
Multiplatform Approaches and Tools for Parallel Computing
in Signal Processing Domain

Tomas Fryza, Jitka Svobodova, Roman Marsalek, Jan Prokopec
Department of Radio Electronics
Brno University of Technology

Brno, Czech Republic
{fryza,marsaler,prokopec}@feec.vutbr.cz, xsvobo61@stud.feec.vutbr.cz

Abstract—The paper deals with various approaches used for
parallel computing in signal processing domain. More precisely,
the methods exploiting the multicores Central Processing Units
such as Message Passing Interface and OpenMP are taking
into account. The properties of the programming methods are
experimentally proved in application of two-dimensional Fast
Fourier Transform and Discrete Cosine Transform and are
compared with possibilities of MATLAB built-in functions and
Digital Signal Processors with Very Long Instruction Word
architecture. The optimal combination of computing methods
in signal processing domain is proposed. Results in the paper
prove the possibility of creation of a heterogeneous computing
system compounded of CPU and DSP architectures.

Keywords-transform coding; parallel computing; MPI;
OpenMP; DSP.

I. INTRODUCTION

There are several approaches for effective parallel pro-
gramming. The most widely used approach for distributed
parallel computing for multicore Central Processing Units
(CPUs) is Message Passing Interface (MPI) [1]. The MPI
specifies the communication between separate processes,
and it was designed for high performance on both massively
parallel machines and on workstation clusters. The present-
day version of the standard is MPI-2.2 approved by the MPI
Forum at September, 2009. MPI library contains functions
written in C and Fortran languages and in detail it is
described in literature, such as [1], [2], or [3].

A different approach represents OpenMP with shared
memory space, where all the cores can access the whole
memory space. The OpenMP is an application programming
interface for multi-platform parallel programming in C/C++
and Fortran. The current version of the standard is OpenMP
3.1 from July 2011. The specification and detailed tutorials
could be found in [4], [5], or [6].

In this paper, both efficiency and limitations of multi-core
processing are discussed and the impact in signal processing
domain is proved. There are several projects implementing
the main algorithms for digital signal processing. This paper
deals with possibility of effective implementation of fast
Fourier transform and discrete cosine transform. Libraries
for fast computing the discrete Fourier transform, which

commonly include real and/or complex, multidimensional,
and parallel transforms can be found in [7], [8], etc.

Aim of this paper is to provide the comparison of different
parallel approaches for signal processing. Two of well-
known and widely used signal processing algorithms are
implemented using MPI, OpenMP, MATLAB and DSP, then
the results are discussed and compared. These algorithms
will form a part of the benchmarks set useful for students
and researchers interested in radio electronics.

The rest of this paper is organized as follows. Section II
presents the chosen algorithms for parallel implementation in
both CPU and DSP processors. The considered experiments
with implementation of digital signal processing algorithms
and achieved results are described in Section III, followed
by short conclusion and future plans.

II. EVALUATED ALGORITHMS

In this section, two implementation of digital signal
processing algorithms are outlined. The algorithms used
for evaluation of parallel potentialities are Fast Fourier
Transform and Discrete Cosine Transform.

A. Fast Fourier Transform Algorithms

A Discrete Fourier Transform (DFT) complexity grows
with the square of the data length (N). Therefore, since the
original paper of Cooley and Tukey published in 1965 [9]
a tremendous effort has been devoted to the Fast Fourier
Transform (FFT) algorithm research. The complexity of the
FFT is generally in order of N log2N operations.

Many algorithms for the FFT calculations have been
proposed in the past. Their very detailed overview containing
the mathematical derivations gives a book [10]. The meth-
ods can be basically classified to the Decimation In Time
(DIT) or Decimation In Frequency (DIF) families. Further
classification of the methods is according the used radix –
from the basic radix-2 the algorithms of radix-4 or radix-8
can be derived. It is also possible to use the combinations
called split-radix [11] or mixed-radix FFT. A derivation of
the basic method – radix-2 DIF is based on the recursive

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

decomposition of the DFT [10]

X(r) =

N−1∑
l=0

x(l)ωrlN (1)

of the N -point input sequence x(l) into two parts of the
same length [10]:

X(r) =

N/2−1∑
l=0

x(l)ωrlN +

N−1∑
l=N/2

x(l)ωrlN . (2)

After simple manipulations, it can be shown, that the radix-
2 DIF FFT of N -sample length sequence x(l) can be
computed with the use of two half-size FFT’s of sequences
y(l), z(l) [10]:

Y (k) =

N/2−1∑
l=0

y(l)ωklN
2

and (3)

Z(k) =

N/2−1∑
l=0

z(l)ωklN
2
, (4)

with Y (k) = X(2k), y(l) = x(l) + x
(
l + N

2

)
, Z(k) =

X (2k + 1) , z(l) =
(
x(l)− x

(
l + N

2

))
ωlN . Note that the

twiddle factors ωrN are defined as

ωrN = ejrθ = ejr
2π
N , where j =

√
−1. (5)

An example of 8-point long FFT calculated using the radix-2
DIF algorithm is shown in Figure 1.

Figure 1. Radix-2 DIF graphical representation for 8-point data sequence.

B. Discrete Cosine Transform

For vector with dimension of N , the forward one-
dimensional discrete cosine transform (1-D DCT) is defined
in the following way [12]

D(u) = γ(u) ·
N−1∑
x=0

f(x) · πu(2x+ 1)

2N
(6)

where D(u) represents 1-D DCT coefficient of a vector item
f(x) while u = 0, . . . , N − 1. The constant γ(u) could be
expressed as follows [12]

γ(u) =
√

1/N : u = 0√
2/N : u 6= 0.

From the symmetry of DCT base function, the com-
putation load of the DCT can be exploited. There are
several known algorithms, such as Arai’s [13], Chen’s [14],
Loeffler’s [15], or Vetterli’s [16]. For further implementation,
the Arai’s forward DCT approach was chosen. Let N = 8,
then according to [13], [17], 5 multiplication and 29 addition
operations have to be evaluated in order to calculate eight
one-dimensional coefficients. Supposing color block with
8×8 elements, the 1-D transform has to be repeated 48
(8×3 + 8×3) times to obtain 64 two-dimensional frequency
coefficients. Therefore, for 8×8 color block, only 720 mul-
tiplications and 4 176 additions have to be calculated for
transforming a single color block.

III. EXPERIMENTS

Algorithms were tested via two dimensional transforma-
tion of color frame(s) with QSXGA resolution, i.e., with
dimensions of 2,560×2,048 pixels. Each pixel is coded in
RGB color space by 24 bits. Tested frames were separated
into small blocks of N×N pixels. Those blocks represent in-
put signal for the two-dimensional FFT, or DCT coder. FFT
uses complex input/output values, whereas DCT algorithm is
adapted for real data only. The proposed implementation of
both algorithms (according to Subsection II-A and II-B) uses
the common dimension of transform base in signal process-
ing domain, i.e., N = 8. Only in MATLAB environment,
the built-in functions with dimensions from 8 to 2,048 were
used.

For the evaluation of considered parallel computing meth-
ods, the several test cases were performed. Mainly, the time
consuming of two-dimensional FFT and DCT algorithms
with MPI, OpenMP, MATLAB, and Texas Instruments DSP
approaches were tested. Two-dimensional transforms were
always divided to successive calculation of two 1-D trans-
forms. In general, algorithms could use either fixed-point
or floating-point number representation. The most famous
open source FFT library FFTW [7] uses double precision
floating-point representation in theirs functions, while DSP
the library [8] from Texas Instruments (produces of present-
day’s most powerful DSPs) incorporates both, single and
double precision routines. For basic confrontation with men-
tioned libraries, all data in our tests were represented in
single precision floating-point format. Fixed-point releases
would be implemented and optimized in the future.

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

All CPU based parallel computing tests were performed
on HP BL465c G5 Blade Server with two quad-core Opteron
processors and 32 GB of RAM. The core clock frequency
is 2.7 GHz, synchronous DDRII memory was running on
800 MHz.

For the simulation results discussion, we also mention
size of CPUs internal cache. Internal L1 cache 256 kB per
processor (64 kB for data and 64 kB for instruction), L2
cache is 2 MB (4×512 kB) per processor, L3 cache 6 MB
per processor, TLB (Translation Lookaside Buffer) of 4 kB.

The DSP based computing test were performed on Texas
Instruments evaluation board with 32-bit floating-point dig-
ital signal processor TMS320C6747, with VLIW (Very
Long Instruction Word) architecture, and clock frequency
fCPU = 300 MHz.

A. Implementation Results

Results from first test case are shown in Figure 2. For
various QSXGA color frames, the length of MPI message
buffer was altered. The buffer contains both the input picture
data (from master to slaves communication), and trans-
formed two-dimensional coefficients as well (from slaves
to master communication). Average computation times were
calculated from sixteen evaluations; 8 cores were used for all
calculations. It can be seen, the first fall of the computation
time for both transforms, which corresponds with hardware
setting of blade server; concretely with TLB size. On the
other hand, the second (wider) fall of the computation time
corresponds with the L2 cache size. For further computing,
the MPI message buffer size of 4 kB would be chosen.

From Figure 2 (a) and Figure 2 (b) it is obvious that
the selected implementation of FFT algorithm is slower
than implementation of DCT algorithm. For N = 8, the
implemented FFT algorithm is approximately 1.5-times
slower than DCT algorithm. The reason is that FFT needs
complex data, while as DCT needs real input and output
values. Therefore, thirty two QSXGA color frames could
be transformed in 2.2 s by FFT, but only in 1.4 s by DCT
method.

Second test case describes parallel implementation of FFT
and DCT algorithms with help of OpenMP approach. For
transformation of several QSXGA color frames, 1, 2, 4,
or 8 cores were used. The number of transformed frames
varied between 1 and 32 for FFT algorithm and between
1 and 128 for DCT algorithm. The computation times are
shown in Figure 3. With dotted lines, the serial versions of
implemented algorithms, as well as ideal curves for parallel
versions are expressed. The ideal versions are computed
as the portion of serial results. The dashed line in figures
represents the results achieved by MPI approach as well.

It can be seen, for lower number of processed data,
the OpenMP version is less effective than MPI version.
In addition, while a single QSXGA color frame is being
transformed, the computation time for serial version is lower

that parallel version with 2 cores! Therefore, the beneficial
using of simple OpenMP in signal processing domain could
be bitrate, which is adequate to 64 QSXGA color frames.

B. Non Standard Implementations

MATLAB’s Parallel Computing Toolbox provides running
the script in up to 8 threads on a local computer or running it
on a cluster machine using MATLAB Distributed Computing
Server [18]. The main task is called Job and it is divided
into Tasks, which are assigned to the individual workers by
scheduler. The default scheduler for MATLAB Distributed
Computing Server, MathWorks Job Manager, supports the
Platform LSF, Microsoft Compute Cluster Server and Altair
PBS Pro. Other schedulers can be integrated by user.

Third test case was performed in MATLAB environment.
The MATLAB built-in functions fft and dct are called
in all the individual workers. The computational time mea-
surement starts before the parfor loop and ends after the
variables’ final reshape after the parfor loop. The results for
the FFT and DCT computation from 1 to 8 threads for the
blocks of vectors with the length of 8, 16, 32, 64, 128, 256,
512, 1024 and 2048 are depicted in Figure 4.

The application has to be divided into independent tasks
which are then processed simultaneously. The most conve-
nient way to solve this particular task uses the MATLAB
functions as much as possible, because they are optimized
to run fast and to use proper amount of memory. The fft and
dct task is specific because of the use of both MATLAB
functions and the parallel expressions. While the length of
the array for the fft and dct function increases, the number
of parallel loops decreases because of the total size of the
matrix being processed. Thus, the computational time does
not decrease constantly with increasing number of threads.
This issue can be solved by using simpler algorithm, not the
one which is based on two contradictory parts. This problem
is to be solved and the new algorithm will be included in
the benchmark dataset.

Table I
COMPUTATION TIME FOR TWO-DIMENSIONAL TMS320C6747

IMPLEMENTATION WITH VARYING PROGRAMMING APPROACHES
(fCPU = 300 MHZ, 1 QSXGA COLOR FRAME: 2,560×2,048 PIXELS)

Algorithm Programming language Computation time [s]

2-D FFT C code 7.08

2-D FFT Linear assembly 1.65

2-D DCT C code 3.05

2-D DCT Linear assembly 1.02

Last considered test case was performed by digital signal
processor TMS320C6747, controlled by clock frequency of
300 MHz (9-times lower than CPU based tests). Although,
the evaluation board contains only a single core DSP, the
VLIW architecture meets the parallel approach. Selected

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

1×10
2

1×10
3

1×10
4

1×10
5

1×10
6

Buffer message size (number of floats)

0

1

2

3

4

5

6

7

A
v

er
ag

e
co

m
p

u
ta

ti
o

n
 t

im
e

[s
]

64 QSXGA frames

32 QSXGA frames

16 QSXGA frames

8 QSXGA frames

MPI - buffer message size
2-D FFT (N = 8, 8 threads)

(a) 2-D FFT

1×10
2

1×10
3

1×10
4

1×10
5

1×10
6

Buffer message size (number of floats)

0

1

2

3

4

5

6

7

A
v

er
ag

e
co

m
p

u
ta

ti
o

n
 t

im
e

[s
]

128 QSXGA frames

64 QSXGA frames

32 QSXGA frames

16 QSXGA frames

8 QSXGA frames

MPI - buffer message size
2-D DCT (N = 8, 8 threads)

(b) 2-D DCT

Figure 2. Average computation time for two-dimensional MPI implementation with varying buffer message size (N = 8, fCPU = 2.7 GHz, 8 threads,
QSXGA color frames: 2,560×2,048 pixels).

1 10 100
Number of color QSXGA frames

1×10
-1

1×10
0

1×10
1

A
v

er
ag

e
co

m
p

u
ta

ti
o

n
 t

im
e

[s
]

1 thread
2 threads
2 threads ideal
4 threads
4 thread ideal
8 threads
8 threads (MPI, size = 960)

8 thread ideal

OpenMP, MPI
2-D FFT (N = 8)

(a) 2-D FFT

1 10 100
Number of color QSXGA frames

1×10
-1

1×10
0

1×10
1

A
v

er
ag

e
co

m
p

u
ta

ti
o

n
 t

im
e

[s
]

1 thread
2 threads
2 threads ideal
4 threads
4 thread ideal
8 threads
8 threads (MPI, size = 960)

8 thread ideal

OpenMP, MPI
2-D DCT (N = 8)

(b) 2-D DCT

Figure 3. Average computation time for two-dimensional OpenMP implementation with varying transformed frames and threads number (N = 8,
fCPU = 2.7 GHz, QSXGA color frames: 2,560×2,048 pixels).

algorithms were implemented in C language and in lin-
ear assembly language. Development tool Code Composer
Studio v.3.3 from Texas Instruments was used. All codes
were optimized by CCS internal tools as well. The achieved
results are shown in Table I.

It can be seen that the general abstraction brought by
C code is not useful in this case. The low-level programming
of both FFT and DCT algorithms represents outstanding
contribution in signal processing. A single QSXGA frame
could be transformed in 1.65 s by FFT, and in 1.02 s by DCT
method.

IV. CONCLUSION AND FUTURE WORK

The paper was focused on the implementation of two
transforms, commonly used in signal processing domain.
The two-dimensional FFT and DCT were chosen. The
outline of currently used methods for parallel computing
on CPU was performed as well. The MPI, OpenMP, and
MATLAB approach were taken into account. The goal of
the paper was also to present a possibility to create an
interconnection between CPU based methods and VLIW
architecture DSP evaluation boards. The future work would
be focused mainly to implementation of digital signal pro-

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

1 2 3 4 5 6 7 8
Number of parallel labs

5

50

500

C
o

m
p

u
ta

ti
o

n
 t

im
e

[s
]

N = 8
N = 16
N = 32
N = 64
N = 128
N = 256
N = 512
N = 1,024

N = 2,048

Matlab - Parallel Computing Toolbox, Distributed Computing Server

2-D FFT

(a) 2-D FFT

1 2 3 4 5 6 7 8
Number of parallel labs

5

50

500

C
o

m
p

u
ta

ti
o

n
 t

im
e

[s
]

N = 8
N = 16
N = 32
N = 64
N = 128
N = 256
N = 512
N = 1,024

N = 2,048

Matlab - Parallel Computing Toolbox, Distributed Computing Server

2-D DCT

(b) 2-D DCT

Figure 4. Computation time for two-dimensional MATLAB implementation with varying parallel lab number (fCPU = 2.7 GHz, 1 QSXGA color frame:
2,560×2,048 pixels).

cessing algorithms to Graphical Processing Units (GPUs) as
well as to comparison with other CPUs, such as Intel quad-
core Xeon e5640.

ACKNOWLEDGMENT

Research published in this submission was financially
supported by the project CZ.1.07/2.3.00/20.0007 WICOMT
of the operational program Education for competitive-
ness and by the Brno University of Technology Internal
Grant Agency under project no. FEKT-S-11-12 (MOBYS)
and the described research was performed in laborato-
ries supported by the SIX project; the registration number
CZ.1.05/2.1.00/03.0072, the operational program Research
and Development for Innovation.

REFERENCES

[1] MPI Forum. Message Passing Interface Forum (2012-03-11).
[online]. Available: http://www.mpi-forum.org/.

[2] A Message-Passing Interface standard. The International Jour-
nal of Supercomputer Applications and High Performance
Computing, 8, 1994.

[3] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker,
and Jack Dongarra. MPI: The Complete Reference. The MIT
Press, 1998.

[4] OpenMP (2012-03-11). [online]. Available: http://openmp.org/
wp/.

[5] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using
OpenMP – Portable Shared Memory Parallel Programming.
The MIT Press, 2007.

[6] Blaise Barney. OpenMP (2012-03-11). [online]. Available:
https://computing.llnl.gov/tutorials/openMP/.

[7] FFTW Home Page (2012-03-11). [online]. Available: http://
www.fftw.org/.

[8] Texas Instruments. TMS320C67x DSP Library (2012-03-11).
[online]. Available: http://www.ti.com/tool/sprc121.

[9] James William Cooley and John Wilder Tukey. An algorithm
for the machine calculation of complex Fourier series, Mathe-
matics of Computation. 19, 297–301, 1965.

[10] Eleanor Chin-hwa Chu and Alan George. Inside the FFT
Black Box: Serial and Parallel Fast Fourier Transform Algo-
rithms (Computational Mathematics), 1st ed. CRC Press, 1999.

[11] Pierre Duhamel and Henk Hollmann. Split radix FFT algo-
rithm, Electronics Letters, vol.20, no.1, pp. 14–16, 1984.

[12] Kamisetty Ramamohan Rao and Patrick Yip. Discrete Cosine
Transform. Algorithms, Advantages, Applications. San Diego:
Academic Press, Inc., 1990.

[13] Yukihiro Arai, Takeshi Agui, and Masayuki Nakajima. A Fast
DCT-SQ Scheme for Images. IEICE Transactions (1976–
1990), 1988, vol. E71-E, no. 11, pp. 1095–1097.

[14] Wen-Hsiung Chen, Harrison Smith, and Sam Fralick. A fast
computational algorithm for the discrete cosine transform.
IEEE, Transactions Commun, 1977, pp. 1004–1009.

[15] Christoph Loeffler, Adriaan Ligtenberg, and George
Moschytz. Practical fast 1-D DCT algorithms with 11
multiplications. Proc. IEEE ICASSP, 1989, pp. 988–991.

[16] Martin Vetterli. Fast 2-D discrete cosine transform. In Proc.
ICASSP, 1985, pp. 1538–1541.

[17] Rafael Gonzalez and Paul Wintz. Digital Image Processing.
Boston: Addison Wesley Publishing Company, 1987.

[18] MathWorks. MATLAB and Simulink for Technical Comput-
ing (2012-03-11). [online]. Available: http://www.mathworks.
com/.

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

