
Self-synchronizing One-way Delay Measurement in the Internet

Frank Eyermann
Institut für Technische Informatik

Universität der Bundeswehr
Munich, Germany

Frank.Eyermann@unibw.de

Abstract—End-to-end packet delay is the network parameter
with maximum impact on performance of distributed appli-
cations. This is especially true for soft real-time applications,
which are delay-sensitive by definition, but also for applica-
tions relying on the TCP protocol whose sliding window
mechanism performs badly in case of high packet delays.
Therefore, measuring packet delay is an important task for
both network operators and application developers. This paper
presents a tool set for measuring and evaluating one-way end-
to-end delay and packet loss that can be operated on standard
PCs without additional external timing sources. We chose a
script-based approach that can even be executed on virtualized
platforms. The self-synchronization mechanism embodied in
the trace evaluation is a distinctive feature that omits the need
for expensive external clocks (as e.g., GPS receivers). We also
show a wide-ranging set of measured traces and their most
prominent statistical properties.

Keywords-One-way delay, packet loss, measurement, tools

I. INTRODUCTION
Even though first mechanisms for ensuring quality of

service (QoS) in IP networks have been proposed almost 15
years ago [3], they are still rarely used in the Internet. In
general, only best-effort services that treat all packets equally
and do not respect special requirements of single packets are
available.

However, applications requiring an elevated level of
QoS, as e.g., Voice-over-IP (VoIP), IP Television (IPTV), or
Video-on-Demand (VoD), become more and more important
for private users but also for Business-to-Customer (B2C)
and Business-to-Business (B2B) communication. These
applications only work satisfactorily if one-way end-to-end
delay, packet loss, delay variation (also called jitter), and/or
throughput are above or below a certain threshold. As
techniques for ensuring these QoS parameters are still not
embodied in today’s networks, users can only “hope” that
the network has sufficient performance.

Therefore, it is important to test regularly the actual
performance of the Internet with respect to the above
mentioned performance parameters. This work presents a
tool set for measuring one-way delay, delay variations, and
loss. The tools have already been used to capture a wide-
ranging set of traces in EmanicsLab [4], [5].

The paper is structured as follows: First, in Section 2 we
present a summary of the requirement analysis for the tools,
followed, in Section 3, by related work on this topic. Later,

in Section 4 we describe the tools we have developed for
measuring traces and evaluating them. Section 5 discusses
measured traces and their evaluation. Finally, Section 6
concludes the paper and summarizes the main results.

II. REQUIREMENTS
Analyzing suitability of networks for multimedia or real-

time services requires testing the network over a long period
of time in order to cancel different load situation as regularly
observed at different times of day or week. As continuous
measurement would generate an enormous amount of
measurement data, it may be preferable measuring short
intervals of a few minutes scattered over a period of days or
weeks. This requires the capability to flexibly schedule
measurement runs. The number of packets sent during such a
measurement run, the size of the packets as well as the
frequency of packet generation has to be easily configurable.
Furthermore, for documentation purposes and for easier
repetition of experiments a script-based approach would be
beneficial.

In addition, there are a number of non-functional
requirements. First, the tools should be executable on
different operating systems, including at least Linux and
Windows. As more and more servers—especially in
testbeds—are virtualized, the tools have to be tested on such
platforms, too.

Precise one-way delay measurement is typically
performed using additional hardware for synchronizing the
sender and receiver host (e.g., GPS receivers). This increases
efforts and costs drastically especially if cables have to be
installed.

Synchronization, however, is not necessary if only
relative delay or inter-packet delay variation is of interest:
Packet delay consists of static and dynamic delay
components: Static components are propagation, serializa-
tion, and processing delay [7]; Queuing delays are dynamic
components. Even though the static components cannot be
neglected, these constant values are only troublesome in case
of satellite communication and do typically not exceed some
tenth of milliseconds. More problematic is the dynamic part
of the delay as, first, its share might be bigger than the static
one and, second, the changes in delay lead to unpredictable
arrival times at the receiver. Therefore, the tools should also
be able to work with unsynchronized hosts and be able to
measure the dynamic delay components.

20

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

III. RELATED WORK
This section presents related work on delay, delay

variation, and loss measurement in the IP networks.

A. IPPM
The goal of the IP Performance Metrics working group

(IPPM WG) of the Internet Engineering Task Force (IETF)
is to define metrics that can be applied to the quality,
performance and reliability of Internet data delivery
services [9]. In addition, the working group defined a general
framework for accurately measuring and documenting the
metrics [13]. The IPPM WG does not define or suggest how
the performance parameters are measured. They emphasize
on definitions and the unambiguous understanding what a
parameter expresses, so that measurement results can be
compared, shared and validated by different entities.

B. Measurement tools
Quite a number of tools for delay and loss measurement

are available, including, e.g., ping, cing [1], king [8],
netperf [11], or scriptroute [16]. All tools use probing
techniques, i.e., they inject artificial packet (so-called probes)
into the network and observe their behavior. A sub-group of
these tools uses so called inference techniques: While delay
measurement in general requires two programs, i.e., a sender
that generates the probes, and a receiver that evaluates the
probes, tools embodying inference techniques use standard
behavior of protocol stack implementations on nodes in the
network to receive feedback. Thus, these tools can combine
sender and receiver functionality in one program but can
only measure round-trip delay and not one-way delay.
Examples for such programs include ping or traceroute.

None of the programs mentioned above is able to
perform flexible script-based long-term one-way delay and
delay variation measurements. Either the tools use inference
techniques that by definition cannot measure one-way
performance or their design does not include the possibility
to schedule measurement runs. Furthermore, none of these
tools have been tested on virtualized platforms or with
unsynchronized hosts.

IV. MEASUREMENT TOOL

A. Tool design
One-way delay, delay variation, and packet loss measure-

ment requires a pair of programs: a sender, generating the
probing packets as well as a receiver, collecting the probes
and writing a log file.

All time intervals and timestamps are stored and
transferred in units of 100µs. This value is a compromise
between timer resolution and storage space. On the one hand,
sub-milliseconds resolution is approximately one magnitude
smaller as typical measurement values, and therefore, the
effect of the rounding error is negligible. On the other hand,
a signed 32-bit integer counting steps of 100 µs overflows
only every 60 hours – long enough to detect any overflow of
counters.

Measuring such small time differences is not possible
using the built-in real-time clock (RTC) of PCs. Further-

more, accessing the RTC is quite slow thereby reducing
program performance. Intel invented a quickly accessible,
high-resolution timing source for their Pentium processor.
The TSC (time-stamp counter) is a 64-bit processor register
counting its clock cycles. The time resolution of this register
is more than sufficient (on a 1 GHz processor, the register
counts microseconds) and access to this processor register
takes only a couple of processor cycles. All other x86
processor manufacturers later adopted the TSC for their
processors [12].

The drawback of using this counter is the varying
processor speed from computer to computer, and accord-
ingly, the necessity to calibrate the TSC in order to produce
comparable results. Furthermore, state-of-the-art processors
may reduce their speed for preserving power in times with
low load. This also influences the TSC counter. Therefore,
during calibration and during send cycles busy waiting is
necessary in order to prohibit power-saving features.

B. Scripting language definition
Deterministic probe sending schedules can be flexibly

described using the following four script commands
implemented by the tool:

• at absoluteTime
waits until absoluteTime. The parameter time can be
a real point in time (e.g., 13:05:23), or the syntax
*/n can be used for hour, minute, or second. In this
case at will wait until the current hour, minute, or
second, respectively, can be divided through n
without remainder (e.g., at */2:00:00 will wait
until the next full even hour).

• send destAddress repeat size delayMillis
sends a burst of probes. Probes of size bytes are sent
every delayMillis milliseconds to IP address
destAddress for repeat times.

• Loop iter
body

bend
processes the block body for iter times. If iter is 0,
the command loops infinitely. body can be a series
of commands including other loop statements.

• wait millis
waits for millis milliseconds.

Respective scripts are interpreted by Lattes, a C++
application described in Section D.

C. Structure of Probes
The probes consist of three unsigned 32-bit integers as

well as random padding data filling the rest of the packet.
The first integer is the Flow ID. Each burst gets its own Flow
ID. During start-up of Lattes a Flow ID counter is
initialized with a value based on the current time. Every time
Send::doit() is called the Flow ID is incremented by 1.
The second integer is the Serial number, starting from 1 for
the first probe of a burst and incremented by 1 for each probe
sent. And finally, the third integer stores the time on the
sender in units of 100 µs when the probe was generated. The
probes are sent as UDP packets; therefore, the actual size of

21

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

the IP packet is 28 bytes larger than stated in the size
parameter.

D. Lattes
Lattes is an interpreter of the scripting language

defined above. This section presents the design, implemen-
tation, and interfaces of Lattes. The receiver of the probes,
Latreceiver, will be described in the following section.

Each command is implemented as a class inheriting from
the class Command (see Fig. 1). The class Command has a
virtual function doit(), which must be implemented by
each not abstract child class and contain the functionality of
the command. Based on this approach Lattes can be easily
extended by simply implementing a new class inheriting
from Command.

Figure 1. Class diagram for Lattes

During start-up of the program the Main class reads in
the script. The method Main::readBlock reads line by
line from the script and compares the start of a line with the
command literals. If one command literal is recognized, the
respective object is created and the rest of the line is handed
over to its constructor, which evaluates the command’s
parameters. The objects are stored as a linked list.

Furthermore, the Main class calls Tools::
calibrateTSC(), a static method that measures the
increase of the TSC register per time unit.

After reading in the entire script and constructing all
Command objects, the main program calls the doit()
method of the first command. Each doit() method calls
doit() of the next command in the chain after performing
its functionality.

The loop command is the only command manipulating
the control flow of the script. The class Loop has an
additional attribute body that points to the first command of
the body. The next attribute of the Loop class points to the
first command following the corresponding bend statement.
The doit() method of the class Loop calls

body->doit() for iter times before continuing with the
next command after bend (i.e., next->doit()).

E. Latreceiver
Latreceiver was developed as receiver for the

probes sent by Lattes. Common functions (e.g., calibra-
tion of the TSC values or probe format definition) are shared
between both programs. The program writes all events to a
log file.

Latreceiver maintains a list of all currently running
flows. If a probe is received, this list is searched for the Flow
ID stored in the probe. If the ID cannot be found, the start of
a new flow is detected and a new record containing
information on the received packet is added to the list as well
as a respective remark is written to the log file.

If a lost packet is detected, i.e., the serial numbers of two
probes of the same flow are not consecutive, a remark is
written to the log file. For consecutive packets the packet-to-
packet delay variation , i.e., the difference of the delay
of the previous packet and the current packet, as well as the
(not-normalized) relative delay is calculated and
written to the log file (see following section). Reordered
packets that have been passed by a successive packet are
dropped by the receiver.

ptp
itΔ

rel
itΔ

EmanicsLab uses the MyPLC platform [14] consisting of
virtualized Linux systems. The virtualization produces a long
latency between receiving a frame on the physical interface
and the processing of the packet in user-space. This leads to
linear dependency between consecutive probes as depicted in
Fig. 2. Only virtualized systems show this effect.

Figure 2. Trace collected on virtualized host

As discussed in [16] and [10], these distortions can be
minimized or even eliminated if time stamping is already
performed in the interrupt service routine, which copies the
frame from the physical network device to memory.
Consequently, Latreceiver uses the pcap library [18]
for time stamping the packet already in the kernel allowing
the usage of the programs also on virtualized systems.

Latreceiver‘s main focus is on probe reception. All
further processing, e.g., splitting the log file in files
containing only information about one flow, is task of post-
processing tools described in subsequent sections.

F. Measurement value evaluation
Latreceiver as well as some post-processing tools

are used to calculate different parameters from the measured
values. Latreceiver directly calculates the packet-to-

22

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

packet delay variation and the (not-normalized) relative

delay (see Equations 1 and 2)

ptp
itΔ

rel
itΔ

 (1)

()Receiver
1i

Receiver
i

Sender
1i

Sender
i

Receiver
i

Sender
i

ptp
i

Receiver
1i

Receiver
i

Receiver
i

Sender
1i

Sender
i

Sender
i

tttt

ttt

ttt

ttt

−−

−

−

−−−≡

Δ−Δ≡Δ

−=Δ

−=Δ

 (2) ∑
=

Δ≡Δ
i

j

ptp
j

rel
i tt

0

with being the sending time of probe i as stored in

the probe and the point of time probe i was received.

The variable denotes the accumulated delay variation,
and thus, represents the dynamic component of the packet
delay.

Sender
it

t

Δ

Recevier
i

rel
it

The term can be positive or negative. If queues in
routers grow, the packet-to-packet delay variation is positive
as successive packets spend more and more time in router
queues. In case the queues are shrinking, packet-to-packet
delay variation is negative as each packet spends less time in
router queues.

ptp
itΔ

Assuming that the network is only temporarily over-
loaded and router queues are empty at some time the relative
delay can be normalized in a way that the smallest value for
the relative delay is 0 (see Equation 3):
)(min rel

jj

rel
i

rel
i ttt Δ−Δ≡Δ (3)

The relationship of the variables and ptp
itΔ

rel
itΔ is

visualized in Fig. 3. In this example the sender generates
probes every 20 ms. These probes arrive at the receiver with
different delays. In the example the network was overload in
the time from to , and thus router queues grew;
afterwards, until the queues empty again.

Sendert1
Sendert5

Sendert3

Figure 3. Impact of queueing on measurement variables

G. Post-processing

Fig. 4 shows the packet-to-packet delay variation

and the normalized relative delay

ptp
itΔ

rel
itΔ of a flow consisting

of 7000 probes (approx. 5 min) sent between two nodes.

In contrast to the theoretical concepts discussed above,
the relative delay is increasing. All traces captured look
similar; however, the slope of the relative delay changes
from trace to trace including also negative slopes.

The reason identified is synchronization errors resulting
from two factors: The first-order error of real-time clocks is
not zero, i.e., the time difference between two clocks is not

ant but gets greater or smaller with time. This effect is
 skew and can easily be observed on most clocks. This

error, however, is typically much smaller than the error
Fig. 4 the error is 110 ms per 300 s

or approx. 30 seconds per day.

const
called

observed in the traces. In

Additional measurement errors might be introduced
because time at sender and receiver is measured in processor
cycles and is then converted to real time units. Each time one
of the programs is started the conversion factor is calculated
with the help of a calibration routine (see Section IV.D). This
calibration might add an additional error component.

Other reasons for changing delay, like path changes or
traffic shaping by providers, cannot be held liable for this
effect, as they do not cause continuously increasing or
decreasing relative delay over minutes.

A more accurate calibration of clocks that would not only
eliminate the clock offset but also the skew is only possible
with additional hardware. But as the error is linear in time it
also can be corrected ex post. Therefore, for each flow the
slope of the dynamic delay has to be determined. This can be
done by fitting a line onto the lowest delay values. This line
represents a dynamic delay of zero.

The line and
axis. This conver

all observations are then projected to the x
ts Fig. 4 into Fig. 5 (packet-to-packet delay

variation is not shown as it does not change; scale of y axis is
adapted).

H. Self-synchronization
Fitting the line to the observation values is not a trivial

task. Quite a lot of algorithms exist for fitting straight lines
into a cloud of observations (e.g., ordinary least square
estimation, OLS) but all these assume positive and negative

Sendert0
Sendert1

Sendert2
Sendert3

Sendert4
Sendert5

Figure 4. Sample trace showing the skew in relative delay

Se
nd

er

20ms 20ms 20ms 20ms 20ms

R
ec

ei
ve

r

18ms 20ms 22ms 22ms

0ms +2ms +2ms -2ms -2ms

:rel
itΔ 0ms 2ms 4ms

18ms

2ms

ptp
itΔ

0ms

23

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

variations from the mean (and not only positive as in the
present case). For this work several approaches were
developed and tested. The one that shows the best results
iteratively searches from the right and left side for a pair of
points (p1, p2), which best represent the line. The algorithm
works as follows:

The smallest observations in a 1% interval from the right
and from the left, respectively, are chosen as start values for
p1 and p2. Based on the line through those both points, the
observations are transformed for the first time. This typically
produces also negative observations, as the guessed p1 and p2
have not been optimal.

The solution is improved by choosing the smallest point
p’ of the transformed observation set and replacing either p1
or p2, depending if p’ is in the right or left half of the set.
Afterwards, the set is transformed according to the newly
constructed line again. This step is repeated as long as there
are negative observations. Regularly only a few iterations are
necessary.

This procedure describes a very robust and fast
algorithm. Several thousand measurement traces (see next
chapter) have been processed and afterwards their plausibi-
lity was checked statistically. The algorithm is robust to
outliners as in the present scenario outliners can only be
positive, the algorithm, however, considers only the lowest
measurement values. Furthermore, the algorithm is universal
as it does not rely on the structure of the data or any input
parameters.

V. TRACES
With the help of the tools developed a wide ranging set

of delay measurements is performed. All measurement runs
are collected in EmanicsLab.

A. EmanicsLab
EmanicsLab is a European research network consisting

of 20 nodes at 10 sites across Europe (see Fig. 6).
EmanicsLab partners use the network for research activities
in the area of network and service management, including
distributed flow collection and analysis, distributed intrusion
detection systems, as well as distributed monitoring and
accounting systems. It is funded by the European Network of
Excellence for the Management of Internet Technologies and
Complex Services (EMANICS).

EmanicsLab is based on MyPLC, the backend manage-
ment infrastructure of PlanetLab [14]. Project partners can
run their services and applications in own slices. A slice is a
fraction of resources on a set of nodes implemented as virtual

machines [2]. The nodes run a customized Linux operating
system. Access control and establishment of slices is
controlled remotely by a central management system. Project
partners typically get root access to their slice.

Figure 5. Corrected relative delay

Figure 6. EmanicsLab nodes in Europe ([4])

B. Measurement runs
Seven out of ten sites of EmanicsLab have been

participating in trace collection. The other three institutes
joined EmanicsLab only after the measurements have
already begun. In total, five different test runs have been
scheduled. All tests are structured similarly in order to
produce comparable results. Each run measures 36 times for
five minutes the 42 unidirectional vertexes in a fully-meshed
graph of all participants in a time frame of 72 hours. This
adds up to 1512 measurement runs per test. The schedule of
runs within a test ensures that one station is either sender or
receiver of probes at one instance of time. In total about 18
Mio single measurements have been performed.

TABLE I. TRACE OVERVIEW

Name Burst size
(# of packets)

Probe size
(byte)

Interval
(ms)

Test01 30000 60 10
Test02 7000 60 50
Test03 3500 60 100
Test04 150000 60 3
Test05 250000 60 2

C. Measurement results
The measured data contains a huge amount of

information. The data has already been used for the
assessment of a multi-domain auditing system for end-to-end
SLAs [6]. In the following some statistical properties as a
proof of concept for the measurement tools are shown. These
data, however, could also be helpful for application
developers and network operators.

1) Moments
Fig. 7 and Fig. 8 show the mean, the 95%-, the 97.5%-

and the 99%-percentiles of rel
itΔ . Percentiles are used

instead of standard deviation or variance as the distribution

24

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

of the packets typically belongs to the class of so-called
heavy-tailed distributions, which do not have a finite
standard deviation. Percentiles do not suffer from this effect.

As can be seen from the figures, for approx. two thirds of
the measured paths the relative delay is negligible (the
relative delay of 99% of all packets is between 1 and 2 ms).
For some of the measured paths these percentiles are 100
times bigger. The reasons are heavily loaded Internet
connection at two sites. Tests scheduled after these sites have
upgraded their uplink show a more homogenous result.

Figure 7. Mean, 97.5%- and 99%-Percentile of Test01

Figure 8. Mean, 97.5%- and 99%-Percentile of Test02

VI. CONCLUSION
This paper presented a tool set for measuring one-way

delay and delay variations. Additional hardware for clock
synchronization might be used but if not available as a fall-
back the tools may remove first-order error of the clock, i.e.,
skew, in a post-processing step. Furthermore, the tool set is
script-based allowing automated measurements over a longer
period of time. Furthermore, the tools have been tested on
virtualized platforms as frequently used in testbeds (e.g.,
PlanetLab).

In EmanicsLab, a testbed arisen out of the Network of
Excellence EMANICS, a wide ranging set of measurement

traces with over 18 Mio singleton measurements have been
performed.

ACKNOWLEDGMENT
The authors wish to thank the members of the Chair for

Communication Systems and Internet Services at the
Universität der Bundeswehr Munich, headed by Prof. Dr.
Gabi Dreo Rodosek, for helpful discussions and valuable
comments on previous versions of this paper. The Chair is
part of the Munich Network Management Team.

REFERENCES
[1] Anagnostakis, K., Greenwald, M., and Ryger, R.; “cing: Measuring

Network-Internal Delays using only Existing Infrastructure”, 22nd
Annual Joint Conference of the IEEE Computer and Communications
(INFOCOM), pp. 2112-2121, 2003.

[2] Bavier, A., et al; “Operating system support for planetary-scale
network services”, Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementation 2004 (NSDI'04),
pp. 19-19, San Francisco, USA.

[3] Braden, R., Zhang, L., Berson, S., Herzog, S., and Jamin, S.;
“Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
Specification”, RFC 2205, Sept 1997

[4] EmanicsLab, subproject of the European Network of Excellence for
the Management of Internet Technologies and Complex Services
(EMANICS), www.emanicslab.org

[5] European Network of Excellence for the Management of Internet
Technologies and Complex Services (EMANICS), Project Number:
FP6-IST #026854, www.emanics.org.

[6] Eyermann, F.; “An Auditing System for Multi-for Mulit-domain IP
Carrying Service Level Agreements”, Doctoral Dissertation,
unpublished.

[7] Filsfils, C. and Evans, J.; “Engineering a multiservice IP backbone to
support tight SLAs”, Computer Networks, Volume 40, Issue 1, pp.
131-148, September 2002.

[8] Gummadi, K., Saroiu, S., and Gribble, S; “King: Estimating Latency
between Arbitrary Internet End Hosts”, SIGCOMM Internet
Measurement Workshop, pp. 5-18, 2002.

[9] IETF IP Performance Metrics working group,
http://www.ietf.org/html.charters/ippm-charter.html

[10] Jain, M.; “Probing for Bandwidth Measurements”, article of the
Planetlab-users mailing list from May 11th, 2005.

[11] Netperf homepage, http://www.netperf.org/netperf/NetperfPage.html,
visited Jan. 2011.

[12] Pásztor, A. and Veitch, D., “PC Based Precision Timing without
GPS”, Proceedings of the ACM SIGMETRICS international
Conference on Measurement and Modeling of Computer Systems,
Marina Del Rey, pp. 1-10, June, 2002.

[13] Paxson, V., Almes, G., Mahdavi, J., and Mathis, M.; “Framework for
IP Performance Metrics”, RFC 2330, May 1998

[14] PlanetLab, An open platform for developing, deploying, and
accessing planetary-scale services, www.planet-lab.org

[15] Scharf, M.; “The Impact of Delay Variations on TCP Performance”,
Proceedings of the 2nd Workshop on Modeling and Optimization in
Mobile, Ad hoc and Wireless Networks (WiOpt '04), pp. 419-420,
Cambridge, 2004.

[16] Spring, N., Wetherall, D., and Anderson, T.; "Scriptroute: A Public
Internet Measurement Facility", USENIX Symposium on Internet
Technologies and Systems (USITS), pp. 17-17, 2003.

[17] Spring, N., Peterson, L., Bavier, A., and Pai, V.; Using PlanetLab for
network research: myths, realities, and best practices, SIGOPS Oper.
Syst. Rev. 40(1), pp 17-24, 2006.

[18] TCPDUMP.org http://www.tcpdump.org/, visited Jan 2011.

25

ICIMP 2011 : The Sixth International Conference on Internet Monitoring and Protection

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-125-0

	I. Introduction
	II. Requirements
	III. Related Work
	A. IPPM
	B. Measurement tools

	IV. Measurement Tool
	A. Tool design
	B. Scripting language definition
	C. Structure of Probes
	D. Lattes
	E. Latreceiver
	F. Measurement value evaluation
	G. Post-processing
	H. Self-synchronization

	V. Traces
	A. EmanicsLab
	B. Measurement runs
	C. Measurement results
	1) Moments

	VI. Conclusion
	Acknowledgment
	References

