
Link-Aware NICE Application Level Multicast
Protocol

Amr Naser, Mohamed Rehan
Intel Labs

Cairo, Egypt
{amrx.naser, mohamed.m.rehan}@intel.com

Dina Helal, Ayman El Naggar
German University in Cairo

Cairo, Egypt
{dina.helal, ayman.elnaggar}@guc.edu.eg

Abstract—Multicast is one of the most efficient ways to
distribute data to multiple users. There are different types of
Multicast such as IP Multicast, Overlay Multicast and Application
Layer Multicast (ALM). In this study, we focus on Application
Layer Multicast where the multicast functionality is implemented
at the end user. We introduce a new ALM protocol, Link Aware-
NICE (LA-NICE), which is an enhanced version of the NICE
protocol [1]. NICE is a recursive acronym which stands for NICE
is the Internet Cooperative Environment. LA-NICE protocol
takes into account the fact that different links can have different
bandwidths and this fact can be used to improve multicast
message delivery and minimize end-to-end delay. OMNeT++
simulation framework [2] was used to evaluate LA-NICE. The
evaluation is done through a comparison between LA-NICE and
NICE. The simulation results showed that LA-NICE produces an
increase in the percentage of successful message delivery ranging
from 2% to 10% compared to NICE. Also, LA-NICE has less
average delay and less average message hop count than NICE
which reduces the overall latency of message delivery.

Keywords—Application Level Multicast, Multicast tree, Overlay
networks , Link Aware, Hop count, NICE, Scribe, OMNeT.

I. INTRODUCTION

As the number of Internet users increases, data delivery
over the Internet becomes more challenging as networks get
more overloaded and congested. Currently, data exchange
through the Internet is mainly based on unicast (point-to-
point between two computers). So, if millions of users try
to stream an important broadcast event like the world soccer
cup, instead of broadcasting the data to all users, the data
source sends a copy of the data to each of the users so the
source keeps transmitting the same packet a million times.
This leads to redundant traffic in the network in addition to
overloading the data source resulting in inefficient data delivery
and an increase in packet loss. Multicast was introduced as an
alternative to unicast in such cases. In multicast, the source
sends contents to a sub-server set and each one of those sub-
server set forward the content to a different group of users.
There are several types of multicast such as IP, overlay, and
application level. In IP Multicast, the multicast process is
implemented at the IP level during packet transmission. IP
multicast provides an efficient multicast technique. However,
it was never widely deployed in the Internet due to multiple
reasons including the fact that it requires changes at the
infrastructural level which slows down the pace of deployment.
Also IP multicasting introduces high complexity and serious
scaling constraints at the IP layer in order to maintain a state
for each multicast group. As a result of the non acceptance of

IP Multicast, the Application layer multicast (ALM) approach
was proposed. ALM, also called End-System Multicast, was
proposed as an alternative implementation of the multicast
technique to the IP Multicast implementation. ALM builds
a virtual topology on top of the physical Internet to form
an overlay network. Each link in the virtual topology is a
unicast link in the physical network [3]. Therefore, the IP layer
provides a unicast datagram service, while the overlay network
implements all the multicast functionality such as dynamic
membership maintenance, packet duplication and multicast
routing [4].

NICE [1] is an ALM protocol that arranges the set of mem-
bers in a multicast group into a hierarchical control topology.
As new members join and existing members leave the group,
the basic operation of the protocol is to create and maintain
the multicast tree hierarchy. The NICE hierarchy is created by
assigning members to different levels (or layers) as illustrated
in layer 0, figure 1. Layers are numbered sequentially with the
lowest layer of the hierarchy being layer zero (L0). Members
in each layer are partitioned into a set of clusters [5]. Each
cluster is of size between k and 3k-1 members, where k is
a constant (usually k=3), and consists of a set of members
that are close to each other. Further, each cluster has a cluster
leader. The protocol chooses the center of the cluster to be
its leader, i.e., the cluster leader has the minimum distance to
all other members in the cluster. This choice of the cluster
leader ensures that a new joining member is quickly able to
find its appropriate position in the hierarchy using a very small
number of queries to other members. The leaders in level i are
the members of level i+1 in the tree, so all the leaders in L0

belong to L1 and their leaders belong to L2 and so on until
there is only 1 leader which is the Rendezvous Point (RP) in
the highest level of the tree. Since each cluster in the hierarchy
has between k and 3k - 1 members, a host that belongs only to
L0 layer peers with O(k) other hosts for exchange of control
messages. In general, a host that belongs to layer Li and no
other higher layer, peers with O(k) other hosts in each of the
layers L0....Li, which results in control overhead O(k*i) for
this member. Hence, the cluster-leader of the highest layer
cluster peers with a total of O(k*logN) neighbors, which is the
worst case control overhead at a member. NICE mainly focuses
on minimizing end-to-end delay. This is done by computing the
distance between the nodes and constructing the tree such that
nodes close to each other get assigned to the same cluster. This
technique minimizes end-to-end delays as the cluster leader is
always centered in the middle of the cluster where the distance
between it and the rest of the cluster members is minimum.

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

The rest of the paper is organized as follows. Section 2
describes Link-Aware NICE protocol. Section 3 presents the
simulation design, the implementation and the evaluation and
test results. Finally Section 4 presents the conclusion based on
the simulation results.

Fig. 1: Hierarchical arrangement of hosts in NICE [6]

II. LINK-AWARE NICE

LA-NICE takes into account the fact that different links
can have different bandwidths and uses this fact to improve
multicast message delivery and minimize end-to-end delay.
As shown in figure 2, LA-NICE doesn’t change the cluster
structure or how the cluster splits or merges, it focuses on two
phases in the tree management which are the member join and
the tree maintenance phases.

Fig. 2: LA-NICE code structure

A. Multicast Tree Member Join Procedure

When a new node wants to join the multicast tree, in the
original NICE algorithm, it contacts the RP with its join query,
The RP responds with the hosts that are present in the current
highest level of the tree Li. The joining host then contacts
all members in Li to locate the member closest to it. This
member then informs the joining host of its other members in
Li−1 layer and so on recursively until the joining host finds its
position in the lowest level of the tree. Meanwhile, the joining
host gets peered temporarily with the RP as soon as it starts
communicating with it to get the muticast messages sent until
it finds its appropriate position in the tree. This ensures that the
joining node gets connected to the tree as soon as it requests
to join. Right before joining the tree in the lowest level and
after knowing where exactly it will join, the member node
requests to be disconnected from the RP and requests to join
its appropriate parent in the tree.

LA-NICE modifies the member join procedure of NICE.
NICE members join the closest clusters based on round trip

time (RTT) measurements. The RTT of sending a message is
the time it takes for the message to be sent plus the time it
takes for an acknowledgment of that message to be received.
The RP gets a list of the clusters leaders ordered by distance
and assigns the new host to the closest cluster to it. In LA-
NICE, in a tree of i levels, the RP gets a set of potential clusters
(PC) that the new node can join using (1) where PC is a set
of clusters of size i. Ln is the leader of cluster n. Then the RP
checks the bandwidth of the leaders of the potential clusters
and assigns the new node to the cluster with the highest ratio
of leader bandwidth/number of cluster members as shown in
(2).

PC = minRTT (New node, Ln) (1)

Selected cluster = maxbandwidth/cluster size(PC leaders)
(2)

B. Multicast Group Member Leave Procedure

When nodes leave the tree, they can leave either gracefully
or ungracefully. A graceful leave, which is when a host
leaves the multicast group after notifying all the clusters it
has previously joined that it’s leaving. On the other hand,
an ungraceful leave occurs when member fails without being
able to send out a leave notification to its clusters, the cluster
members then manage to detect this departure when they don’t
receive HeartBeat message from that member. A HeartBeat
message is a periodic message sent by every member to the
rest of the multicast group informing them that it still exists
in the group. If a cluster leader left the group, this could lead
to a partition in the tree so a new leader needs to be chosen
faster. A new leader of the cluster is chosen depending on who
is estimated to be closest to the center among these members.

C. Multicast Tree Maintenance

A cluster leader periodically checks the size of its cluster,
and appropriately splits or merges the cluster when it detects
a size bound violation. If a cluster exceeds the cluster size
upper bound 3k - 1, it gets split into two equal-sized clusters.
Given a set of hosts and the distances between them, the
cluster split operation partitions them into subsets that meet
the size bounds, such that the maximum radius of the new
set of clusters is minimized. The centers of the two partitions
are chosen to be the leaders of the new clusters and transfers
leadership to the new leaders. If these new clusters still violate
the size upper bound, they are split by the new leaders using
identical operations.

To maintain the tree structure and detect any unexpected
partitioning in the tree, each member of a cluster sends
periodic HeartBeat message to each of its cluster members.
The message contains the distance estimate from the sender to
each other member of the cluster. The cluster leader includes
the complete updated cluster membership in its HeartBeat mes-
sages to all other members. This allows existing members to
set up appropriate peer relationships with new cluster members
on the control path. The cluster leaders also periodically send
their higher layer cluster membership their cluster.

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

LA-NICE takes the link load into account when maintain-
ing the tree. So instead of only checking if the cluster leaders
need to be modified based on the leader’s position with respect
to the cluster members, LA-NICE checks the bandwidth of
the closest 3 nodes to the center of the cluster (given that the
cluster has more than 3 members) and assigns the one with
the highest ratio of bandwidth/number of cluster members to
be the cluster leader. This modification is selecting the cluster
leader based on the fact that there is always higher load on
the cluster leaders than the other nodes in the cluster since the
cluster leaders send the multicast messages to all the cluster
members leading to a bottleneck of O(k log N). So, ensuring
that the leader has a relatively high bandwidth in addition to
being close to all the members reduces the delay and improves
multicast message deliver

III. RESULTS AND ANALYSIS

A. Experiment Setup

To evaluate LA-NICE, we compared it to NICE protocol
and Scribe[7] which is another ALM protocol. The evaluation
was done using four different test groups of users. Each group
had different number of users. The number of users in those
groups were 20, 45, 70, and 100 respectively. The simulation
was done using OMNeT++ as shown in figure 3 and it runs
for 300 seconds where nodes exchange multicast messages
where some users would drop out while other join the group
randomly.

Fig. 3: LA-NICE multicast tree simulation using OMNeT++

B. OMNeT++

OMNeT++ [8] is an object-oriented open-source network
simulator that is highly flexible and easy to use. The model’s
structure is described in OMNeT++ NED language. The
Network Description (NED) language facilitates the modular
description of a network, which consists of a number of
component descriptions (channels, simple/compound module
types, gates, etc.). In addition, OMNeT++ provides various
statistic collections and visualization tools for results analysis.
The simulator supports parallel and distributed simulation with

the multiple instances communicating via Message Passing
Interface(MPI), as well as support for network emulation
through interfaces with real networks and the ability to use real
networking code inside the simulator. OMNeT++ simulation
models are composed of modules and connections. Connec-
tions may have associated channel objects. Channel objects
encapsulate channel behavior: propagation and transmission
time modeling, error modeling, and possibly others. Channels
are also programmable in C++ by the user. Modules and
channels are called components. Components are represented
with the C++ class cComponent.

C. Implementation

The implementation was done using OMNeT++ framework
with oversim [9]. Oversim includes a basic implementation of
NICE protocol. They were both used in evaluating LA-NICE
performance. The implementation of LA-NICE was built using
OMNeT++ oversim framework. In LA-NICE, both the member
join and the maintenance methods were modified. The code is
implemented in C++ to write the logic of the protocol and
OMNeT’s .Net language to represent the user interface of the
network. Datarate channels were used with different datarates
to test various network conditions and bandwidth variations.

D. Results

Message Delivery: The first evaluation criteria for LA-
NICE is the percentage of multicast messages delivered,
failure in delivery indicates inefficient tree maintenance due
to not detecting node departures in a reasonable amount of
time or bad bandwidth utilization, which results in bottlenecks
that lead to late delivery and sometimes failure in delivery.
As seen in table I and figure 4, scribe has lower message
delivery percentage. The reason behind the less performance
in Scribe is due to the fact that the nodes are assigned random
generated IDs. This randomness could lead to a situation
where two hosts can be close to each other and yet sending
a message from one of them to the other passes by other
nodes that are far from them which takes longer time than it
should. This is due to the routing table which sends messages
to hosts that have the same prefix in their ID (which doesn’t
always mean that this is the closest node in the table). In
addition, messages have a certain time to live (TTL) and
then they timeout, so as the delay increases the amount of
messages that timeout increase. NICE, on the other hand
doesn’t have this problem and it sends the messages to the
closest nodes graphically without any regard to bandwidth
conditions. LA-NICE combines both distance and bandwidth
factors.

TABLE I: MESSAGE DELIVERY PERCENTAGE RESULTS

Number
of

users
NICE Scribe

LA-NICE
% Improvement

over NICE over Scribe
20 90.93 88.57 99.34 8.4% 10.7%
45 96.01 89.65 98.69 2.7% 9.04%
70 90.48 88.71 96.53 6.05% 7.8%

100 93.76 89.62 95.68 1.92% 6.06%

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

On the other hand, NICE takes the node’s proximity to
each other into account when constructing the delivery tree. for
example, if two nodes are close to each other, the time taken to
send exchange messages between them should be less than the
time taken to exchange message between nodes that are further
away from each other. Our main focus is to build on NICE and
enhance its performance by making it link-aware. Link-Aware
NICE handles the proximity factor in NICE in addition to the
bandwidth factor when a new node joins the tree and when
maintaining the tree as well. This is done through measuring
the cluster leaders’ bandwidth and selecting the cluster with the
highest leader bandwidth that is relatively close. This approach
produced the highest message delivery percentage as seen in
figure 4 compared to NICE and Scribe.

Message Delay and Hop count: Another evaluation
criteria is the average hop count of the multicast messages.
The hop count of a packet is defined as the number of routers
traversed by a packet between its source and destination [10],
which is in this case the number of hosts that a message
passes from the source to the destination [11]. As seen in
figures 5 and 6 and tables II and III when the number of users
is small, the average hop count of LA-NICE and NICE, as
well as the maximum hop count is almost the same, however
as the number of users increase LA-NICE has less number of
hops leading to less delay in delivering the messages.

The delay factor is related to the hop count. Figures 7
and 8 and tables IV and V show a comparison between LA-
NICE, NICE in terms of delay. The delay and message hops
are usually proportional, therefore, with the increase of the
hops along the tree, the delay increases. It is clear that LA-
NICE outperforms NICE in terms of delay and hop count after
taking the links’ load factor into account.

TABLE II: AVERAGE HOP COUNT RESULTS

Number of Users LA-NICE NICE
20 1.55 1.48
45 1.73 1.77
70 1.79 2.1
100 1.78 2

TABLE III: MAXIMUM HOP COUNT RESULTS

Number of Users LA-NICE NICE
20 2 2
45 4 4
70 4 7
100 3 6

TABLE IV: AVERAGE DELAY RESULTS (S)

Number of Users LA-NICE NICE
20 0.923 0.91
45 0.83 0.9
70 1.54 1.58
100 1.21 1.19

Fig. 4: Percentage of Message Delivery of LA-NICE, NICE and Scribe against different
number of users

Fig. 5: Average hop count in LA-NICE and NICE against different number of users

Fig. 6: Maximum hop count in LA-NICE and NICE against different number of users

Fig. 7: Average Delay in LA-NICE and NICE against different number of users

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

TABLE V: MAXIMUM DELAY RESULTS (S)

Number of Users LA-NICE NICE
20 1.67 1.72
45 1.76 1.57
70 2.48 2.48
100 2.01 2.05

Fig. 8: Maximum Delay in LA-NICE and NICE against different number of users

IV. CONCLUSION

We presented LA-NICE which is an enhancement version
of the ALM based NICE protocol. The added enhancement
resulted in improved multicast message delivery and lower
end-to-end delay. LA-NICE takes into account the fact that
different links can have different bandwidths. The original
member join, member leave and the maintenance functions in
NICE algorithm were modified to include the link information.
OMNeT++ simulator was used to evaluate LA-NICE and com-
pare it against NICE as well as Scribe protocols. Simulation
results showed that LA-NICE produced higher percentage of
successful message delivery and less delays in data forwarding
multicast messages compared to NICE and Scribe protocols.
The study of the behavior of the three algorithms has shown
that as the number of users increased and the network became
more congested, the successful message delivery decreased and
the delay increased.

REFERENCES

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” vol. 32, no. 4. New York, NY, USA: ACM, Aug.
2002, pp. 205–217.

[2] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, ser. Simutools ’08. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008, pp. 60:1–60:10.

[3] K. Ke and C. Huang, “Performance evaluation of multisource applica-
tion layer multicast (alm): Theoretical and simulative aspects,” vol. 57,
no. 6. New York, NY, USA: Elsevier North-Holland, Inc., Apr. 2013,
pp. 1408–1424.

[4] L. Lao, J.-H. Cui, M. Gerla, and D. Maggiorini, “A comparative study
of multicast protocols: top, bottom, or in the middle?” in INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings IEEE, vol. 4, 2005, pp. 2809–2814
vol. 4.

[5] X. Li, X. Zhang, W. Luo, and B. Yan, “A clustering scheme in
application layer multicast.” vol. 30, no. 2, 2011, pp. 335–355.

[6] W. Xijuan, J. Ruisheng, L. Guang, and Y. Xianghong, “Research on
p2p-based application layer multicast technology for streaming media,”
vol. 1. Los Alamitos, CA, USA: IEEE Computer Society, 2010, pp.
341–345.

[7] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scribe: A
large-scale and decentralized application-level multicast infrastructure,”
vol. 20, 2002, pp. 1489 – 1499.

[8] A. Varga, “Omnet++ discrete event simulation system user manual,”
2011.

[9] I. Baumgart, B. Heep, and S. Krause, “Oversim: A scalable and flexible
overlay framework for simulation and real network applications,” in
Peer-to-Peer Computing, 2009. P2P ’09. IEEE Ninth International
Conference on, 2009, pp. 87–88.

[10] C. Hübsch, C. P. Mayer, and O. P. Waldhorst, “User-perceived per-
formance of the nice application layer multicast protocol in large
and highly dynamic groups,” in Proceedings of the 15th international
GI/ITG conference on Measurement, Modelling, and Evaluation of
Computing Systems and Dependability and Fault Tolerance. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 62–77.

[11] S. Rizvi, M. Khan, and A. Riasat, “Deterministic formulization of
bandwidth efficiency for multicast systems,” in Computer, Control and
Communication, 2009. IC4 2009. 2nd International Conference on,
2009, pp. 1–6.

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

