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Abstract—End-to-end packet delay is the network parameter 
with maximum impact on performance of distributed appli-
cations. This is especially true for soft real-time applications, 
which are delay-sensitive by definition, but also for applica-
tions relying on the TCP protocol whose sliding window 
mechanism performs badly in case of high packet delays. 
Therefore, measuring packet delay is an important task for 
both network operators and application developers. This paper 
presents a tool set for measuring and evaluating one-way end-
to-end delay and packet loss that can be operated on standard 
PCs without additional external timing sources. We chose a 
script-based approach that can even be executed on virtualized 
platforms. The self-synchronization mechanism embodied in 
the trace evaluation is a distinctive feature that omits the need 
for expensive external clocks (as e.g., GPS receivers). We also 
show a wide-ranging set of measured traces and their most 
prominent statistical properties.  

Keywords-One-way delay, packet loss, measurement, tools 

I. INTRODUCTION 
Even though first mechanisms for ensuring quality of 

service (QoS) in IP networks have been proposed almost 15 
years ago [3], they are still rarely used in the Internet. In 
general, only best-effort services that treat all packets equally 
and do not respect special requirements of single packets are 
available. 

However, applications requiring an elevated level of 
QoS, as e.g., Voice-over-IP (VoIP), IP Television (IPTV), or 
Video-on-Demand (VoD), become more and more important 
for private users but also for Business-to-Customer (B2C) 
and Business-to-Business (B2B) communication. These 
applications only work satisfactorily if one-way end-to-end 
delay, packet loss, delay variation (also called jitter), and/or 
throughput are above or below a certain threshold. As 
techniques for ensuring these QoS parameters are still not 
embodied in today’s networks, users can only “hope” that 
the network has sufficient performance. 

Therefore, it is important to test regularly the actual 
performance of the Internet with respect to the above 
mentioned performance parameters. This work presents a 
tool set for measuring one-way delay, delay variations, and 
loss. The tools have already been used to capture a wide-
ranging set of traces in EmanicsLab [4], [5]. 

The paper is structured as follows: First, in Section 2 we 
present a summary of the requirement analysis for the tools, 
followed, in Section 3, by related work on this topic. Later, 

in Section 4 we describe the tools we have developed for 
measuring traces and evaluating them. Section 5 discusses 
measured traces and their evaluation. Finally, Section 6 
concludes the paper and summarizes the main results. 

II. REQUIREMENTS 
Analyzing suitability of networks for multimedia or real-

time services requires testing the network over a long period 
of time in order to cancel different load situation as regularly 
observed at different times of day or week. As continuous 
measurement would generate an enormous amount of 
measurement data, it may be preferable measuring short 
intervals of a few minutes scattered over a period of days or 
weeks. This requires the capability to flexibly schedule 
measurement runs. The number of packets sent during such a 
measurement run, the size of the packets as well as the 
frequency of packet generation has to be easily configurable. 
Furthermore, for documentation purposes and for easier 
repetition of experiments a script-based approach would be 
beneficial. 

In addition, there are a number of non-functional 
requirements. First, the tools should be executable on 
different operating systems, including at least Linux and 
Windows. As more and more servers—especially in 
testbeds—are virtualized, the tools have to be tested on such 
platforms, too. 

Precise one-way delay measurement is typically 
performed using additional hardware for synchronizing the 
sender and receiver host (e.g., GPS receivers). This increases 
efforts and costs drastically especially if cables have to be 
installed. 

Synchronization, however, is not necessary if only 
relative delay or inter-packet delay variation is of interest: 
Packet delay consists of static and dynamic delay 
components: Static components are propagation, serializa-
tion, and processing delay [7]; Queuing delays are dynamic 
components. Even though the static components cannot be 
neglected, these constant values are only troublesome in case 
of satellite communication and do typically not exceed some 
tenth of milliseconds. More problematic is the dynamic part 
of the delay as, first, its share might be bigger than the static 
one and, second, the changes in delay lead to unpredictable 
arrival times at the receiver. Therefore, the tools should also 
be able to work with unsynchronized hosts and be able to 
measure the dynamic delay components. 
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III. RELATED WORK 
This section presents related work on delay, delay 

variation, and loss measurement in the IP networks.  

A. IPPM 
The goal of the IP Performance Metrics working group 

(IPPM WG) of the Internet Engineering Task Force (IETF) 
is to define metrics that can be applied to the quality, 
performance and reliability of Internet data delivery 
services [9]. In addition, the working group defined a general 
framework for accurately measuring and documenting the 
metrics [13]. The IPPM WG does not define or suggest how 
the performance parameters are measured. They emphasize 
on definitions and the unambiguous understanding what a 
parameter expresses, so that measurement results can be 
compared, shared and validated by different entities. 

B. Measurement tools 
Quite a number of tools for delay and loss measurement 

are available, including, e.g., ping, cing [1], king [8], 
netperf [11], or scriptroute [16]. All tools use probing 
techniques, i.e., they inject artificial packet (so-called probes) 
into the network and observe their behavior. A sub-group of 
these tools uses so called inference techniques: While delay 
measurement in general requires two programs, i.e., a sender 
that generates the probes, and a receiver that evaluates the 
probes, tools embodying inference techniques use standard 
behavior of protocol stack implementations on nodes in the 
network to receive feedback. Thus, these tools can combine 
sender and receiver functionality in one program but can 
only measure round-trip delay and not one-way delay. 
Examples for such programs include ping or traceroute. 

None of the programs mentioned above is able to 
perform flexible script-based long-term one-way delay and 
delay variation measurements. Either the tools use inference 
techniques that by definition cannot measure one-way 
performance or their design does not include the possibility 
to schedule measurement runs. Furthermore, none of these 
tools have been tested on virtualized platforms or with 
unsynchronized hosts. 

IV. MEASUREMENT TOOL 

A. Tool design 
One-way delay, delay variation, and packet loss measure-

ment requires a pair of programs: a sender, generating the 
probing packets as well as a receiver, collecting the probes 
and writing a log file. 

All time intervals and timestamps are stored and 
transferred in units of 100µs. This value is a compromise 
between timer resolution and storage space. On the one hand, 
sub-milliseconds resolution is approximately one magnitude 
smaller as typical measurement values, and therefore, the 
effect of the rounding error is negligible. On the other hand, 
a signed 32-bit integer counting steps of 100 µs overflows 
only every 60 hours – long enough to detect any overflow of 
counters. 

Measuring such small time differences is not possible 
using the built-in real-time clock (RTC) of PCs. Further-

more, accessing the RTC is quite slow thereby reducing 
program performance. Intel invented a quickly accessible, 
high-resolution timing source for their Pentium processor. 
The TSC (time-stamp counter) is a 64-bit processor register 
counting its clock cycles. The time resolution of this register 
is more than sufficient (on a 1 GHz processor, the register 
counts microseconds) and access to this processor register 
takes only a couple of processor cycles. All other x86 
processor manufacturers later adopted the TSC for their 
processors [12]. 

The drawback of using this counter is the varying 
processor speed from computer to computer, and accord-
ingly, the necessity to calibrate the TSC in order to produce 
comparable results. Furthermore, state-of-the-art processors 
may reduce their speed for preserving power in times with 
low load. This also influences the TSC counter. Therefore, 
during calibration and during send cycles busy waiting is 
necessary in order to prohibit power-saving features. 

B. Scripting language definition 
Deterministic probe sending schedules can be flexibly 

described using the following four script commands 
implemented by the tool: 

• at absoluteTime 
waits until absoluteTime. The parameter time can be 
a real point in time (e.g., 13:05:23), or the syntax 
*/n can be used for hour, minute, or second. In this 
case at will wait until the current hour, minute, or 
second, respectively, can be divided through n 
without remainder (e.g., at */2:00:00 will wait 
until the next full even hour). 

• send destAddress repeat size delayMillis 
sends a burst of probes. Probes of size bytes are sent 
every delayMillis milliseconds to IP address 
destAddress for repeat times. 

• Loop iter 
body 

bend 
processes the block body for iter times. If iter is 0, 
the command loops infinitely. body can be a series 
of commands including other loop statements. 

• wait millis 
waits for millis milliseconds. 

Respective scripts are interpreted by Lattes, a C++ 
application described in Section D. 

C. Structure of Probes 
The probes consist of three unsigned 32-bit integers as 

well as random padding data filling the rest of the packet. 
The first integer is the Flow ID. Each burst gets its own Flow 
ID. During start-up of Lattes a Flow ID counter is 
initialized with a value based on the current time. Every time 
Send::doit() is called the Flow ID is incremented by 1. 
The second integer is the Serial number, starting from 1 for 
the first probe of a burst and incremented by 1 for each probe 
sent. And finally, the third integer stores the time on the 
sender in units of 100 µs when the probe was generated. The 
probes are sent as UDP packets; therefore, the actual size of 
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the IP packet is 28 bytes larger than stated in the size 
parameter. 

D. Lattes 
Lattes is an interpreter of the scripting language 

defined above. This section presents the design, implemen-
tation, and interfaces of Lattes. The receiver of the probes, 
Latreceiver, will be described in the following section. 

Each command is implemented as a class inheriting from 
the class Command (see Fig. 1). The class Command has a 
virtual function doit(), which must be implemented by 
each not abstract child class and contain the functionality of 
the command. Based on this approach Lattes can be easily 
extended by simply implementing a new class inheriting 
from Command. 

 
Figure 1.  Class diagram for Lattes 

During start-up of the program the Main class reads in 
the script. The method Main::readBlock reads line by 
line from the script and compares the start of a line with the 
command literals. If one command literal is recognized, the 
respective object is created and the rest of the line is handed 
over to its constructor, which evaluates the command’s 
parameters. The objects are stored as a linked list. 

Furthermore, the Main class calls Tools:: 
calibrateTSC(), a static method that measures the 
increase of the TSC register per time unit. 

After reading in the entire script and constructing all 
Command objects, the main program calls the doit() 
method of the first command. Each doit() method calls 
doit() of the next command in the chain after performing 
its functionality.  

The loop command is the only command manipulating 
the control flow of the script. The class Loop has an 
additional attribute body that points to the first command of 
the body. The next attribute of the Loop class points to the 
first command following the corresponding bend statement. 
The doit() method of the class Loop calls 

body->doit() for iter times before continuing with the 
next command after bend (i.e., next->doit()). 

E. Latreceiver 
Latreceiver was developed as receiver for the 

probes sent by Lattes. Common functions (e.g., calibra-
tion of the TSC values or probe format definition) are shared 
between both programs. The program writes all events to a 
log file. 

Latreceiver maintains a list of all currently running 
flows. If a probe is received, this list is searched for the Flow 
ID stored in the probe. If the ID cannot be found, the start of 
a new flow is detected and a new record containing 
information on the received packet is added to the list as well 
as a respective remark is written to the log file. 

If a lost packet is detected, i.e., the serial numbers of two 
probes of the same flow are not consecutive, a remark is 
written to the log file. For consecutive packets the packet-to-
packet delay variation , i.e., the difference of the delay 
of the previous packet and the current packet, as well as the 
(not-normalized) relative delay  is calculated and 
written to the log file (see following section). Reordered 
packets that have been passed by a successive packet are 
dropped by the receiver. 

ptp
itΔ

rel
itΔ

EmanicsLab uses the MyPLC platform [14] consisting of 
virtualized Linux systems. The virtualization produces a long 
latency between receiving a frame on the physical interface 
and the processing of the packet in user-space. This leads to 
linear dependency between consecutive probes as depicted in 
Fig. 2. Only virtualized systems show this effect. 

 
Figure 2.  Trace collected on virtualized host 

As discussed in [16] and [10], these distortions can be 
minimized or even eliminated if time stamping is already 
performed in the interrupt service routine, which copies the 
frame from the physical network device to memory. 
Consequently, Latreceiver uses the pcap library [18] 
for time stamping the packet already in the kernel allowing 
the usage of the programs also on virtualized systems. 

Latreceiver‘s main focus is on probe reception. All 
further processing, e.g., splitting the log file in files 
containing only information about one flow, is task of post-
processing tools described in subsequent sections. 

F. Measurement value evaluation 
Latreceiver as well as some post-processing tools 

are used to calculate different parameters from the measured 
values. Latreceiver directly calculates the packet-to-
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packet delay variation and the (not-normalized) relative 

delay  (see Equations 1 and 2) 
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with being the sending time of probe i as stored in 

the probe and the point of time probe i was received. 

The variable denotes the accumulated delay variation, 
and thus, represents the dynamic component of the packet 
delay. 
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The term  can be positive or negative. If queues in 
routers grow, the packet-to-packet delay variation is positive 
as successive packets spend more and more time in router 
queues. In case the queues are shrinking, packet-to-packet 
delay variation is negative as each packet spends less time in 
router queues. 

ptp
itΔ

Assuming that the network is only temporarily over-
loaded and router queues are empty at some time the relative 
delay can be normalized in a way that the smallest value for 
the relative delay is 0 (see Equation 3): 
 )(min rel

jj

rel
i

rel
i ttt Δ−Δ≡Δ  (3) 

The relationship of the variables  and ptp
itΔ

rel
itΔ  is 

visualized in Fig. 3. In this example the sender generates 
probes every 20 ms. These probes arrive at the receiver with 
different delays. In the example the network was overload in 
the time from to , and thus router queues grew; 
afterwards, until  the queues empty again.  

Sendert1
Sendert5

Sendert3

 
Figure 3.  Impact of queueing on measurement variables 

G. Post-processing 

Fig. 4 shows the packet-to-packet delay variation  

and the normalized relative delay 

ptp
itΔ

rel
itΔ  of a flow consisting 

of 7000 probes (approx. 5 min) sent between two nodes. 

In contrast to the theoretical concepts discussed above, 
the relative delay is increasing. All traces captured look 
similar; however, the slope of the relative delay changes 
from trace to trace including also negative slopes. 

The reason identified is synchronization errors resulting 
from two factors: The first-order error of real-time clocks is 
not zero, i.e., the time difference between two clocks is not 

ant but gets greater or smaller with time. This effect is 
 skew and can easily be observed on most clocks. This 

error, however, is typically much smaller than the error 
Fig. 4 the error is 110 ms per 300 s 

or approx. 30 seconds per day.  

const
called

observed in the traces. In 

Additional measurement errors might be introduced 
because time at sender and receiver is measured in processor 
cycles and is then converted to real time units. Each time one 
of the programs is started the conversion factor is calculated 
with the help of a calibration routine (see Section IV.D). This 
calibration might add an additional error component. 

Other reasons for changing delay, like path changes or 
traffic shaping by providers, cannot be held liable for this 
effect, as they do not cause continuously increasing or 
decreasing relative delay over minutes. 

A more accurate calibration of clocks that would not only 
eliminate the clock offset but also the skew is only possible 
with additional hardware. But as the error is linear in time it 
also can be corrected ex post. Therefore, for each flow the 
slope of the dynamic delay has to be determined. This can be 
done by fitting a line onto the lowest delay values. This line 
represents a dynamic delay of zero. 

The line and 
axis. This conver

all observations are then projected to the x 
ts Fig. 4 into Fig. 5 (packet-to-packet delay 

variation is not shown as it does not change; scale of y axis is 
adapted). 

H. Self-synchronization 
Fitting the line to the observation values is not a trivial 

task. Quite a lot of algorithms exist for fitting straight lines 
into a cloud of observations (e.g., ordinary least square 
estimation, OLS) but all these assume positive and negative 

Sendert0
Sendert1

Sendert2
Sendert3

Sendert4
Sendert5

 
Figure 4.  Sample trace showing the skew in relative delay 
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variations from the mean (and not only positive as in the 
present case). For this work several approaches were 
developed and tested. The one that shows the best results 
iteratively searches from the right and left side for a pair of 
points (p1, p2), which best represent the line. The algorithm 
works as follows: 

The smallest observations in a 1% interval from the right 
and from the left, respectively, are chosen as start values for 
p1 and p2. Based on the line through those both points, the 
observations are transformed for the first time. This typically 
produces also negative observations, as the guessed p1 and p2 
have not been optimal. 

The solution is improved by choosing the smallest point 
p’ of the transformed observation set and replacing either p1 
or p2, depending if p’ is in the right or left half of the set. 
Afterwards, the set is transformed according to the newly 
constructed line again. This step is repeated as long as there 
are negative observations. Regularly only a few iterations are 
necessary. 

This procedure describes a very robust and fast 
algorithm. Several thousand measurement traces (see next 
chapter) have been processed and afterwards their plausibi-
lity was checked statistically. The algorithm is robust to 
outliners as in the present scenario outliners can only be 
positive, the algorithm, however, considers only the lowest 
measurement values. Furthermore, the algorithm is universal 
as it does not rely on the structure of the data or any input 
parameters.  

V. TRACES 
With the help of the tools developed a wide ranging set 

of delay measurements is performed. All measurement runs 
are collected in EmanicsLab. 

A. EmanicsLab 
EmanicsLab is a European research network consisting 

of 20 nodes at 10 sites across Europe (see Fig. 6). 
EmanicsLab partners use the network for research activities 
in the area of network and service management, including 
distributed flow collection and analysis, distributed intrusion 
detection systems, as well as distributed monitoring and 
accounting systems. It is funded by the European Network of 
Excellence for the Management of Internet Technologies and 
Complex Services (EMANICS). 

EmanicsLab is based on MyPLC, the backend manage-
ment infrastructure of PlanetLab [14]. Project partners can 
run their services and applications in own slices. A slice is a 
fraction of resources on a set of nodes implemented as virtual 

machines [2]. The nodes run a customized Linux operating 
system. Access control and establishment of slices is 
controlled remotely by a central management system. Project 
partners typically get root access to their slice. 

 
Figure 5.  Corrected relative delay 

 
Figure 6.  EmanicsLab nodes in Europe ([4]) 

B. Measurement runs 
Seven out of ten sites of EmanicsLab have been 

participating in trace collection. The other three institutes 
joined EmanicsLab only after the measurements have 
already begun. In total, five different test runs have been 
scheduled. All tests are structured similarly in order to 
produce comparable results. Each run measures 36 times for 
five minutes the 42 unidirectional vertexes in a fully-meshed 
graph of all participants in a time frame of 72 hours. This 
adds up to 1512 measurement runs per test. The schedule of 
runs within a test ensures that one station is either sender or 
receiver of probes at one instance of time. In total about 18 
Mio single measurements have been performed. 

TABLE I.  TRACE OVERVIEW 

Name Burst size 
(# of packets) 

Probe size 
(byte) 

Interval 
(ms) 

Test01 30000 60 10
Test02 7000 60 50
Test03 3500 60 100
Test04 150000 60 3
Test05 250000 60 2

C. Measurement results 
The measured data contains a huge amount of 

information. The data has already been used for the 
assessment of a multi-domain auditing system for end-to-end 
SLAs [6]. In the following some statistical properties as a 
proof of concept for the measurement tools are shown. These 
data, however, could also be helpful for application 
developers and network operators. 

1) Moments 
Fig. 7 and Fig. 8 show the mean, the 95%-, the 97.5%- 

and the 99%-percentiles of rel
itΔ . Percentiles are used 

instead of standard deviation or variance as the distribution 
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of the packets typically belongs to the class of so-called 
heavy-tailed distributions, which do not have a finite 
standard deviation. Percentiles do not suffer from this effect. 

As can be seen from the figures, for approx. two thirds of 
the measured paths the relative delay is negligible (the 
relative delay of 99% of all packets is between 1 and 2 ms). 
For some of the measured paths these percentiles are 100 
times bigger. The reasons are heavily loaded Internet 
connection at two sites. Tests scheduled after these sites have 
upgraded their uplink show a more homogenous result. 

 
Figure 7.  Mean, 97.5%- and 99%-Percentile of Test01 

 
Figure 8.  Mean, 97.5%- and 99%-Percentile of Test02 

VI. CONCLUSION 
This paper presented a tool set for measuring one-way 

delay and delay variations. Additional hardware for clock 
synchronization might be used but if not available as a fall-
back the tools may remove first-order error of the clock, i.e., 
skew, in a post-processing step. Furthermore, the tool set is 
script-based allowing automated measurements over a longer 
period of time. Furthermore, the tools have been tested on 
virtualized platforms as frequently used in testbeds (e.g., 
PlanetLab). 

In EmanicsLab, a testbed arisen out of the Network of 
Excellence EMANICS, a wide ranging set of measurement 

traces with over 18 Mio singleton measurements have been 
performed. 
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