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Abstract—In this paper, a new adaptation method based
on two-dimensional principal component analysis is intro-
duced into speaker recognition. In the method, mixture and
dimension of mean vectors based on the Gaussian Mixture
Models (GMMs) are differentiated, and the covariance matrix
is computed dimension-wisely. The experiments are carried
out on the core conditions of NIST 2008 speaker recognition
evaluation data. The experimental results indicate that the
2DPCA-based method can achieve comparable performance
to the conventional eigenvoice approach. Besides, the fusion of
the two different systems can make significant performance im-
provement compared to the eigenvoice system alone, achieving
relative reduction on EER between 7% and 25% for different
test conditions.
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I. INTRODUCTION

State-of-the-art speaker verification systems are based on
statistical generative models such as Gaussian Mixture Mod-
els (GMMs). In this case, one needs to create a generative
model for each client, as well as a generative model for
a corresponding anti-client, often replaced by a universal
background model (UBM) [1]. The support vector machines
(SVMs) [2] have also proved to be effective for speaker
recognition. A commonly used method for combining GMM
and SVM is to concatenate GMM mean vectors as super-
vectors for SVM design [3].

For speaker verification, the client model is often derived
by adapting the parameters of the UBM using the speaker’s
training speech. Some adaptation methods have been proven
to be successful [4], such as eigenvoice [5]. Eigenvoice
speaker adaptation has been shown to be effective for
speaker recognition in recent years. The eigenvoice approach
involves three steps. First, an eigenspace is established with
many speaker dependent (SD) models from training speakers
via principal component analysis (PCA). Each of the SD
models is represented as a column vector, with the mixture
and dimension treated without distinction. Then a group
of eigenvoice coefficients is determined for each testing
speaker. Finally, we obtain the client models which are
expressed as a linear combination of bases in the eigenspace.

In this study, we adopt the speaker adaptation method
based on two-dimensional PCA (2DPCA). In 2DPCA, each
training SD model is represented as a matrix (the mixture
and dimension of mean vectors are represented in separate
directions) rather than as a vector which is the case for
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eigenvoice. Thus, more compact bases with lower dimension
than those of eigenvoice can be obtained from 2DPCA, and
the speaker adaptation formula using these bases can have a
dimension-wise speaker weight. For speech recognition, the
speaker adaptation method using 2DPCA has been shown
to perform competitively [6]. In this paper, we introduce the
new adaptation method into speaker recognition to update
the GMM mean vectors of the client models and concatenate
them as supervectors for SVM.

The remainder of this paper is organized as follows. In
Section II, we give a brief overview of eigenvoice. Section
IIT describes the 2DPCA method and the application of
2DPCA-based method in GMM framework for the task of
speaker recognition. The details of the performed experi-
ments and results are presented in Section IV. Finally, we
conclude this paper in Section V.

II. EIGENVOICE

The underlying hypothesis of eigenvoice adaptation is
that all voices represented in a space of a large dimension
could in fact be well represented in a low-dimensional linear
subspace [5][7]. The most commonly used tool to select
the low-dimensional subspace is the well-known principal
component analysis (PCA) [8].

Given a set of T' speaker dependent models (SD models)
already adapted by Bayesian Maximum A Posteriori (MAP),
PCA is used to compute the K leading eigenvectors of the
covariance matrix of the 7' parameter vectors. The model
of a new speaker c¢ can then be represented as a linear
combination of the K eigenvectors:

wu(c) = Vo + p(ubm). (D)
where p(ubm), consisting of M x D elements (M is the
number of Gaussian components, and D represents the
feature dimension for each Gaussian component), is the
concatenated mean supervector of all the mixture compo-
nent means of the UBM model, and p(c) is the adapted
supervector of the new speaker ¢. V. = [v1,va,- -, VK]
represents the eigenspace, and it is the concatenated matrix
of the K eigenvectors with the K largest eigenvalues. z is
the eigenvoice coefficients of client c.
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III. METHODS

A. Two-Dimensional Principal Component Analysis

In 2DPCA [6][9], the mapping from an input *matrix’ into
the feature space is performed by
w=X"¢. @)
where X € RP*YN s the input matrix , ¢ is the base
vector which is unitary (¢ - ¢ = 1), and w is a D-
dimensional feature vector (which is a scalar in PCA). A
set of such bases, {¢x }<_ |, can be obtained by maximizing
the following criterion:
J(¢) = tr(E[(w — El))w - EWDT). O
where ¢r(-) denotes the trace of a matrix. The criterion can
be expressed in terms of X and ¢ as

J(¢) = ¢" AE(X -~ B(X))"(X -~ BEX))} 6. 4
The covariance matrix G is defined as
G = E[(X — E(X))"(X — E(X))). 5)
Using a set of example matrices, {X,}5_;, the sample
covariance matrix can be obtained by
G= li(ng)?)T(XrX'). (6)
8 s=1

where X = 1/9 Zle X, is the average of the example
matrices. Thus, the criterion becomes
T
J(9)=¢7-G- 4. 0
A set of orthonormal projection vectors, {¢x} |, can
be obtained as the K leading eigenvectors of the covariance
matrix G to maximize the above criterion.

The set of such bases project an input matrix X into the
feature space by

W(s)=(X,—X)- . ®)
where & = [¢p1---¢p---¢k] and W(s) =
[wi(s) - wi(s) - wk(s)]. Then, the low-rank

approximations of the input matrix can be obtained
as

K
Xom X+W(s) @7 =X+ wils) o}
k=1

C))

In (9), X can be exactly reconstructed when K=S.
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B. Application of 2DPCA-based method in GMM framework
for the task of speaker recognition

In this section, we will discuss the application of 2DPCA
to speaker adaptation in the GMM framework for the task
of speaker recognition. Here, let p,,(s) € RP*! be the
mean vector of the m-th Gaussian component of speaker s
from the total S training speaker models. Adapted from the
UBM model using MAP adaptation, the SD mean model of
speaker s is viewed as a matrix:

pu(s) = [pa(s) - pm(s) -+ - pau (8))- (10)

where M is the number of the Gaussian components. In the
expression above, column corresponds to mixture and row
corresponds to the dimension of mean vectors.

We apply 2DPCA to the training examples {u(s)}5_; as
follows [6]. First, denoting /i(s) = p(s)—p(ubm), we obtain
the covariance matrix as:

1

S
G =35> ils) fils). (11)

%)

When denoting fi4(s) € R**M as the d-th row vector of
fi(s), the covariance matrix can be shown as

12)

As such, 2DPCA is equivalent to line-based PCA, which
partitions a matrix into lines and each line is treated as a
sample data in standard PCA framework [10].

Then, the eigenvectors corresponding to the K largest
eigenvalues (K < S — 1) of G can be found as the bases
{1}, corresponding to the bases {¢n *P}E | in
eigenvoice. Thus, 2DPCA produces a more compact set of
eigenvectors by the factor of D. Using the bases, we update
the model for a new speaker by

p(new) = p(ubm) + Wiy - ®7. (13)

where ® = [¢p1 - P Pk, and Wy, is the speaker
weight which can be derived in a maximum-likelihood
estimation (MLE) framework as follows [6]: given the ob-
servation data O = {01 - -+ 04 - - - o7 }, the auxiliary function
is defined as

QU A) =~ P(O1N)

x Y (8)(D - log(2m) + log|Cm | + (o, m)).
(14)

where A is the current model parameter and A\ is the re-
estimated model parameter, 7, (¢) denotes the occupation
probability of being in mixture m at time ¢ given O, and
C,, is the covariance matrix for the m-th Gaussian, which
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is diagonal in our work. The last term in (14) contains the
model parameter:

h(0t7m) = (Ot - (,um(ubm) + Whew - (Iﬂ""l))T . O’n_q,l s
(06 = (b (ubm) + Wiew - @1)).

We can derive the following equation to find the weight
Wnew:

M T
DD D - (00 = pm(ubm)) - @4
m=1 t=1
o (16)
=D D mt)C Whew - B, - Oy
m=1 t=1

The above equation can be solved for W, using the
same procedure in [11].

C. Feature extraction and SVM modeling

After the speaker model are updated as (1) and (13) ,
the parameters from p(s) are concatenated into a single
supervector consisting of D x M elements according to
Kullback-liebler divergence [3] and modeled using SVMs,
where M is the number of Gaussians in UBM model and
D is the dimension of mean vectors in each Gaussian
component.

An SVM is trained for each target speaker by regarding
the target speaker’s training supervector as positive exam-
ples, and the supervectors from a background training set as
negative examples. Our experiments are implemented using
the SVMLight with a linear inner-product kernel function.

IV. EXPERIMENT
A. Experiment setup

The experiments for different systems based on the
two kinds of speaker adaptation methods (eigenvoice and
2DPCA) are carried out on the NIST 2008 speaker recogni-
tion evaluation corpus. The NIST SRE2008 evaluation tasks
are distinguished by including in the training and test condi-
tions not only conversational telephone speech but also inter-
view speech recorded with different microphones involving
an interview scenario. We carry out the experiments on three
types of trials: telephone-telephone, interview-interview and
interview-telephone. The performance is measured in terms
of equal error rate (EER) and DET curves [12].

The input speech utterance is first converted to a sequence
of 36-dimensional feature vectors including 18 MFCC co-
efficients and their first order derivatives over 5 frames. To
reduce channel effects, feature warping to a Gaussian distri-
bution, CMN, CVN are performed to the feature vectors.

The gender dependent UBM models with 1024 mixture
components are trained using the NIST SRE 2004 1side
training corpus. The background data for SVM system are
selected from the data form NIST SRE2004 and NIST
SRE2005. Eigenvectors for both eigenvoice and the 2DPCA
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Table 1
SVM SYSTEMS BASED ON DIFFERENT ADAPTATION METHODS ACROSS
ALL MALE SPEAKERS IN THE TEST CORPUS. THE VALUE IN EACH TABLE
CELL IS THE EER (%) .

task eigenvoice 2DPCA fusion
telephone-telephone 5.62 5.54 4.98
interview-interview 2.38 2.97 2.04
interview-telephone 4.74 5.21 3.59

are also gender dependent. 600 eigenvoices and 600 eigen-
vectors for 2DPCA for both male and female are trained
using the Switchboard II, Switchboard Cellular corpus as
well as the data from NIST SRE2005 and NIST SRE2006.
For eigenchannel compensation in feature domain, telephone
and microphone data from NIST SRE2004, NIST SRE2005
and NIST SRE2006 are used.

The raw score are speaker-normalized by means of
gender-dependent ZTnorm. For Znorm and Tnorm, tele-
phone and interview utterances are drawn from the NIST
SRE2006 corpus.

We use the linear fusion for the two systems, with the
weight of 0.5 for each system.

B. Experiment results

In this subsection, we list the results of the systems based
on both eigenvoice and the 2DPCA-based method as well
as the fusion of them on the three test conditions in NIST
SRE 2008. The DET curves are also given below.

Table I lists the performance of the SVM system based
on eigenvoice and 2DPCA-based method on the three trial
conditions across all male speakers. From Table I, we can
see that the system based on 2DPCA can achieve com-
parable performance to the conventional eigenvoice system
for male speakers. As well, the fusion of the two systems
makes significant performance improvement compared to the
eigenvoice system alone, yielding 11.4% improvement on
EER for the telephone-telephone condition, 14.3% for the
interview-interview condition and 24.3% for the interview-
telephone condition.

Table II shows the results of the SVM system based on the
two different adaptation methods across all female speakers.
It can also be seen that the performance of the 2DPCA-based
system is comparable to the eigenvoice system. Compared
to the single system based on eigenvoice, the fusion of the
two systems achieve relative reduction of 7.14% on EER for
the telephone-telephone condition, 11.9% for the interview-
interview condition and 7.3% for interview-telephone.

Figure 1 and Figure 2 show the DET curves of the systems
based on different speaker adaptation methods for male and
female speakers respectively.

Table III summarizes the approximate average training
time per file. The training time mainly consists of two parts,
the time of estimating the parameters of feature vector and
the time of SVM training. As we can see, our method uses
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Table 11
SVM SYSTEMS BASED ON DIFFERENT ADAPTATION METHODS ACROSS
ALL FEMALE SPEAKERS IN THE TEST CORPUS. THE VALUE IN EACH
TABLE CELL IS THE EER (%) .

task eigenvoice 2DPCA fusion
telephone-telephone 7.14 8.11 6.63
interview-interview 453 6.22 3.99
interview-telephone 6.46 11.12 5.99
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Figure 1. DET curves comparing systems based on eigenvoice and 2DPCA
as well as the fusion system for male speakers
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Figure 2. DET curves comparing systems based on the eigenvoice and
2DPCA as well as the fusion system for female speakers

more time cost than the eigenvoice system, which implies
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Table IIT
AVERAGE TRAINING TIME PER FILE FOR EIGENVOICE AND 2DPCA.

Systems Training time cost(sec)
eigenvoice 2.88
2DPCA 7.86

its limits in real time work.

V. CONCLUSION

In this paper, we have introduced the new adaptation
method using 2DPCA into speaker recognition. The 2DPCA
of training models produces the more compact bases whose
dimension is lower than that of eigenvoice, and the speaker
weight consists of dimensional elements. Experiments show
that the system based on 2DPCA can achieve comparable
performance to the conventional eigenvoice system and the
fusion of the two systems can further improve the perfor-
mance, yielding 7%-25% improvement on EER for different
tasks, which indicates that the 2DPCA-based method and
eigenvoice are complementary to each other to some extent
when used in speaker recognition. Future work include
generalizing this approach to other PCA-based modeling
methods such as eigenspace-based MLLR [13].
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