ICDS 2017 : The Eleventh International Conference on Digital Society and eGovernments

A Verification Based Flow Space Management Scheme

for Multi-Tenant Virtualized Network

Shun Higuchi

Graduate School of Computer and Information Science

Hosei University
Tokyo, Japan
Email: shun.higuchi.6j@stu.hosei.ac.jp

Abstract—Cloud services that virtualize existing IT infrastruc-
tures at data centers are widely used by governments, universities,
and companies. Multi-tenancy is required for data centers to
provide a large number of isolated networks to each organization.
OpenFlow is a core technology of software defined networking
(SDN) and is useful for centrally managing and controlling these
networks; however, SDN is used only at the management level.
It is desirable to make the flexible features of SDN/OpenFlow
available to users’ virtual networks. FlowVisor [3] virtualizes
multi-tenant OpenFlow networks by coordinating multiple con-
trollers, but it is unable to deal with conflicts of control rules
among individual virtual networks. Administrators of each tenant
thus need to design the control rules of their networks carefully.
This paper describes a verification-based scheme for coordinating
multiple tenants’ OpenFlow networks. The scheme enables
administrators to design each tenant network without having
to worry about conflicts with other tenants. It ensures isolation
of virtual networks among multiple tenants transparently. It
manages the address space overlaps and resolves conflicts in the
flow entries.

Keywords—OpenFlow; Virtualization; Multi-tenant Network.

I. INTRODUCTION

With the development of server virtualization technology,
cloud computing services, such as Infrastructure as a Service
(TaaS), have become popular. Server virtualization technology
virtualizes an organization” s IT infrastructure at a data center
and provides it through the Internet. In multi-tenant networks,
one physical network is divided into many tenant virtual
networks. The traffic in each virtual network is isolated from
the traffic in other networks. Virtual LAN (VLAN) is a popular
virtualization technology. IaaS providers divide one physical
network into many layer 2 networks by assigning a VLAN-ID
to each tenant virtual network, and the tenant users can then
freely construct their own layer 3 network on the allocated
tenant virtual network. When the providers of an IaaS cloud
using VLAN technology change the configurations of the
virtual networks, they need to change the VLAN settings of
all the network devices. However, in a cloud environment
where the number of virtual networks and virtual machines
change rather dynamically, a more flexible virtual network
construction and management method is required.

OpenFlow [2], which is a core technology of software-
defined networking (SDN) [1], has the features that satisfy
these requirements. OpenFlow enables flexible routing con-
trol and centralized management of networks by separating

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-537-1

Toshio Hirotsu

Faculty of Computer and Information Science
Hosei University
Tokyo, Japan
Email: hirotsu@hosei.ac. jp

the control plane from the data transfer plane. A controller
controls the routing of packet forwarding, and the data plane
switches transfer packets in accordance with the instruction
of the controller. Since this technology has the ability to
recognize and rewrite the VLAN-ID of each packet, laaS
providers can aggregate VLAN management functionalities
into one controller. The OpenFlow based network architecture
also enables flexible virtual network management; however, a
tenant network may accidentally disable OpenFlow function-
alities when the TaaS provider and user tenants have different
control policies. The administrators of each tenant network
may thus have difficulty gaining the benefits of OpenFlow,
if the provider uses OpenFlow technology to manage its
laaS platform. The idea of coordinating multiple OpenFlow
networks on a physical network would enable individual virtual
networks to be managed by a single tenant.

FlowVisor [3] is a technique that handles requests from
multiple OpenFlow controllers. In Flow Visor, a proxy is placed
between the OpenFlow controller and the switches, and it
exchanges and manages each tenant’ s control messages sent
between the controllers and switches. This enables OpenFlow
switches to be individually controlled by multiple controllers
on one physical OpenFlow network. FlowVisor expresses a
tenant network space in a way that is called a flow space, and
the administrator of each tenant writes flow entries belonging
to the allocated flow space definition by using their own
controller. This mechanism can be used to construct a plurality
of virtual OpenFlow networks, and it enables each tenant
controller to control each tenant’ s virtual network individually.
FlowVisor assumes that there is no overlap between flow
spaces. When applying it to a multi-tenant network, each tenant
network must define its flow entries within the flow space
provided by the IaaS provider. This problem becomes more
difficult because the flow spaces are not always discrete. In
the case of monitoring one tenant’ s flow space from another
flow space it owns, the flow spaces must overlap. The IaaS
provider needs to define them very carefully so as not to cause
unintended traffic control.

In this research, we propose verification-based OpenFlow
network virtualization based on FlowVisor that enables the
network to be freely designed by each tenant. To guarantee
traffic separation, we propose a conflict management that uses
verification of flow space definitions. If a conflict occurs, it can
be resolved by rewriting a flow entry. Our approach verifies

24

ICDS 2017 : The Eleventh International Conference on Digital Society and eGovernments

and manages overlapping parts between flow spaces defined
by individual tenants, detects conflicts between flow spaces
and flow entries, and rewrites the entries to avoid conflict in
the FlowVisor. This paper describes the method of flow-space
verification among multiple tenants and its implementation.
Section II is an overview of OpenFlow/SDN technology. Sec-
tion III explains the mechanism and problems of FlowVisor.
Section IV outlines the proposed virtualization method based
on flow entry verification, and Section V describes the method
for avoiding flow entry conflicts in more detail. Section VI
describes the details of our prototype implementation and its
performance evaluation. Section VII discusses our method in
relation with other research. Section VIII is a conclusion that
mentions future work.

II. OPENFLOW/SDN

OpenFlow is a representative architecture of software-
defined networking, and it is currently being standardized. It
is a next-generation network technology for cloud computing
environments. An OpenFlow network consists of an OpenFlow
controller responsible for routing control and an OpenFlow
switch for transferring packets according to flow entries written
by the controller. Hence, it is a centralized control architecture
that enables centralized management of networks by separating
the traditional network system into a control plane and data
plane.

The controller is software, and a pair of matching fields,
such as a MAC address, an IP address, a transport number,
a VLAN-ID, and actions to be performed on a packet are
defined as a flow entry. Flexible routing control is enabled
by transferring packets according to flow entries in the switch.
If the switch has to be reconfigured in response to a change
in the network configuration, the change is applied to all
the switches by describing the change settings as new flow
entries in the controller. This improves the manageability of
the network. The controller and switch are connected by an
OpenFlow channel, which is a control network using TCP/IP
that is constructed separately from the data network, and
they exchange control messages called OpenFlow messages
through it. Through OpenFlow messages, the controller con-
trols switches such as for writing the flow entry. In OpenFlow,
since the controller controls all the switches and knows the
network topology, it is possible for it to control routing flexibly
such as through source routing and multi-path forwarding.
Virtualizing a physical network by using OpenFlow makes it
possible not only to improve the manageability of VLAN-IDs
but also to ensure logical division of the network by using the
packet headers of layers 1 to 4 that can be specified as a match
field. OpenFlow enables its users to create a number of virtual
networks beyond the usual limits of VLAN-IDs by dividing
up the used address space in advance.

However, the conventional OpenFlow technology has some
problems when it comes to virtualizing and controlling the
OpenFlow network itself. For example, it is not possible to
control each switch individually from multiple controllers in
one OpenFlow network, and there is no mechanism to logically
divide one OpenFlow network into multiple virtual OpenFlow
networks, etc. These problems make it impossible for a tenant
to construct and control each controller or devise a virtual
OpenFlow network in a multi-tenant data center that provides
[aaS.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-537-1

Tenant A Tenant B Tenant C
Controller Controller Controller
~ 1 ”
~ | -~
~ -
~ ”
~ | -

~
Sle
- Topology
Checking Tgnant riamrsiian
Information
Forwarding Flow Space
OpenFlow Messages Definitions
7 .
AN FlowVisor
7 N
7 1 \
7’
’ 1 \
’ 1 S
7’ N N
7’ OpenFlow N
’ / Switch \\\
7~ OpenFlow ~ OpenFlow

Switch Switch

Figure 1. FlowVisor

ITI. FLOWVISOR

A FlowVisor is placed in an OpenFlow channel that con-
nects the controller and switches, as shown in the Figure 1.
It operates as a proxy that transfers the OpenFlow messages
necessary to control the switch from the controller. The ad-
ministrator of FlowVisor defines the available network space to
each tenant as a flow space and presents flow space information
to each tenant user in some way. Each tenant user creates flow
entries and a controller for writing them in accordance with
the network topology and flow space information of the virtual
OpenFlow network presented by the FlowVisor administrator.
A tenant user can control the tenant network by connecting
his controller to FlowVisor.

A. Flow Space

It is necessary for the administrator of FlowVisor to define
the available network space in each tenant as a “flow space”
in advance. As shown in Table I, a flow space has a slice
name indicating the name of the tenant network, a DPID that
indicates the OpenFlow switch ID, and a MAC address, 1P
address, transport number, etc., as an available match field
from layer 1 to 4 in a flow entry and priority. In addition, each
flow space is based on the premise that the defined network
space is independent and has no overlaps. Therefore, there is
no mechanism for checking whether flow space conflicts exist
in FlowVisor, and hence, the administrator needs to define each
flow space carefully.

B. FlowVisor Mechanism

FlowVisor functions as a proxy on the OpenFlow channel
and controls the transfer of OpenFlow messages between mul-
tiple controllers and switches. This function differs between the
case of transferring messages from the switch to the controller,
such as when sending Packet-In and Port-Status messages, and
the case of forwarding messages from the controller to the
switch, such as when sending the Flow-Mod message.

25

ICDS 2017 : The Eleventh International Conference on Digital Society and eGovernments

TABLE I. EXAMPLES OF FLOW SPACE

[Slice [DPID [Priority | VLAN [Src MAC [Dst MAC [SrcIP [Dst IP [Src TCP | Dst TCP |
Tenant A 1 100 50 * * * * 80, 22 *
Tenant B 1 100 50 * * 10.0.1.0/24 * 80 *
Tenant C 1 100 50 * * 10.0.2.0/24 * 80 *

First, we describe the messages that are transferred from
the switch to the controller. In this case, it is necessary to
specify the controller to which the message pertains before
transferring the message to it. As an example, a Port-Status
message notifying that the physical port state of the switch
has changed will affect all the tenant controllers using that
port. Accordingly, FlowVisor searches for all target controllers
from the topology information of each tenant network and
transfers the Port-Status message to all of them. In the case
of a Packet-In message, FlowVisor searches the flow space
definition to specify which tenant network the packet belongs
to and forwards the message to the tenant controller of the
corresponding flow space.

Next, we describe the messages that are transferred from
the controller to the switch. In this case, FlowVisor refers to
the topology information of all the tenant networks; then it
transfers the message to the target switch; it performs the same
operation on every message. If a tenant user tries to send a
message to the switch that does not belong to its own tenant
network, the send operation fails and a message transfer error
is returned to the controller.

C. FlowVisor Problem

FlowVisor is based on the premises that the flow spaces
allocated to each tenant network are independent and the tenant
controller sets flow entries within the allocated flow space. If
a FlowVisor administrator defines an unintended or incorrect
content flow space, an unexpected network control will be
executed. In contrast, if TaaS providers want to enable each
tenant user to freely design their own tenant network as way
of a providing a multi-tenant network, the flow space should
be able to be freely defined by each tenant user. There is a
problem that unintended traffic control can occur when a flow
entry is written that conflicts with the flow space of another
tenant. Hence, it is necessary to implement a mechanism that
can check for conflicts in flow spaces and flow entries in a
multi-tenant network.

Table I shows an example of conflicting flow entries,
wherein if tenant user A tries to write a flow entry that prohibits
the SSH session such as by sending“Src TCP = 22, action =
DROP* to the switch with DPID = 1. In Table I, match fields
of tenant A are defined as wildcard values “ * “ with the
exception of Src TCP; thus tenant user A can freely use this
value. However, if the flow entry such as what is mentioned
above is written, it will be applied to all packets that are
transferred through this switch with source TCP port number
22. Since all the packets are dropped, all SSH connections
are closed even in other tenant networks. In this case, the
packet was dropped unintentionally, however, it is possible to
rewrite the packet header as a specified action and transfer it
in OpenFlow. It is also possible to act in dubious or illegal
ways, such as eavesdropping by transferring traffic of other
tenants that are not permitted to use a server on their tenant

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-537-1

network. In particular, it is also possible to transfer the traffic
of other tenants to a server on one’ s own tenant network for
the purpose of sniffing packets.

If a FlowVisor administrator allows each tenant user to
freely design their tenant network and flow space definition,
a flow space that has overlaps will cause unintended behavior
because the flow entries conflict. This is due to OpenFlow’
s ability to flexibly set values such as wildcards about L1-L4
headers in the match field. In the example mentioned above,
since tenant user can write a flow entry with wildcards other
than the source TCP port number to the switch, he can control
the traffic in unassigned flow spaces.

IV. VIRTUALIZATION BASED ON FLOW ENTRY
VERIFICATION

We propose a virtualization method for an OpenFlow net-
work that enables a network to be designed for each tenant. In
particular, we propose a verification and management system
of duplications in the flow space allocated to each tenant
and a conflict verification and rewriting method for the flow
entries written by tenant controllers. As shown in Figure 2,
the verification is implemented in FlowVisor. First, this system
verifies and manages the overlapping address spaces in each
flow space. A tenant user defines the combination of address
spaces that s/he will use in each tenant network as a “flow
space®, and this system verifies and manages duplications. It
is possible to avoid conflicts of flow entries among tenants
as much as possible. In addition, when a flow entry in a
flow space includes overlappng address spaces with others was
written, it checks for a conflict of the flow entry and rewrites
the match field to guarantee the separation of traffic between
each tenant network. This minimizes the amount of rewriting
of flow entries by applying verification and management on
the flow space in advance.

Our system uses a new definition of a flow space. It is
constructed by restricting the elements and combinations of
match fields against the existing definition. It is possible to set
arbitrary values for all elements of the OpenFlow match field
in the existing definition. In this case, tenant users can write
flow entries that cause unintended traffic control when using
wildcards. On the other hand, our method restricts tenants
to using only a combination of address spaces that have
pre-specified range as a match field. We make it so that a
tenant user can control only the allocated network and traffic;
furthermore, we make it unnecessary to verify fields that are
not specified in a practical network.

A. Flow Space Definition

This flow space is different from the definition of Flow Vi-
sor in Section III-A. In previous work, a flow space was defined
for each switch that the tenant can control; however, here, a
new flow space is defined as a combination of address spaces
that the tenant can use for one tenant network. A flow space is

26

ICDS 2017 : The Eleventh International Conference on Digital Society and eGovernments

Tenant Network

| Tenant A
~
'~
\

‘ Define Network Space

{ “TenantA": [

“vlan" : [[0, 50]], Flow Space Definition
"src net" : "192.168.0.0/22",
"dst net" : "192.168.4.0/22",
"proto” : "TCP",

"src port" : [[1024, 65535]],

Conflict Management
for Flow Spaces

N
\\
N

|| Tenant B || Tenant C |
! s

7
4
7

N
S

1

I

1 s
’

1

4
N2

Collision Check between
Flow Space and Flow Entry

FlowVisor

"dst port" : [[0, 1023]] Collision: YES NO
b
Rewriting
Pass-Th h
Flow Entry CEANIEL

-
-
-
-
-
-
-

-

OpenFlow Network

OpenFlow

- Switch ’ N
OpenFlow
Switch
OpenFlow

4

-

|
1 ~
|
1

OpenFlow
Switch

OpenFlow
Switch

Figure 2. Proposed architecture

composed of multiple rules, where each rule consists of rule
IDs, flow space names, and a matching field that is available
to the tenant, as shown in Table II. In the matching field, it
is possible to set five kinds of header information of L2 to
L4 as VLAN ID, Src/Dst IP address and Src/Dst TCP port,
which are necessary for network operations. These definitions
are described in JSON format, as shown in Figure 3. Each flow
space describes a flow space name and a set of flow definitions.
A flow definition is described for each element of a match field,
and it is defined as conjunctions of fields. Since one flow space
is represented by one or more flow definitions, multiple flow
definitions are defined as disjunctions to allow flow entries
that match any one. Each tenant uses only the combination of
address spaces specified in this flow space. Definition example
2 in Table II, which summarizes the examples of Figure 3,
shows the following address space:

e VLAN ID = 100, Src IP = 192.168.64.0/20,
Dst IP = 192.168.64.0/20, Src TCP = 80

e VLAN ID = 101, Src IP = 192.168.64.0/20,
Dst IP = 192.168.64.0/20, Src TCP = 80

The tenant assigned this flow space can control the network by
using these two different combinations as a match field of the
flow entry. The top row of Table II shows the available address
space as the match field, but the upper limit of the VLAN ID
is half the original limit of 4096. This is due to securing the
independent address space as management space for managing
duplications of flow spaces and resolving conflicts in advance.
VLAN-IDs are allocated from this management space to the
flow space when necessary.

B. Duplicate Flow Space Verification and Flow Entry

Now let us explain the overlap verification between flow
spaces and conflicts of flow entries on the basis of the

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-537-1

"Example 1" :[

"vlan" : [[0, 50]],

"src net" : "192.168.0.0/22",
"dst net" : "192.168.4.0/22",
"proto” : "TCP",

"src port" : [[1024, 65535]],
"dst port" : [[0, 1023]]

3
{
"vlan" : [[O, 5011,
"src net" : "192.168.4.0/22",
"dst net" : "192.168.0.0/22",
"proto” : "TCP",
"src port" : [[0, 1023]],
"dst port" : [[1024, 65535]]
3
1;
"Example 2" : [
{
"vlan" : [[100], [101]]
"src net" : "192.168.64.0/20",
"dst net" : "192.168.64.0/20",
"proto™ w*TCP",
"src port" : [[807]],
"dst port" : [[80]]
3

]
¥

Figure 3. JSON Format for Flow Space

definition in the previous section. Table III lists examples of
flow spaces defined for three tenants A, B, and C. Since the
flow space definition of the tenant A at the top row completely
includes the flow spaces of the following tenants B and C,
flow space A overlaps B and C and is not independent. On
the other hand, in the flow spaces of tenants B and C that are
independent in Table II, independent values are specified for

27

ICDS 2017 : The Eleventh International Conference on Digital Society and eGovernments

TABLE II. FLOW SPACE LIMIT AND DEFINITION EXAMPLES

[Rule ID [Space Name [VLAN | Src IP [Dst IP [Src TCP [Dst TCP]
1 Maximum usage | 0 ~ 2047 | 0.0.0.0 ~ 255.255.255.255 | 0.0.0.0 ~ 255.255.255.255 0~65535 0~65535
2 Example 1 0~ 50 192.168.0.0/22 192.168.4.0/22 1024 ~ 65535 0~ 1023
3 Example 1 0~ 50 192.168.4.0/22 192.168.0.0/22 0~ 1023 1024 ~ 65535
4 Example 2 100, 101 192.168.64.0/20 192.168.64.0/20 80 *

any of the match fields, such as Src IP address. Since only the
conjunction of the combination of the address spaces is used
as a match field in our definition of the flow space, we can
detect for duplications by verifying the inclusion relation for
each combination of address spaces.

If the flow spaces have a complete inclusion relation, one
must detect and avoid conflicts of flow entries after managing
any flow space duplication. In flow spaces such as in Table III,
the flow entry at the top of the Table IV written from tenant A’
s controller will collide with the flow entries of other tenants.
Table IV shows two examples, i.e., one that conflicts with
other flow space definitions and another that does not conflict
with others. In the example of flow entry at the upper row,
the value of Src IP is a wildcard and it is based on the flow
space of tenant A. Since it includes the range of flow spaces in
other tenants B and C, it conflicts with their flow entries, and
their traffic is also controlled by this conflicting flow entry. On
the other hand, in the example of the flow entry in the lower
row, Src IP = 10.0.0.1, which is an independent value against
the flow space of other tenants is set in the match field. This
flow entry does not cause a conflict. As mentioned above, we
must verify the inclusion relation of the value specified in the
match field for each flow space. If the value includes other
tenant’s flow spaces, it is possible to verify and avoid conflict
by extracting a new value from the free independent address
space and setting it to a conflicting flow entry.

V. CONFLICT VERIFICATION OF FLOW ENTRY

To avoid conflicts between flow entries, we propose a
two-step verification method. The first step involves checking
the consistency between the address space defined in the
match field of the flow entry and its own flow space. In
the second step, for the match field in the flow entry, the
part of the wildcard including the value defined in the flow
space of the other tenant is automatically expanded into a
free independent address. As a result, conflicts due to flow
entries using wildcard values are detected and avoided while
at the same time different flow entries are prohibited from the
defined flow space. These measures guarantee that traffic of
the different tenant networks is separated.

A. Consistency Check with Flow Spaces

A consistency check is made of the flow entry in the Flow-
Mod message from the tenant controller as to whether the
match field deviates from the tenant’s flow space definition.
The consistency check simply compares the range of the
address space for values other than wildcards in the match
field to see if they go beyond the range defined in the flow
space. If a flow entry with a value beyond that of the flow space
definition is written, the Flow-Mod message is discarded and
a transmission error for the Flow-Mod message is sent to the
tenant controller.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-537-1

B. Expanding Wildcard Parts

We rewrite the flow entries that passed the consistency
check of Section V-A so that the wildcard part of the match
field does not conflict with the address space defined in the
other flow space. Here, as with the example in Section III-C,
we will explain the case of writing a flow entry such as “drop
all packets with the source TCP port number 22” from the
tenant A controller in Table I. In this case, because the value of
the source TCP port is within the flow space first, it passes the
consistency check of the Section V-A. Next, all the match fields
except for the source TCP port are filled in as wildcards, but
these include tenant B’s flow space for VLAN-ID and source
IP address as well as tenant C’s space for the source/destination
IP address in Table I. For avoiding conflicts between flow
entries, one or more independent values are set for each of
these wildcards. The result of rewriting the flow entry using
the free address space is shown on the lower row of Table V.
Our method rewrites the wildcard part the flow entry so that
the match field does not conflict with others and transfers it
in a Flow-Mod message. In so doing, it is guaranteed that the
flow entry will not incorrectly control the traffic on another
tenant network.

VI. IMPLEMENTATION

Our core methods consisted of two flow space conflict
verification systems, i.e., the "flow space manager” and “flow
translate engine”, and we implemented a prototype flow space
manager. This section describes the implementation and initial
performance evaluation. The flow space manager holds def-
initions of the given flow space and investigates in advance
the flow space where flow entries can collide. Here, the flow
space is defined as shown in Figure 3; the manager analyzes
it and holds flow definitions for each flow space. At this time,
in each flow definition, a flow definition that is a duplicate of
one of the other flow spaces in all match fields may cause a
conflict.

The flow definition is managed by hashing the source IP
address space with the network address of 24 bit prefix as the
key. In this case, if the source IP address space of the flow
definition is narrower than /24, the network address of the /24
network including it is used as the key. If it is larger than
/24, network addresses of all /24 networks are registered as
multiple entries.

This manager was implemented in Ruby 2.3, and the initial
performance evaluation measured the overhead of flow regis-
tration. We measured the change in the time taken from the 1st
to 5000th in two cases of 5000 flow spaces that did not contain
any conflicts and 5000 flow spaces that completely contained
conflicts. The results, as measured by a computer with Intel
Core-i7 2.8GHz, 16 GB memory, are shown in Figure 4. The
flow spaces where conflicts occurred are slower, but could be
processed at a rate of about 0.2 ms per entry. Considering that

28

ICDS 2017 : The Eleventh International Conference on Digital Society and eGovernments

TABLE III. EXAMPLES OF DUPLICATE FLOW SPACES

Rule ID | Space Name | VLAN |

Src IP

[DstIP [Src TCP | Dst TCP |

l
l

1 [Tenant A | 50] [* 1] 80,22] *]
2 Tenant B 50 10.0.1.0/24 * 80 *
3 Tenant C 50 10.0.2.0/24 * 80 *

TABLE IV. EXAMPLES OF FLOW ENTRIES IN TABLE III

[Entry [Match Field | Action]
Conflicting VLAN ID = 50 Output: port 2
Flow Entry Src TCP = 80

Non-Conflicting VLAN ID =50
Flow Entry Src IP = 10.0.0.1 Output: port 2
Src TCP = 80

TABLE V. REWRITING WILDCARD PARTS

[Entry Match Field | Action |
Conflicted Src TCP = 80 DROP
Flow Entry

Rewrited Src TCP = 80
Flow Entry || Src IP = 10.0.0.0/24 | DROP
VLAN ID = 2048

the flow space registration is relatively infrequent, this result
indicates sufficient practical performance. The flow translate
engine is currently being implemented; however, it examines
only the definitions of target flow spaces, accordingly, the
engine searches fewer flow space definitions than in the flow
space manager.

VII. DISCUSSION

We proposed an OpenFlow network virtualization scheme
that allows each tenant to freely use OpenFlow technology
in a multi-tenant network environment. The features of this
scheme include virtualization of an OpenFlow network by us-
ing conflict management in a flow space abstracting individual
tenant networks and conflict verification of each flow entry.
The designer of each tenant network can freely design the
network configuration by defining the network address field
such as the IP address.

Flowspace registered overhead
1 T T

T
w/o conflict ——
w conflict ——

08 X]
0.7 |
06

0.5 -

Time (s)

04

03

0.2 -

01

1 1 1
0 1000 2000 3000 4000 5000
number of flow spaces

Figure 4. Overhead of Flow Registration

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-537-1

FlowVisor requires that each flow space never overlap;
thus, it cannot verify whether conflicts occur between flow
spaces. This means that conflict avoidance among flow spaces
is left to the operator’s responsibility. From this point of
view, it seems reasonable to view it as a network partitioning
technique rather than a virtualization. Skoldstrom [4] et al.
propose virtualization method that uses FlowVisor as a relay
network of a wide area network. They focus on resource
management, whereas our research mainly deals with mapping
to lower-layer network separation technology such as MPLS.
Yamanaka et al.’s [5] virtualization method works by assigning
and tagging a specific MAC address for each virtual network at
the edge of the network. This method restricts flow definitions
to those that can be described by each tenant.

Our method can freely define a virtual network for each
tenant and realizes a control that maintains its independence.
As a result, based on the design and construction of the estab-
lished TCP/IP network, users can introduce flexible controls
by using OpenFlow technology. Even when the backend of the
IT infrastructure of the current organization is moved to the
cloud environment, it will be possible to provide both flexible
network control and ease of design like that of a conventional
network.

VIIL

We proposed a virtual network management system that
maximizes the ability of OpenFlow virtualization by using
verification of the flow space definition. The method enables
individual tenant networks to be freely designed in a multi-
tenant network environment and ensures isolation among them.
This makes it possible for [aaS providers to provide a flexible
tenant network in which OpenFlow technology is freely used
for and by each tenant user. A preliminary evaluation of a
prototype shows that the proposed flow space management has
sufficient performance.

CONCLUSION

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP15K00138.

REFERENCES

[1] N. McKeown, "Software-defined networking,” INFOCOM keynote talk,
vol. 17, no. 2, pp. 30-32, 2009.

[2] N. McKeown et al., "OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
Issue 2, pp. 69-74, April 2008.

[3] R. Sherwood et al., "FlowVisor: A Network Virtualization Layer,” Tech.
Rep. OPENFLOW-TR-2009-01, OpenFlow Consortium, October 2009.

[4] P. Skoldstrom and K. Yedavalli, "Network Virtualization and Resource
Allocation in OpenFlow-based Wide Area Networks,” IEEE Interna-
tional Conference on Communications(ICC), pp. 6622-6626, June 2012.

[5] H. Yamanaka, S. Ishii and E. Kawai, "Realizing Virtual OpenFlow
Networks by Flow Space Virtualization,” IEICE Technical Report,
Network Systems, vol. 112, no. 85, pp. 67-72, June 2012.

29

