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Abstract—In this paper, inertial contact sensor based terrain 
classification is performed with a Radial basis function network 
(RBFN). Compared to the more popular Multilayer 
perceptrons, RBFNs are also intelligent techniques and 
universal approximators, but with a much simpler structure 
and shorter training time. It has been shown that RBFNs are 
efficient classifiers and consequently may be used for terrain 
classification. For the experiments, a mobile robot platform 
recorded vibration training data with an inertial measurement 
unit (IMU) while traversing five different terrains: asphalt, 
carpet, dirt, paving, and tiles. The composition of these terrains 
induces specific vibrations in the mobile platform which are 
measured by the IMU. The vibration signatures are comprised 
of the mobile robot’s linear acceleration, orientation, and the 
earth’s magnetic field. In contrast to most terrain classification 
techniques found in literature, no pre-processing of the data is 
performed. This reduces the computational overhead needed 
for real-time classification. A RBFN is then trained using a 
hybrid conjugate gradient descent method and k-fold cross-
validation. Identification of the terrain is performed in real-
time. The results are compared to those obtained by a Naïve 
Bayes method and a Support Vector Machine, which have also 
been successfully applied to terrain classification in literature. 
It was found that the RBFN outperformed these other 
techniques by a relatively large margin. Consequently, the 
RBFN with no pre-processing of the input data may be used as 
a contact sensor based terrain classification method. 

Keywords–classification; IMU; inertial measurement unit; 
Radial basis function network; sensor; terrain classification. 

I.  INTRODUCTION 
Mobile robots are employed in many different operational 

fields like supply and logistics, surveillance, search and rescue 
missions, agricultural applications, transportation, cleaning, 
inspection and entertainment [1][2]. For these operations, it 
may be necessary to traverse some indoor or off-road terrain, 
which might influence the vehicle’s performance. The 
efficiency of these vehicles can be improved by detecting their 
environment. This act of identifying the type of terrain being 
traversed from a list of candidate terrains such as dirt, sand, or 
gravel, is called terrain classification [3].  

It may be beneficial to identify the current terrain type as 
the terrain conditions may have an influence on both the 
motion control and planning stages of the vehicle’s trip. Once 
the mobile robot’s control system has knowledge of the 
surface it is travelling on, it will be easier to maneuver over 

uneven terrain or around obstacles. In addition, knowledge of 
the terrain will allow the vehicle to drive at higher speeds. By 
classifying the terrain, an automated driving process can be 
obtained which is terrain-dependent. 

Research on the identification of terrain types can be 
divided into two groups: methods relying on noncontact 
sensors [3] - [6] and methods utilizing contact sensors [7] – 
[10]. Examples of noncontact sensors are vision sensors and 
laser scanners. A vision sensor like a charge-coupled device 
(CCD) camera uses techniques that extract textures and colors 
from the sensor data to classify it into variable terrains like 
forests and the sky. Unfortunately, the performance of these 
techniques is highly dependent on environmental factors like 
lighting conditions and climate effects and consequently the 
sensor information can be distorted. Laser scanner sensor data 
that are obtained from a terrain are converted into frequency 
information. Learning algorithms then use this information to 
classify the terrain. A disadvantage of such a method is that it 
needs numerous data points, which may hinder real-time 
classification.  

Factors like friction, cohesion, damping, stiffness and 
surface irregularity comprise the terrain interface that is 
presented to the mobile robot [11]. As the mobile robot 
traverses the specific terrain, these terrain properties 
combined with the robot dynamics produce vibrational 
signatures in body motion. Methods based on contact sensors 
classify a terrain using sensor information like the vibration 
frequency or the slope ratio of the mobile robot’s body into 
the terrain type. This enables the mobile robot to choose an 
appropriate driving mode, which allows the vehicle to traverse 
the terrain most effectively, prevents physical damage and 
keep wheels from sinking into the ground. 

The goal of this paper is to perform terrain classification 
using a Radial basis function network (RBFN) as opposed to 
the well-known Multilayer perceptron (MLP) neural network, 
which has also been applied to this problem [12]. The MLP 
that is trained by the backpropagation rule is one of the most 
used and important neural network models [13]. Owing to its 
powerful universal approximation capability, the MLP is 
extensively used in classification, regression, prediction, 
system identification, control, feature extraction, and 
associative memory. Broomhead and Lowe [14] proposed the 
RBFN in 1988. This neural network has become a good 
alternative to the MLP, since it has equivalent capabilities as 
the MLP model, but can be trained much faster.  
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Previous studies have shown that RBFNs in general are 
efficient classifiers [1][15]. More specifically, in one study [1] 
a RBF network has been used for terrain classification where 
a Discrete Fourier transform was implemented to perform 
feature extraction. Unfortunately, such pre-processing of the 
data is a time-consuming task, which may prevent the real-
time identification of the terrain. Although the aim of this 
paper is to investigate the feasibility of a RBFN to perform 
terrain classification, the results that are obtained will be 
compared to those achieved by the Naïve Bayes method and 
the Support Vector Machine (SVM) technique.  These two 
models are also used for terrain classification in literature and 
the comparison will place the findings in the context of other 
popular techniques. 

Terrain classification will be performed based on real-time 
vibration data obtained from an inertial measurement unit 
(IMU) contact sensor. No pre-processing, as reported in 
previous studies, of the data is performed. The assumption is 
that the output of the IMU sensor is influenced by the 
vibrations induced in the platform while traversing different 
terrains. The test vehicle, a Lego Mindstorms EV 3 mobile 
robot, is augmented by an IMU mounted on a Raspberry Pi 2 
computer. Data that is collected from the IMU on the moving 
test vehicle is used as the terrain signature. This signature will 
then be classified by a trained RBFN as one of five 
predetermined terrains - asphalt, carpet, dirt, paving, or tiles. 

The remainder of the paper is organized as follows. In 
Section II, the relatively simple structure and training of the 
RBFN will be discussed. A variant of the gradient descent 
method is used for training. Experiments performed to 
determine the accuracy of terrain classification using a RBFN 
will be considered in Section III. The results that were 
obtained will be examined in Section IV. Finally, some 
concluding remarks will be presented in Section V. 

II. RADIAL BASIS FUNCTION NETWORKS 
In this section, the RBFN architecture and training of the 

model will be considered. 

A. Architecture 
 

A RBFN is a feedforward neural network with three 
layers (𝐽𝐽1 − 𝐽𝐽2 − 𝐽𝐽3) [15] – [17] as shown in Figure 1. In the 
input, hidden and output layers there are 𝐽𝐽1, 𝐽𝐽2 and 𝐽𝐽3 neurons 
respectively. The bias in the output layer is denoted by 
𝜙𝜙0(�⃗�𝑥) = 1 while the nonlinearity at the hidden nodes is 
denoted by the 𝜙𝜙𝑘𝑘(�⃗�𝑥)’s. Each hidden layer node uses a Radial 
basis function (RBF), denoted by 𝜙𝜙(𝑟𝑟)  for its nonlinear 
activation function. The hidden layer performs a nonlinear 
transformation of the input. This nonlinearity is then mapped 
into a new space by the output layer, which acts as a linear 
combiner. Normally, all hidden nodes utilize the same RBF; 
the RBF nodes have the nonlinearity 𝜙𝜙𝑘𝑘(�⃗�𝑥) = 𝜙𝜙(�⃗�𝑥 −
𝑐𝑐𝑘𝑘), 𝑘𝑘 = 1, … , 𝐽𝐽2, where 𝑐𝑐𝑘𝑘 denotes the center or prototype of 
the kth node and 𝜙𝜙(�⃗�𝑥) is an RBF. An extra neuron in the 
hidden layer can model the biases of the output layer neurons. 
This neuron has a constant activation function 𝜙𝜙0(𝑟𝑟) = 1. 
The RBFN determines a global optimal solution for the 

adjustable weights in the minimum mean square error (MSE) 
sense by using the method of linear optimization. The output 
of the RBF network, provided by input �⃗�𝑥, is given by 

 
 

𝑦𝑦𝑖𝑖(�⃗�𝑥) = �𝑤𝑤𝑘𝑘𝑖𝑖𝜙𝜙(‖�⃗�𝑥 − 𝑐𝑐𝑘𝑘‖
𝐽𝐽2

𝑘𝑘=1

), 𝑖𝑖 = 1, … , 𝐽𝐽3, 
 

  (1) 

where 𝑦𝑦𝑖𝑖(�⃗�𝑥)  is the ith output, 𝑤𝑤𝑘𝑘𝑖𝑖  denotes the connection 
weight from the kth hidden neuron to the ith output unit, and 
‖∙‖  is the Euclidian norm. The RBF usually utilizes the 
Gaussian function 𝜙𝜙(∙) and such a model is normally called 
the Gaussian RBF network. 

 
Figure 1. RBF network architecture [16]. 

Given a set of N pattern pairs {(�⃗�𝑥𝑝𝑝, �⃗�𝑦𝑝𝑝)|𝑝𝑝 = 1, … ,𝑁𝑁}, (1) 
can be expressed in matrix form as 

 
 𝒀𝒀 = 𝑊𝑊𝑇𝑇Φ (2) 

 
where 𝑾𝑾 = �𝑤𝑤1, … ,𝑤𝑤𝐽𝐽3�  is a 𝐽𝐽2×𝐽𝐽3  matrix, 𝑤𝑤��⃗ 𝑖𝑖 =
�𝑤𝑤1𝑖𝑖 , … ,𝑤𝑤𝐽𝐽2𝑖𝑖�

𝑇𝑇 ,Φ = �𝜙𝜙�⃗ 1, … ,𝜙𝜙�⃗ 𝑁𝑁�  is a 𝐽𝐽2×𝑁𝑁  matrix, 𝜙𝜙�⃗ 𝑝𝑝 =
�𝜙𝜙𝑝𝑝,1, … ,𝜙𝜙𝑝𝑝,𝐽𝐽2�

𝑇𝑇
is the hidden layer output for the pth sample, 

specifically,  𝜙𝜙𝑝𝑝,𝑘𝑘 = 𝜙𝜙���⃗�𝑥𝑝𝑝 − 𝑐𝑐𝑘𝑘��, 𝒀𝒀 =  [𝑦𝑦1 𝑦𝑦2  … 𝑦𝑦𝑁𝑁] is a 
𝐽𝐽3×𝑁𝑁 matrix, and �⃗�𝑦𝑝𝑝 = �𝑦𝑦𝑝𝑝,1, … ,𝑦𝑦𝑝𝑝,𝐽𝐽3�

𝑇𝑇 . 
The RBFN is a universal approximator [16]. If the RBF 

is appropriately chosen, the RBF network can theoretically 
approximate any continuous function arbitrarily well. The 
Gaussian RBF is expressed as 𝜙𝜙(𝑟𝑟) = exp (−𝑟𝑟2/2𝜎𝜎2) where 
𝑟𝑟 > 0 represents the distance from a data point �⃗�𝑥 to a center 
𝑐𝑐  and 𝜎𝜎  is utilized to control the smoothness of the 
interpolating function. The Gaussian RBF is a localized RBF 
with the property that 𝜙𝜙(𝑟𝑟) → 0 as 𝑟𝑟 → ∞.  

Training of an RBFN is usually performed by a two-phase 
strategy. During the first phase, suitable centers 𝑐𝑐𝑘𝑘 and their 
corresponding standard deviations, 𝜎𝜎𝑘𝑘, also known as widths 
or radii are determined. The network weights 𝑾𝑾 are adjusted 
in the second phase. The training approach that is followed in 
this research is the supervised learning of all the parameters 
by the relatively simple gradient descent method.  
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B. Training 
 

There is one output unit for each of the five terrain class 
values (asphalt, carpet, dirt, paving, and tiles). The model 
trained for the ith output unit (class value) is given by: 

 
 𝑦𝑦𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) = 

𝑔𝑔�𝑤𝑤𝑖𝑖,0 + �𝑤𝑤𝑖𝑖,𝑘𝑘exp�−�
�𝑥𝑥𝑗𝑗 − 𝑐𝑐𝑘𝑘�
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(3) 

 
where the activation function 𝑔𝑔(∙) is a logistic function [18]. 
A Gaussian RBF network with the same global variance 
parameter 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  for all RBF centers still has universal 
approximation capability [16]. The appropriate parameter 
values for 𝑤𝑤𝑖𝑖,𝑘𝑘  and 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  are found by identifying a local 
minimum of the penalized squared error on the training data. 
Given 𝑝𝑝 classes, the error function can be expressed as 

  

𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆 = �
1
2
���𝑦𝑦𝑘𝑘,𝑖𝑖 − 𝑓𝑓𝑖𝑖(�⃗�𝑥𝑘𝑘)�

2
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𝑔𝑔

𝑘𝑘=1

𝑝𝑝

𝑖𝑖=1

�,  

 

 
 
 
 

(4) 

where 𝑦𝑦𝑘𝑘,𝑖𝑖 = 0.99 if data point �⃗�𝑥𝑖𝑖 has the ith class value, and 
𝑦𝑦𝑘𝑘,𝑖𝑖 = 0.01 otherwise. Instead of using 1.0 and 0.0, the values 
0.99 and 0.01 are used to aid the optimization process. 
Additionally, in (4), 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆 ,  is divided by 𝑛𝑛,  the number of 
training data points, as this was determined through empirical 
observation to improve convergence with the optimization 
methods used [19]. Standard calculus is utilized to find the 
corresponding partial derivatives, which is comprised of the 
gradients of the error function with respect to the network 
parameters. Backpropagation is employed to calculate the 
partial derivatives in the same manner as in Multilayer 
perceptrons. The hybrid conjugate gradient descent method 
specified by [20] is used for training. 

Before training starts, all numeric inputs in the data are 
normalized to the [0, 1] interval. This data are transformed 
back into the original space when predictions are produced. 
The mode (for nominal attributes) or the mean (for numeric 
ones) is used to impute missing values. Additionally, nominal 
attributes are binarized and constant attributes are removed. 
These same transformations are performed for new inputs 
when the predictions are made. 

Initialization of the network parameters is another 
important aspect of the training procedure. The initial weights 
of the output layer are sampled from 𝒩𝒩(0, 0.1). This strategy 
was empirically determined based on the familiar heuristic of 
choosing small, randomly distributed initial weights [19]. 

As the k-means algorithm is often used to train the hidden 
layer of the RBFN in an unsupervised process, it is utilized to 
determine the initial hidden unit centers 𝑐𝑐𝑘𝑘. Furthermore, the 

initial value of the variance parameter 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  is set to the 
maximum squared Euclidian distance between any pair of 
cluster centers. This ensures that the initial value of the 
variance parameter is not too small. 

The learning process is accelerated on a multi-core 
computer by parallelizing the calculation of the error function 
and its gradient on a user-specified number of threads. 

In the next section, the experiments that are performed to 
determine the RBFN terrain classification accuracy will be 
discussed. 

III. EXPERIMENTAL DESIGN 
The goal of the experiments is to identify the type of 

terrain being traveled on by a mobile robot, from a list of 
candidate terrains. Figure 2 shows the Lego Mindstorms EV3 
experimental platform used in the investigation. The mobile 
robot has a Raspberry Pi 2 computer attached to the front with 
a Sense HAT inertial measurement unit (IMU) in turn 
connected to the Raspberry Pi. The Sense HAT is readily 
available and includes the following sensors: A gyroscope, 
an accelerometer, and a magnetometer. The mobile robot 
platform is battery powered and moves on rubber treads. An 
additional battery pack (not shown) is mounted on top and 
powers the Raspberry Pi computer. The five terrain types 
used in the study are displayed in Figures 3 to 7. 

 
 

 
 

Figure 2. Lego Mindstorms EV 3 mobile robot. 

The terrain (asphalt, carpet, dirt, paving, or tiles) on which 
the mobile robot is currently travelling is identified in real-
time. The assumption is that the vibrations induced in the test 
vehicle and measured by the output of the IMU sensor 
represent a signature, which can be used to accurately classify 
the terrains. The data for each terrain is sampled at an 
irregular rate of ≈ 16 2

3
 Hz for a 600 second duration. The 

RBFN is then trained offline using the RBFN training scheme 
discussed in Section II (B). Three outdoor terrains (asphalt, 
dirt, and paving) and two indoor terrains (carpet and tiles) 
were analyzed. 
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Figure 3. Asphalt. 

 
 

Figure 4. Carpet. 

The RBFN architecture for this specific problem has five 
outputs that serve to identify the terrain type. Each of the 
output values 𝑦𝑦𝑖𝑖 ∈ [0,1] denotes the likelihood that a given 
signal presented as an input to the RBFN matches one of the 
five candidate terrains. In addition, the RBFN architecture 
has twelve inputs, which correspond to the dimension of the 
input signal data point. Each of these input signal data points 
received from the Sense HAT IMU can be denoted as: 

 
�𝑝𝑝 𝑟𝑟 𝑦𝑦 𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧 𝑔𝑔𝑥𝑥 𝑔𝑔𝑦𝑦 𝑔𝑔𝑧𝑧 𝑚𝑚𝑥𝑥  𝑚𝑚𝑦𝑦 𝑚𝑚𝑧𝑧�, 

 
where 𝑝𝑝, 𝑟𝑟, and 𝑦𝑦 denote the pitch, roll and yaw (measured in 
degrees), 𝑎𝑎  is the linear acceleration (𝑚𝑚/𝑠𝑠2)  measured in 
three dimensions (𝑎𝑎𝑥𝑥 , 𝑎𝑎𝑦𝑦  and 𝑎𝑎𝑧𝑧),  𝑔𝑔  is the rate of turn 
(degrees/second), also measured in three dimensions (𝑔𝑔𝑥𝑥,𝑔𝑔𝑦𝑦  
and 𝑔𝑔𝑧𝑧)and 𝑚𝑚  denotes the earth’s magnetic field (gauss), 
measured in three dimensions (𝑚𝑚𝑥𝑥 ,𝑚𝑚𝑦𝑦  and 𝑚𝑚𝑧𝑧)  of the 
mobile robot respectively.  

 
 

Figure 5. Dirt. 

 
 

Figure 6. Paving. 

 

Figure 7. Tiles. 
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The Weka system [19] was used for data processing, 
presentation, classifier training and testing. The terrain 
classification training dataset contained twelve inputs, five 
outputs and a total of 49993 samples. For the experiments, 
10-fold cross-validation was performed. Results obtained by 
the RBFN were compared to those found by a SVM model 
and a Naïve Bayes technique, which are two popular methods 
found in the literature used for supervised terrain 
classification [9][10]. In the following section, the results will 
be discussed. 

IV. DISCUSSION 
 

The classification accuracy results obtained by the 
experiments are shown in Figure 8. 

 

 

 Figure 8. Terrain classification results. 

From Figure 8 it can be observed that the machine 
learning algorithms, ordered from best to worst, are the 
RBFN, SVM and Naïve Bayes. The latter two techniques 
produced nearly the same classification accuracy. These 
results show that the RBFN is a feasible terrain classification 
technique compared to the other two models and may 
outperform these techniques by a relatively large margin. 
This is a promising result as no pre-processing has been 
performed on the training data. 

To summarize, the RBFN applied to terrain classification 
has the following advantages: 

 
• Compared to the MLP, the RBFN has less model 

complexity, exhibit better comprehensibility and 
is easier to construct due to its simpler structure. 

• No pre-processing of the input data is performed 
like in previous studies. 

• Classification of the terrain can be performed in 
real-time because of the onboard IMU contact 
sensor. 

• In terms of predictive accuracy, the RBFN 
outperformed the Naïve Bayes technique and the 
SVM model. 
 

Based on these findings, the RBFN is without doubt a 
technique to consider for terrain classification. 

V. CONCLUSION 
In this paper, real-time classification of five given terrains 

was performed with a RBFN. In contrast to other techniques 
found in the literature, no pre-processing of the mobile robot 
platform’s IMU vibration sensor data was performed. 
Eliminating feature extraction reduces the computational 
overhead needed to identify the terrain in real-time. The 
results have shown that even without feature extraction, the 
RBFN is still a feasible model for contact sensor based terrain 
classification compared to other popular models used for this 
task. It can be used as an alternative to the MLP model due to 
its simpler structure and shorter training times. The RBFN 
has the capability to accurately recognize complex vibration 
signature patterns and can easily adapt to new terrain 
signatures by providing the model with new training 
examples. Unfortunately, compared to the other techniques, 
offline training of the model can be time consuming. 

Future work includes a comparison between the RBFN 
and MLP models to determine if the RBFN model 
outperforms the MLP model in terms of terrain classification 
accuracy. Also, a more detailed comparison with the existing 
methods must be performed. Metrics like latency (velocity) 
can be included in the results. Finally, it can be determined if 
the technique can be applied to other types of robots and how 
they must be adapted for this task. 
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