted.

The focus of the work at hand lies on the behavioral
aspect of process models, i.e., on control flow and how two
models can be compared with respect to this aspect. During the
matching process – this is what we call the process of finding a
similarity value between two models – the tasks of two process
models are not compared one-to-one (single task compared to
single task), but they will be grouped into sets to encounter
the problem of differing granularity. In many cases, one-to-one
mappings are not able to represent the correct correpondences.
For example, when one activity in the first process model is
split up into three process steps in the second model (imagine
a manager’s and a technician’s view on a certain process),
a one-to-one mapping would not provide a satisfying result.
After having established the task sets, centroids, i.e., average
positions (see Definition 4), average repeatability, and average
optionality are calculated to determine behavioral similarity.
As far as the authors know, this distinction of behavior into
the three dimensions position, repeatability, and optionality has
not yet been done explicitely in previous work.

In [13], process model elements are classified into, among
other things, alternative or loop fragments, that resemble
optional and repeatable elements. Furthermore, these centroids
will be able to punish sets of activities that are widely spread
over the whole process model or that have strongly differing
manner. See Figure 1 for an example of two process models
with schematical positional centroids. The mapped task sets
are indicated with different fillings. The resulting behavioral
similarity value can then be combined with other similarity
values, e.g., description similarity or data similarity, to get
a better matching score that is more independent of local

errors, i.e., that is more robust against errors in certain process
model aspects [10]. To put it together, the method presented in
this paper provides two main results: A normalized similarity
value for two process models based on their behavior and a
mapping that indicates the resembling parts of them, which
will be called M-to-N mapping. The mapping is needed to
compute the behavioral similarity value. This approach is also
known in related work, e.g., in [2] and [14] using 1-to-1
mappings. The advantage of such a method compared to a pure
similarity calculation without presupposing a mapping is that
the correspondences are provided in the same step and do not
have to be detected in a separate step afterwards. The M-to-N
mapping, also used in [11] for organizational and operational
similarity, is defined in Definition 2.

Definition 2 (M-to-N mapping). Let Gi = (Ni, Ei, λi, δi),
i = 1, 2 be two process models, with Ai ⊂ Ni being the set of
activities or tasks of each process model and Pi ⊂ P(Ai) 3 ∅
a complete and disjoint partition of Ai, i = 1, 2. A mapping
between G1 and G2 is defined as a bijective function M :
P1 → P2. In particular, ∅ 7→ p2 and p1 7→ ∅ means, that p2
and p1 are deleted, respectively, where p1 ∈ P1, p2 ∈ P2, and
¬(∅ 7→ ∅).

As Definition 2 shows, sets of activities are mapped rather
than single tasks, which induces the term M-to-N mapping.
These sets of activities are achieved by establishing a partition
of set A. In Figure 1, the tasks of the left model are partitioned
into four sets (one of them the empty set), as well as the tasks
of the right model. Tasks are indicated through rectangles with
rounded corners, the diamonds represent gateways. Diamonds
filled with “x” are exclusive, filled with “+” are parallel, filled
with a small ring inclusive. In Figure 1, the meaning of the
gateways is not of importance. Start and end event are denoted
by circles. The mapping consists of four elements, a 2-to-3
(dotted) and a 2-to-1 (striped) mapping element, as well as a
1-to-0 (white) and a 0-to-1 (gray) element (the deleted nodes).
In cases of process models strongly differing in granularity, a
comparison explicitly applying a M-to-N mapping may provide
better results than methods presented in most of the previous
work. Furthermore, no complex calculations are needed for the
centroid-based similarity presented in Section III. Regarding
the draft version of this paper [12], requirements for compared
process models, like block-structure, have been relaxed.

The remainder of this paper is organized as follows: The
next section gives a rough overview of existing similarity
measures and process model matching methods. Section III
then introduces the behavioral similarity measure in its three
dimensions step by step. An extension for penalized similarity
measures is given, too. Thereafter, in Section IV, a short
evaluation is performed. Section V revises the paper and gives
ideas for future work.

II. BACKGROUND AND RELATED WORK

In the literature, many techniques and methods for cal-
culating the similarity, or, on contrast, the distance of process
models, are presented. The authors of [3] provide a comparing
overview of some of these techniques. Other collections and
comparisons of several matching techniques can be found in
[15] and [16]. One way of measuring the similarity between
a pair of process models is to first define a mapping between
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Figure 1: Schematical representation of the comparison of (positional) cen-
troids for mapped sets of process tasks.

these two models. This mapping can either assign one node
of the first model to one node of the second model, which
often leads to a partial injective function [14], or map a set
of nodes of one model to a set of nodes of the second model
[10]. Thereby, we will refer to the latter defined mapping as
M-to-N mapping, which is defined according to Definition
2 and is just a generalization of the former 1-to-1 mapping
definition through an extension to powersets. As the authors
of [9] suggest, for many scenarios, e.g., when processes have
been developed independent of each other, a M-to-N mapping
is preferred to a simple 1-to-1 mapping. M-to-N mappings are
capable to overcome problems of granularity levels, which is
one of the future tasks stated in [17]. In [6], a method for
establishing N-to-1 mappings is presented, but not extended
to a M-to-N mapping due to the applied matching techniques.

A. Label-based and structural similarity values

After having established a mapping between the elements
of process models, similarity values between these elements
can be computed. Depending on the given models, various
information is used for this computation step. A similarity
value based on the activity labels of a process model is,
e.g., presented in [14], [18], and [19]. It makes use of the
so-called string-edit (Levenshtein) distance and other string-
modifying techniques like stemming [14] or replacing certain
words through synonyms [20]. This similarity is often referred
to as syntactic, semantic, or linguistic similarity. Another
information that can be used for comparing process models
is information about authorized agents and assigned input and
output data of each activity, which is available, for example, in
BPMN process models [21]. In Definition 1, this information
can be found in function λ, that maps each node to a four-
tuple consisting of node description, authorized agents, tools
to be used, and consumed and produced data. This additional
information can be analyzed lexically [6] or when applying
M-to-N mappings through set-based methods performed on
the subjects’ or objects’ identifiers, as it is done in [10]
and [11]. Another important aspect of process models is the
arrangement of the model elements. Basically, this arrange-
ment can be categorized into two different similarity metrics:
structural/contextual similarity and behavioral similarity [9]

[22]. Structural and contextual similarity is, however, not using
a preceding mapping, so we leave these kinds of measures out
as we want to use a similarity measure showing the model
equivalences at the same time. Behavioral matching techniques
are based on the execution semantics of a process model [14],
which means, that, e.g., parallelism or exclusiveness of model
elements as well as their possible execution order is respected.

B. Various Definitions of Behavioral Similarity

Different approaches for measuring behavioral similarity
are developed in literature. In [10], a computing method for
M-to-N mappings is suggested that makes use of partial order
relations of the activity elements, but is limited to serialized
process models without any gateways, which is a strong
limitation for most models. Behavioral profiles, a set of valid
relations (strict, exclusive, interleaving) between every two
process model elements, are introduced in [22] and [23] to
define different behavioral similarity values. This approach is,
however, applicable if the process models are mapped 1-to-1
and hardly transferable to M-to-N mappings. Another common
method is to look at the traces of the process models to be
compared [2]. Even if there is only a finite set of traces in loop-
free process models, the problem of computing the trace-based
behavior of a model is NP-hard [9]. An explicit discussion
of trace-based methods is presented in [3]. Regarding partial
traces is a variant of this trace-based approach and discussed in
[24]. To overcome the computational complexity of traces, an
approximation via casual footprints can be performed [2]. Ca-
sual footprints define the so-called look-back and look-ahead
links of single process model elements [9] [20] and not for sets
of tasks. Furthermore, this similarity value takes sequential,
parallel, or exclusive behavior of the model elements, which
is important information about a process model’s behavior,
only insufficiently into account [9]. A further approach of
determining similarity between two process models is given
in [25], where process models are compared with respect
to some typical behavior that is gained from process event
logs. However, as event logs or typical reference models are
not always given, the applicability is restricted to particular
cases. The aim of the paper is to derive a behavioral similarity
function whose calculation is not too difficult, in contrast to
the calculation of casual footprints [3], and that is at the same
time suitable for M-to-N mappings. All in all, an approach like
ours makes use of already existing concepts like embeddability
into graph-edit similarity, but is adjusted to situations where
previous approaches are not able to detect similarity or to take
into account all given information.

Another work dealing with comparison of workflows,
workflow systems, and the expressiveness of workflow lan-
guages is [26]. It is very broad, but uses simulation and not
the models itself for comparison. When using simulation, there
is the difficulty of finding significant samples and the fact, that
all results are statistical, i.e., hold under a certain significance
level. It also introduces a lot of notion and transformation
methods to tree and automaton representations for the models.
Furthermore, the different process perspectives are not consid-
ered separately and concrete correspondences are not worked
out explicitely. The authors of [27] also worked out a method to
determine behavioral similarity based on arbitrary alignments
(thus, also for M-to-N mappings), where overlapping of the
mapped node sets is allowed, which is a great advantage of
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this work. In return, they only allow for acyclic, i.e., loop-free,
process models based on causal nets. Repeatability is therefore
not considered.

No matter what kind of mapping is established and which
kind of information (label, behavior, etc.) is used to cal-
culate similarity, the further progress is always the same.
After having computed the similarity value for one particular
mapping, this value is maximized over all possible mappings
to get the best correspondences between the two models. I.e.,
Sim(G1, G2) = maxM SimM (G1, G2) gives the similarity
value for the two models G1 and G2 where function SimM

calculates their similarity induced by mapping M [10] [14].
For this optimization step, greedy or A* algorithms working
on task set A in the case of 1-to-1 mappings or on the powerset
of A in the case of M-to-N mappings can be used [18].

III. THE CENTROID-BASED BEHAVIORAL SIMILARITY
MEASURE

For our work, we rely on process models given according
to Definition 1, that even may contain loops. Models with loops
particularly allow for control loops. The similarity calculation
further assumes a M-to-N mapping between the two models
that shall be compared and makes use of the centroids of
the task sets. In particular, a M-to-N mapping M is given
according to Definition 2, i.e., a partition P1 of activities A1 of
the first process model G1 is mapped bijectively to a partition
P2 of activities A2 of the second process model G2, and every
element of a partition p ∈ Pi is a set of activities of the
underlying process model, i.e., p ⊆ Ai.
The targeted behavioral similarity measure considers the order
of nodes given by the control flow, but also takes into account
mandatory and optional activities as well as repeatable ones,
which we call the three dimensions of behavior as already
mentioned in the introduction. A penalty score is added to
neglect sets of heterogenous tasks, e.g., widely spread sets of
tasks.

A. Positional Similarity

The first behavioral dimension reflects the location of nodes
in a process model. This location is specified as a relative
position to obtain comparability, i.e., the position of a node
is a number in [0, 1], where a value close to zero indicates a
position at the beginning of the model and a value close to
one a position at the end. In particular, the position of a node
is given through the length of the shortest chain (sequence
of consecutive directed edges) from the start event to the
node, divided by the length of the shortest chain going from
start to end while passing the node. This is specified in
Definition 3. Function m(·, ·) in Definition 3 gives the length
of the shortest chain from one node to another. By using these
minimal chains the problem of infinitely long chains resulting
from loops is avoided. The position of a set of nodes, i.e., the
positional centroid, given in Definition 4, is then computed by
simply taking the arithmetic average of the single positions,
i.e., summing up the single positions and dividing through the
number of elements in the set. This again results in a value in
[0, 1]. Note that the definitions basically apply for all nodes,
like events, tasks and gateways, but we will later on use only
the activity tasks’ positions, as only the tasks are mapped by
a M-to-N mapping according to Definition 2.

Definition 3 (Node position). The position π(n) of node n ∈
N is π(n) = m(start,n)

m(start,n)+m(n,end) .

Positions that are fixed in all process models we consider
are π(start) = 0 and π(end) = 1 as m(start, start) =
m(end, end) = 0. In the following definition, P denotes a
partition of a model whose elements p are sets of nodes, i.e.,
p ⊆ N .

Definition 4 (Centroid of a set of nodes). The centroid π(p)
of p ∈ P is given through π(∅) = NULL and

π(p) = 1
|p|

∑
n∈p

π(n), p 6= ∅. (1)

All occuring NULL-values are ignored in the further
calculations in this paper, but lower the overall similarity
when combining the behavioral similarity with other kinds of
similarity like label- or resource-based similarity. The NULL
values occur if nodes are not mapped, like it is the case in
Figure 1 for the white and the gray task. The behavioral
similarity of two models, represented by their partitions P1

and P2, then combines the differences of the centroids of the
mapped sets of tasks again as an arithmetic mean.

Definition 5 (Behavioral similarity 1). For two partitions P1,
P2 of process models G1, G2 induced by a mapping M ,
the first dimension of behavioral similarity, the position-based
similarity, is given through

V Simπ
M (P1, P2) =

1
|P1|

∑
p∈P1

(1−|π(p)−π(M(p))|) . (2)

Figure 1 shows two centroid differences: |π(pdotted) −
π(M(pdotted))| and |π(pstriped)− π(M(pstriped))|. Low dif-
ferences, i.e., similar positions, lead to high similarity val-
ues due to the modification 1 − | · | in formula (2). The
formula can also be formulated with the models themselves
via V Simπ

M (G1, G2) := V Simπ
M (P1, P2), as mapping M

applied on the models induces the partitions.

B. Repeatability and Optionality

Besides the position value π, we can also assign a repeata-
bility value % and an optionality value o (omikron) to each
node. These additional dimensions of the behavior of process
models display the execution with regard to the different
gateway types. The approach for these two is similar to that of
Section III-A. First, a repeatability/optionality value is defined
for single nodes. Then, a repeatability/optionality value for a
set of nodes is established through the arithmetic average of
the single values. Finally, these values are combined for the
partitions induced by the mapping.

Definition 6 (Node repeatability). The repeatability %(n) of
node n ∈ N is %(n) = 1 if n can be executed more than once
in one process instance and 0 otherwise.

The repeatability value provides information if a node can
be executed more than once in one process instance, i.e., if it
is involved in a XOR-loop. In BPMN, it is possible to mark
activities as loop tasks which are also treated as repeatable
nodes. Another property of nodes is their optionality, i.e., if
a node has to be executed in one process instance or if the
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process can finish without having executed it. Optionality can
be given if XOR- or OR-gateways appear.

Definition 7 (Node optionality). The optionality o(n) of node
n ∈ N is o(n) = 1 if n does not have to be executed to finish
an instance of the process successfully, and 0 otherwise.

Both repeatability and optionality values are boolean. As
we do not assume any process log information about executed
instances as e.g. shown in [25], there is no statement if an
optional node is more or less likely to be executed or how
often a repeatable node is executed in average. For future
work, one can think of also assigning optionality/repeatability
values ∈ (0, 1), e.g., by using execution probabilities or relative
frequencies obtained from process execution logs. Analog to
Definition 4, repeatability and optionality is extended to sets
of nodes as shown in the following definition.

Definition 8 (Repeatability and optionality of node sets). For
p ∈ P , P a partition of G (i.e., p ⊆ A), repeatability %(p) and
optionality o(p) of a node set p is given through equation (1)
by replacing π through % or o, respectively.

With this, behavioral similarity for the two remaining
behavior dimensions can be formulated.

Definition 9 (Behavioral similarity 2 and 3). For two partitions
P1, P2 of G1, G2 induced by a mapping M , the behavior simi-
larities based on repeatability and optionality is given through
equation (2) by replacing π through % or o, respectively.

C. Penalty Functions

The positional centroids of a task set consisting of “the
first” and “the last” task and of a task set consisting of
exactly one task in the middle of the model would be the
same, when calculated according to formula (2), namely 0.5.
But it is quite obvious, that these two sets of nodes are
unlikely to match together (regarding their behavior). This
is why we introduce penalty terms for every dimension of
behavioral similarity, that lower the similarity value if one
or both partition elements p and M(p) are heterogenous
activity sets. Especially for favouring homogeneity concerning
repeatability and optionality in node sets, penalty functions are
important. These functions depend on the underlying mapping
M and are denoted with penπM , pen

%
M , pen

o
M ≥ 0. They have

to be computed for each partition separately. The resulting
penalized similarity is of the form penV Simξ

M (P1, P2) =(
V Simξ

M (P1, P2)− penξM (P1)− penξM (P2)
)+

, where ξ ∈
{π, %, o} and P1 and P2 are the partitions induced by
M on the two process models G1 and G2. We set
penV Simξ

M (G1, G2) := penV Simξ
M (P1, P2).

As V Sim ∈ [0, 1] it is reasonable to demand for penalty
functions pen ∈ [0, 0.5]. A function that meets this require-
ment and that somehow measures the spread of a set of
objects is the variance, in this case the sample variance,
that uses the centroids as (sample) means. Therefore, if we
apply the unbiased sample variance, we get penξM (p) =

1
|p|−1

∑
a∈p(ξ(a)− ξ(p))2 with ξ ∈ {π, %, o} as penalty value

for one partition element p ∈ P with |p| ≥ 2. For |p| = 1
the penalty value is 0 and for p = ∅ it is not available,
i.e., set to NULL. The penalty value for a whole partition

P is computed as the average over the single penalty values
penξM (P ) = 1

|P |
∑
p∈P pen

ξ
M (p).

D. (Penalized) Behavioral Similarity

To get one value for behavioral similarity, one has to com-
bine the three dimensions of behavior and their corresponding
similarity values V Simπ , V Sim%, and V Simo or, analog,
the penalized similarity values penV Simπ , penV Sim%, and
penV Simo. This combination can take place with help of a
weighted sum of the three values, where the weights can be
chosen according to one’s own impression of suitability or,
which would be worth futher studies, according to statistical
findings including model training and parameter estimation,
e.g., maximum likelihood methods. With non-negative weights
wπ , w%, and wo with wπ+w%+wo = 1 the weighted sum, i.e.,
the behavioral similarity value for two process models G1 and
G2 under mapping M , is of the form V SimM (G1, G2) :=∑
ξ∈{π,%,o} ω

ξV Simξ
M (G1, G2).

For the penalized behavioral similarity
penV SimM (G1, G2), the similarity values for the three
behavioral dimensions are replaced by their respective
penalized similarity values. Both V Sim and penV Sim
always take values between 0 and 1 where 0 means no
similarity and 1 full similarity. The (penalized) behavioral
similarity can then again be used for calculating the similarity
value including other process model perspectives [11].

IV. VALIDATION

A comparison of three methods to measure behavioral
similarity is done in this section. Therefore, three process
models G1, G2, and G3, shown in Figure 2, are considered.
Models G1 and G2 describe the same process, but were
modeled by different persons. Model G3 describes a different
process including similar tasks, but with a differing order.
In G3, not all tasks have to be executed and some may
be executed several times. Models G1 and G2 always have
activities A to E executed exactly once. The original label
descriptions have been removed and substituted by letters A
to E to provide better readability, as the focus lies only on
the models’ behavior. Information about agents, non-human
resources, and data is not shown in the models, either.

For calculating the similarity between Models G1 and G2,
the partial injective 1-to-1 mapping Mpi

1 is established with
{(A,AB), (C,C), (D,DE)} = Mpi

1 . Tasks B and E from
G1 are not mapped, but results would not differ if B and E
instead of A and D would have been mapped. The bijective M-
to-N mapping M b

1 according to Definition 2 is established with
{({A,B}, {AB}), ({C}, {C}), ({D,E}, {DE})} = M b

1 .
These mappings provide the highest similarity, respectively,
when taking into account the activities’ descriptions (us-
ing string-edit distance). The mappings for the comparison
of G1 and G3 are the identity functions, namely Mpi

2 =
{(·, ·) | · ∈ {A,B,C,D,E}} and M b

2 = {({·}, {·}) | · ∈
{A,B,C,D,E}}.

For evaluation, three behavioral similarity values are com-
puted for every comparison. One with help of casual footprints
(CF) [9], one with smallest casual footprints (smallest CF) as
suggested in [3], Section 6.3, IV discussion, and one with the
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Figure 2: Behavioral similarity values are computed for models G1–G2 and
G1–G3

penalized centroid-based approach as introduced in the present
work. The centroid-based method uses M b

1 and M b
2 and the

positions (or rather the positional distances) of the respec-
tive sets of nodes induced by these mappings. The smallest
CF is a modified casual footprint approach with a slightly
different, especially simplified, definition. The results of the
computation are listed in Table I. The numbers in brackets
count the effort of determining the respective similarity values.
In particular, the number of computed intermediate values
are specified. As the calculation of casual footprints needs
another underlying similarity value, called correlation, between
the compared nodes, we chose a label-based similarity. For
simplicity, it was set Sim(A,AB) = Sim(D,DE) = 0.5 and
Sim(·, ·) = 1 ∀· ∈ {A,B,C,D,E}.

Obviously, all three methods state that models G1 and G2

are more similar than models G1 and G3, which is as desired
and also assessed by several modeling experts. But differences
between the assigned similarity values are substantial. The
centroid-based approach states full behavioral similarity be-
tween models G1 and G2, which could be discussed if this
result fits reality, because the first model’s parallel gateways
seem to be ignored. The casual footprint method instead says
similarity is only about 80%, although, as stated above, when
finished, all activities A to E are executed exactly once in
both models. In contrast, the casual footprint method assigns
a similarity of about 64% to G1 and G3, although these
models describe completely different processes concerning
their behavior. The centroid-based approach assigns a relatively
low similarity value of about 33%. For both comparisons, the
smallest casual footprint approach gives values in between the
two other methods. Another even more remarkable difference
gets apparent when considering the number of calculated

TABLE I: Similarity values and number of computed intermediate values (IM).

Sim. (#IM) CF smallest CF centroid-based

Sim(G1, G2) 0.799 (294) 0.885 (90) 1.000 (30)

Sim(G1, G3) 0.640 (414) 0.632 (108) 0.333 (30)

intermediate values (not elementary arithmetical operations).
They are shown for all three methods and both comparisons
in brackets in Table I. It is apparent, that between the common
casual footprint method and the smallest casual footprint
approach there is a huge difference in the number of calculated
intermediate values, even if the resulting similarity values do
not differ that much. For the casual footprint method, the
number of intermediate values rises exponentially with the
number of model nodes. For the smallest casual footprint
approach, this number is only increasing quadratic, which
was one of the reasons for the authors of [3] to introduce
it. For the centroid-based approach, the number of calculated
intermediate values rises linearly with the number of model
activity nodes, so the effort is even less, which is a strong
point for this method.

It should be pointed out again that the centroid-based
similarity value gives information about only one aspect of
the compared process models. Information about labels, data,
and resources is not used for calculating this value. Similarity
values concerning these aspects can be calculated separately
and then be combined altogether. Instead, the casual footprint
method needs a similarity value assigned to each pair of
activities which is element of the underlying mapping. Thus,
the casual footprint method does not completely separate
the different process perspectives orthogonally from each
other. However, the results of similarity calculations using the
centroid-based method only make sense when combined with
other perspective similarities. Otherwise, in the majority of the
cases, it would lead to a mapping where first node is mapped
to first node, second node to second node, and so on. The
behavioral similarity is more like an endorsement of the map-
pings and similarities obtained for the other perspectives, that
also consider the content of the model elements (labels, agents,
etc.), which is not the case for the behavioral aspect. This is
why a more comprehensive evaluation of the method can only
take place together with the other process perspectives, which
has to be done nonetheless to fully evaluate the centroid-based
approach. As possible evaluation setting, a similar setup as in
[9] would probably be a good choice. The draft version for
this paper [12] contains a second example for application of
the centroid-based similarity measure.

V. CONCLUSION AND FUTURE WORK

As shown in Section II, there already exists a variety of
techniques for calculating the behavioral similarity of arbitrary
process models. The methods presented in the work at hand
should not be seen as strictly better, but should rather help
in computing behavioral similarity for M-to-N mappings, for
which behavioral similarity measures applicable on general
process models did not exist. A big advantage of the centroid-
based approach is that average values can easily be computed,
unlike trace-based and casual footprint methods, and thus,
the presented method is suitable even for large practical
applications. Furthermore, the idea of splitting process models
into several perspectives like label description, data objects,
etc., as already pursued in multiple similarity matching papers,
is continued in this work by dividing model behavior into
the three dimensions (relative) position, repeatability, and
optionality, which allows for adjusting the weighting of these
three dimensions according to the user’s needs. The separation
of behavior is not done in related work, as far as the authors
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know. Penalty terms are a common means in the field of
measure construction, although in the context of process model
similarity measuring they have not been used so far. However,
the centroid-based similarity measure is not very informative
when used on its own. It has to be combined with similarity
values for other process perspectives, but this is also the case
for, e.g., casual footprints.

Some approaches for future work are already stated in
the main part of the paper. Concerning execution specific
features of process models, e.g., the optionality value of a
node, it is conceivable to use process log information to
improve similarity values. Additionally, parameters, weights,
and maybe even formulae might be improved by applying
machine learning methods on already matched process models.
Another big topic for future work would be to implement
M-to-N matching methods for all process model perspectives
and to run a detailed evaluation that combines all similarity
values for the different perspectives. Furthermore, it could be
checked if the centroid-based approach provides a real metric,
i.e., if it fulfills the corresponding conditions of symmetry,
non-negativity, identity, and the triangle inequality. Or, if this
is not the case, can it be (easily) adjusted to achieve these
properties, as with such metrics it is possible to search huge
repositories even faster for similar elements, e.g., with metric
trees [22].
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