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Abstract—A filter bank divides the input signal into L 

bands having different passbands called unequal-

passbands-filter bank. This type of filter bank can be 

obtained in various ways, for example, from an equal-

passbands-bank in which the signals of each band are 

combined to produce new unequal-passbands. Recent 

results showed that the unequal-passbands scheme has 

superior performance over the equal-passbands scheme. 

In this paper, a new method showing a decrease in the 

number of taps in the separation stage of the blind 

source separation system is presented. Decreasing 

number of taps is necessary to decrease the complexity 

cost. The simulation results prove that the proposed 

technique improves the convergence using filter bank in 

octaves with decomposition which was observed for 

colored input that has low-pass characteristics. 
 

Keywords- Filter bank; multiband; convergence; adaptive 

filters; taps. 

I.  INTRODUCTION 

In recent years, some schemes for adaptive filtering were 

presented with the aim to accelerate the convergence to 

input signals correlated over time (color signals). In some 

cases, the aim was to reduce the computational cost, 

promoting the coefficients of the adaptive filters whose 

sampling rate is below that of the input signal. However, 

these schemes have an input-output delay and spectrum 

overlap between the various bands that should be reduced in 

advance promote adaptation of the filters [1].  Marelli and 

Minyue [2] proposed a scheme with maximum decimation 

able to make almost an exact modeling of the Finite Impulse 

Response (FIR) systems, through the insertion of cross 

filters and considering that there is spectrum overlapping 

between adjacent bands. In this case, both the input signal 

and the desired signal was decomposed into multiple bands, 

and the error generated in each band was used to update the 

respective adaptive filters (direct and crossed) related to the 

band. 

Papoulis and Stathaki [3] proposed two schemes of non-

maximally decimated (F < L) filter banks. As the effect of 

the overlapping spectrum is directly proportional to the 

decimation factor, the lower the value of F the smaller the 

minimum mean square error of the scheme. For fixed values 

of L and F, one can obtain optimum filter bank that 

minimizes the mean square error of the final scheme. The 

difference between the two proposed schemes is that the 

desired signal is decomposed into multiple bands, while the 
other one the final error of the scheme is decomposed. 

Two other schemes have been proposed by Lian and 

Wei [4] and Brown [5]. Papoulis and Stathaki [3] use 

analysis bank without decimation, followed by adaptive 

filters of nonzero coefficients, whereas Brown’s algorithm 

[4], which was derived from the first, uses a maximally 

decimated filter bank with perfect reconstruction and 

adaptive filters operate at reduced rate. 
New research presented by McCloud and Etter [6], and 

Kim and Choi [7], showed that the error in the scheme is 
decreased in adaptive filters with unequal-passbands in 
analogy to the equal-passbands. The unequal-passbands-
schemes presented in [6] employ noncritical decimation of 
the multi-band signals. In this work an unequal-passbands-
scheme with maximally decimated random bands is 
proposed. The contribution of this paper is derivation of the 
unequal-passbands maximally decimated scheme from 
unequal-passbands scheme without decimation, which 
employs analysis bank and filters with nonzero-coefficients 
that are used to construct an equivalent FIR system.  The rest 
of the paper is organized as follows: adaptive filter scheme 
without decimation is discussed in Section II, maximally 
decimated scheme with unequal-passbands and the 
extraction of the total number of taps used in the proposed 
scheme is presented in Section III, simulation results is 
discussed in Section IV and finally, the paper is concluded in 
Section V. 

II. ADAPTIVE SCHEMES WITHOUT DECIMATION 

The adaptive scheme is shown in Figure 1 and uses 

filters with nonzero coefficients that are capable of 

modeling only a particular class of FIR systems and cannot 

be generalized for all FIR systems because the length of 

analysis filters is greater than the number of adaptive 

coefficients. However, Apolibario and Alves [8] show that 

by a suitable selection of the filter, better parameters can be 

obtained to model the FIR system. We propose in Figure 1 a 

scheme that can model any FIR system but will include 

some delay. 
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Figure 1.  Scheme explains the use of adaptive filters. 

 

Considering the analysis polyphase bank representation 

of the scheme in Figure 1, the polyphase matrix of 

dimension L × L is defined as [9]: 
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where Kp is the length of the analysis filters.  

Therefore, the system function used in Figure 1 can be 

expressed as: 
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The taps of the filters of nonzero coefficients Sr(z)  are 

changed to give us the equivalent FIR scheme, which will 

be called U(z). The decomposition of the polyphase transfer 

function of the unknown system is given by 
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From Equations (3) and (4), it can be seen that the 

scheme accurately models an unknown FIR system when 

    )()()()()()()( 110110 zUzUzUzzSzSzS LmL    P  

Equation (5) shows that the equality cannot be achieved 

as the length of the adaptive filters of nonzero coefficients is 

L  and the length of the analysis filters is Kp, while the 

product Sr(z)Pr(z)   has length Kp + Lk - 1 , which is greater 

than the number of coefficients L  that was adapted. 

However, if  

     )()()()()()()( 110110 zzUzUzUzSzSzS mLL Q    

such that  Qm(z)Pm(z) = I, where I is the unit matrix of 

dimension L × L with delay, the system function in Figure  1 

will be 

 )()( zUzP   

but with delayed U(z). The matrices Pm(z) and Qm(z) that 

satisfy the above conditions are, respectively, the polyphase 

matrix of the analysis and synthesis filter bank with perfect 

reconstruction. The synthesis polyphase bank matrix is 

defined as 
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where Kq is the length of the synthesis filters. 

Then, using an analysis filter bank, which allows perfect 

reconstruction and adaptive filters of nonzero coefficients 

with sufficient order to satisfy (6), the scheme of Figure 1, 

now can implement exactly the FIR system with transfer 

function given in equation (7). However, it should be 

emphasized that the delay introduced by the filter bank 

needs to be considered in the adaptation algorithm of the 

filters coefficients. 

For lengths Kun and Kpr of the unknown prototype 

systems, respectively, the number of nonzero coefficients K  

must be at least: 

 1 prun KK  
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III. MAXIMALLY DECIMATED SCHEME WITH UNEQUAL-
PASSBANDS  

An analysis filter bank of unequal-passbands can be 

configured from the adaptive scheme of unequal-passbands 

shown in Figure 1, but employs analysis filters bank with 

unequal-passbands. This scheme is shown in Figure 2. The 

input signal x(k) , and Pi(z) indicates the analysis of 

unequal-passbands with L-bands, the adaptive filters of 

nonzero coefficients will be denoted as Si(z) , the required 

signal will be )d(k , where the error signal is e(k).  
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Figure 2.  Adaptive Scheme of unequal-passbands without decimation. 

 

The perfect reconstruction analysis filter bank of L-

bands has orders 
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Where c
pK ,0   are orders of )(,0 zP c  and c

pK ,1  are orders of 

)(,1 zP c .  

The filters of unequal-passbands and with perfect 

reconstruction analysis Pi(z) and synthesis filters Qi(z) are 

included after each of the sub-adaptive filter in Figure  2.  
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Figure 3.  i t h
  band a fter  implying the ma ximal ly sa mpled 

filt er  bank . 

Figure 3 shows the ith band of the resulting scheme, 

which allows the filters to operate at a lower sampling rate. 

To obtain a scheme with less complexity we consider the 

analysis filters are sufficiently selective to accept spectrum 

interference only in frequency responses of neighboring 

bands. The ith band that is shown in Figure 4, we see that 

Pr,c(z) = Pr(z)Pc(z) are the filters of nonzero coefficients  

Si(z) shifted forward by Fi [10]. Looking at the ith band of 

the simplified scheme shown in Figure 4, the sampling rate 

of the adaptive filters is Fi  and Fi+1  times less than the rate 

of the input signal. 
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Figure 4.  Adaptive filters work at lower rates. 

The scheme can be further simplified by noting that 

Pr,c(z) = Pc,r(z) and combining the signals in adjacent bands.  

 

A. Taps Selection 

As mentioned in section III, about a good design of 

analysis filters to avoid the spectrum overlap, the parameters 

of Figure 4 are similar to the parameters of Figure  2. From 
this hypothesis an equation will be extracted assuming the 

case of modeling a random FIR system. 

The adaptive filters  Si(z) of each band of Figure 2 are 

described by shifting ii F/1  [11]. 

Defining Si(z) as follows: 
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Pm(z) is the matrix of dimension F0 x F0  contains 

analysis polyphase filters components - type I, given by 
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where Pi(z) is the matrix ii Fx   with the rth row (r=0,.  i  ). 

The system function applied for the scheme of unequal-

passbands in Figure 2 can be expressed as: 

     Tm
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To identify the unknown system, taps of Si(z) can be 

adjusted to match the required FIR scheme. The system 

function of the unknown system is denoted by U(z) and 

written as 
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From equations (15) and (16), the multiband scheme 

accurately matches a FIR filter U(z) at 
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Multiplying both sides of equation (18) by the matrix 

Qm(z): 
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where I is the unit matrix with delays, and its dimension is 

F0 x F0, and  
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with delays. The matrix Qm(z) satisfying (19) corresponds to 

the synthesis polyphase filters matrix which results in a 

system with perfect reconstruction [12]. 

The matrix Qm(z) is of dimension  F0 x F0 containing 

components of the expanded synthesis polyphase filters, 
given by 

       zzzz Lm 110)(  QQQQ   

where Qi(z) is an iF x0  matrix with the rth column (r = 0, · 

· ·, i ). 

The parameters of the ith S-band filter )(zSi


, assuming 

the existence of overlapping spectrum only between 

adjacent bands, are given by 
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where filters Si,r(z) are related to )(zSi


 through equations 

(12) and (13). 

According to equations (20) and (22) for a scheme of 

unequal-passbands with L-band synthesis filters with 

)(zK
iQ , we can write 


ii QUS KKK   

where KSi is the minimum number of taps for the filters and 

KU is the required system order. 

Then, using a filter bank, which allows perfect 

reconstruction of unequal-passbands and adaptive filters of 

nonzero coefficients with sufficient orders that satisfies 

equation (23). However, it should be emphasized that the 

delay introduced by the filter bank should be considered in 

the adaptation algorithm. 

IV. SIMULATION RESULTS 

A random signal with normal distribution was applied 

on an IIR filter with z = 0.73. A noise of 10-7 is used and a 

system of order KU = 900 is considered. The decomposition 

was in octaves with L = 1, 2, 3, 4. Table I shows the 
parameter of the unequal-passbands scheme the 

downsampling parameters i
F , and the orders of the analysis 

filters  i  , respectively and L = 4 bands. Figure 5 shows 

the frequency responses of the corresponding analysis 

filters. 

 

Figure 5.  Frequency response of analysis filters   

Figure 6 reflects the significant enhancement in the 

convergence rate of the proposed algorithm that can be 

obtained for colored input signals by increasing the number 

of bands in the multiband algorithm. In this research work, 

four bands for colored input were used that is enough to 

decorrelate their samples. 
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TABLE I.  PARAMETERS OF THE UNEQUAL-PASSBANDS SCHEME 

i 0 1 2 

Fi 8 4 4 

i  1 2 2 

iPK  332 332 155 

iSK  149 149 256 

 

Next, we compare the performance of mean square error 

considering different adaptive schemes with L = 4 bands. 

Figure 7 shows the performance of the mean square error 

for the proposed critical decimation scheme with unequal-

passbands and the subsampled scheme with unequal-

passbands. It can be seen that the suggested scheme with 
unequal-passbands offers faster convergence speed 

compared to the Ichikawa and Furukawa approach [13]. 

 

 

Figure 6.  Performance of the mean square error of the scheme with 

unequal-passbands. 

To decrease the problem of slow convergence in wider 

bands, we use a subsampled scheme.  

 

Figure 7.  The mean square error with L = 4 

The reason behind improving the convergence in the 

scheme with unequal-passbands in contrast to the one with 

equal-passbands is because of breaking down the input into 

narrower bands at the smaller frequencies that causes a 

lower rate between the largest and smallest powers [9]. 

V. CONCLUSION 

In this paper, an unequal-passbands scheme was 

proposed and wider-band analysis filters were used. An 

equation is derived by modeling a random FIR system. This 

system is constructed from filters of nonzero coefficients 

that are used to design the equivalent FIR scheme. A perfect 

reconstruction is used by the help of the analysis filter bank. 

This bank allows us to obtain a scheme with less complexity 

by considering sufficiently selective analysis filters. By 
reducing the taps the computational cost is reduced. The 

results showed that the suggested method speeds up the 

convergence rate. 
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