
Process Discovery and Guidance Applications of Manually Generated Logs

Stefan Schönig, Christoph Günther, Stefan Jablonski

University of Bayreuth

Chair of Applied Computer Science IV

Bayreuth, Germany

{stefan.schoenig, christoph.guenther, stefan.jablonski}@uni-bayreuth.de

Abstract - In this paper, we investigate the problem of the

availability of complete process execution event logs in order to

offer automatic process model generation (process discovery)

possibility by process mining techniques. Therefore, we present

the Process Observer project that generates manual logs and

guides process participants through process execution. Like

this, our project offers the possibility for the automatic

generation of process models within organizations, without the

availability of any information system. Process participants are

encouraged to work with the Process Observer by various

process execution support functions, like an auto-suggestion of

process data and dynamic recommendations of following

processes.

Keywords - Process Mining, Process Monitoring, Activity

Tracking, Guidance through Process Execution

I. INTRODUCTION

Business process management (BPM) is considered an
essential strategy to create and maintain competitive
advantage by modeling, controlling and monitoring
production and development as well as administrative
processes [1] [2]. Many organizations adopt a process based
approach to manage various operations. BPM starts with a
modeling phase, which is very time and cost intensive. It
requires deep knowledge of the underlying application and
long discussions with the domain experts involved in the
processes in order to cover the different peculiarities of the
process [3]. Since process modeling is an expensive and
cumbersome task, we identify approaches that promise to
reduce the modeling effort. One of them is process mining.
Process mining utilizes information/knowledge about
processes whilst execution. The idea is to extract knowledge
from event logs recorded by information systems. Thus,
process mining aims at the (semi-)automatic reconstruction
of process models using information provided by event logs
[4]. The computer-aided creation of process models offers
huge potential of saving time. By deriving process models
from event logs, the appropriateness of process models can
be guaranteed to a certain extent, since they are constructed
according to the way the processes have actually been
executed. During the last decade, many techniques and
algorithms for process mining have been developed and
evaluated in different domains [5]. The basis for a successful
generation of a process model through process mining is an
existing and complete process execution log. This is also the
big challenge for a successful application of process mining.
First of all, not all processes are executed by information

systems, i.e., they are executed "external" to computers. In
such cases, there is no event log that represents a process
available and process mining cannot be applied. In the case
that information systems are already used to execute
processes there must be guarantees that these event logs
record process execution in such a way that processes can be
reconstructed. Besides, these event logs must be analyzable
in such a way that appropriate process models can be
derived. It is obvious: the quality and availability of event
logs determine the applicability of process mining
techniques. Our research starts with the assumption that a
complete and freely analyzable event log is usually not
available. We regard this scenario as the most common one.
Thus, one of the major aims of our research is to harvest
process execution knowledge. This enables the assembly of a
process execution log. This log is built up independently
from the existence of information systems that are (at least
partly) executing the processes. We developed a special
software, the Process Observer (PO), that can be envisioned
as a tool that permanently runs on the computers of process
participants that asks the process participants “What are you
doing right now?”. The participants then have to describe
what they are doing. Here, the user does not need any
process modeling skills. This is also one very important
prerequisite since we assume that just few process
participants do show process modeling skills. The recorded
data is used by the PO to mine for process models. Of
course, this process information can be enriched and
complemented by event logs from information systems that
are involved in the process execution. Gathering process
execution information comes with the cost that process
participants have to record what they are doing. Of course,
this means additional work for the process participants.
Therefore, the PO must offer a stimulus that motivates
process participants to work with the PO. This stimulus is
put into effect by a recommendation service. The PO
continuously analyzes available process log data to guide the
process users. This means, it suggests process steps that the
user most probably should perform. We have experienced
that this feature is especially important for users that are still
not too familiar with the application; they are thankful that
the PO recommends possible process steps. This dynamic
recommendation service becomes more and more reliable the
more process instances have been executed under the
guidance of the PO. The execution of first instances of a
process will therefore not considerably be supported. The
effect becomes apparent when a couple of process instances
have been executed. At the end of this introduction, we want

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

to classify the PO. As dimensions for this classification we
take the two issues: attaining a process model and executing
a process model. We already discussed the two principal
approaches to attain a process model. They will be assessed
with respect to the amount of effort a process participant has
to or is able to invest. The first approach to attain a process
model is to create it within a process modeling project. This
task is very costly; it usually cannot be performed by process
participants but requires process modeling experts. They
identify the process through interviews with the domain
experts and need to get a good overview over all possible
process peculiarities to guarantee the completeness of the
process model. Process models can also be attained by the
application of process mining techniques. This approach is
cheap since only little work from process modelers is
required. However, it depends on the existence of event logs
representing the execution of processes. These two
approaches depict two extreme landmarks: on the one hand
processes can be performed within information systems. On
the other hand, information systems could not be involved at
all. The PO bridges the contrary approaches of process
execution und thus combines their benefits. It is connectable
to process execution systems and can leverage them; also it
provides execution support for "external" process execution.

In Section II, we will give an overview over related
works. In Section III we will explain our concepts and the
general approach. Furthermore, concrete implementation
techniques will be shown in Section IV. Section V describes
the influence of the PO on the current process lifecycle. In
Section VI we will finally conclude and give an outlook on
further research issues and applications.

II. RELATED WORK

The idea of automating process discovery through event-
data analysis was first introduced by Cook and Wolf in the
context of software engineering processes [6]. In the
following years, Van der Aalst et al. developed further
techniques and applied them in the context of workflow
management under the term process mining [5]. Generally,
the goal of process mining is to extract information about
processes from event logs of information systems [7]. There
are already several algorithms and even complete tools, like
the ProM Framework [8], that aim at generating process
models automatically. During the last decade, several
algorithms have been developed, focusing different
perspectives of process execution data. Van der Aalst et al.
give a detailed introduction to the topic process mining and a
recapitulation of research achievements in [5] and [7]. For
the first prototype of the PO, we use the alpha-algorithm of
[3]. However, for our future research activity we consider
algorithms like the HeuristicsMiner [9] appropriate, because
they are able to deal with noisy logs, i.e., incorrectly or
incomplete logged information. Process mining algorithms
rely on complete event logs from information systems. In the
case of an incomplete log or even the unavailability of an
information system, events can alternatively be recorded by
manual activity tracking respectively task management
methods. There are several approaches for activity tracking

to generate weakly-structured process models by capturing
data on personal task management [10] [11]. However, these
approaches lack the use of process mining techniques during
and after process run-time. In contrast to that we explicitly
try to encourage user contribution to an evolving process
model by using process mining methods. In order to discover
identical processes between different data storages, we
suggest using basic automatic ontology matching algorithms
[12]. Process mining is considered as a part of Business
Process Management (BPM). BPM relies on a life-cycle
where different phases of the process are focused. The
traditional approach consists of the following phases: process
modeling, implementation, execution and evaluation, started
by the modeling step. Despite the successful development
and evaluation of the process mining algorithms named
above, process mining is ranked among the process
evaluation phase [1]. Consider, for example, Enterprise
Resource Planning (ERP) systems such as SAP, OpenERP,
Oracle, Customer Relationship Management (CRM)
software, etc. These systems require a designed process
model before they go into service [3]. In these situations,
process mining could only be used for process rediscovery
and not for real process discovery. Therefore, we aim at
assigning process mining to the discovery phase by recording
the complete process data covering all aspects of the
perspective-oriented process modeling (POPM). In order to
get a general idea about POPM perspectives, we recommend
[13] and [14].

III. GENERATION OF PROCESS EXECUTION LOGS AND

GUIDANCE THROUGH PROCESS EXECUTION

Process mining techniques allow for automatically

constructing process models. The algorithms are analyzing a

process execution log file, in the following referred to as

(process) log; this log is usually generated by information

systems (IS). However, there are processes that are not

executed by information systems. This is an observation that

is very important for the classification of our research. Thus,

in order to define the application area of our project we have

to introduce three different types of process execution

support, classified upon the degree of logging and execution

support (Fig. 1):

Figure 1. Application area of the Process Observer project

- IS-unsupported: Here, processes are executed without the

support of any information system. Thus, there is no log for

these processes. Furthermore, these processes are also not

supported during execution. For example, there is no

information system that guides a user through the process.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

- IS-supported: Here, processes are executed by an

information system. Processes of this type are (possibly)

logged. However, the information system is not directly

guiding users through the process. The user has to find his

way through the information system by himself.

- WF-supported: Here, processes are executed by Workflow

management systems (WFMS). WFMS build a subset of IS.

Typically, they maintain a process log. Additionally, the

process participants are guided through process execution

with concrete recommendations of how to continue process

execution (work list) [15].

The basis for the successful generation of process

models through process mining is an existing and complete

log. Thus, WF-supported processes are a great source for

process mining. Nevertheless, the existence of a process log

is the main prerequisite and also the major drawback for a

successful application of process mining. Since we assume

that in many applications, WF-supported processes will not

be encountered the PO turns its attention to IS-supported

and IS-unsupported processes (Fig. 1). In order to log IS-

unsupported processes, we extend process execution by

manual logging. We define the term manual logging as the

user action of entering process execution data (e.g., process

IDs, documents, and services) as well as of marking process

execution events, among other things process start and

completion. The action of manual logging is implemented

by the PO Logging Client. Finally, our goal is to provide

manual logging in such cases when processes are neither IS-

supported nor WF-supported. The final aim is then to be

able to apply process mining.

A. Aims of the Process Observer

The challenge of the PO is to provide a broader basis for
process mining by implying IS-unsupported processes in
logs. Therefore, the PO project aims at the adoption and
generation of manual logs. The generated manual logs open
the opportunity for the automatic generation of process
models by process mining techniques even for applications
that do not involve information systems. As manual logging
is performed by process participants, it means additional
work for them. Therefore, the PO must offer a stimulus that
motivates process participants to support manual logging.
Since the PO is particularly of interest for IS-unsupported
and IS-supported processes, it offers a stimulus with respect
to process execution guidance (this is what these two kinds
of processes are lacking). The PO offers recommendations
about how to continue a process execution and offers auto-
suggest support. This kind of guidance during process
execution is typically exclusively offered by WFMS.

B. Generation of Manual Logs

From now on, we generally assume that a complete and
freely analyzable log is not available, i.e., we are focusing on
IS-(un)supported processes. We regard this scenario as the
most common one and it needs to be supported to apply
process mining.

1) Manual Logging:

The generation of a manual log is initiated by the PO

Logging Client. Process participants record what they are

currently doing, i.e., they provide information about the

process they are currently performing. It is very important

that users do not need any process modeling skills to record

this information.

An important issue is to determine what data the process

participants should record. We recommend to record data

based upon the different aspects of perspective oriented

process modeling (POPM). We have experienced that most

users are very familiar with the approach of describing

process in the POPM method. Process participants have to

enter data according to the following perspectives:

- Functional perspective: name of the current process step,

the name of the corresponding superordinate process (if

available)

- Data perspective: data, i.e., documents or generally

information that was used by the current process step as

well as the data or documents that were produced

- Operational perspective: tools, applications or services

that were used during the execution of the currently

executed process step

- Organizational perspective: information about the process

executor (typically, this is that person that is logged into the

PO Logging Client), the personal information is enriched by

group and role memberships

Besides, process participants have to trace process

execution: he has to declare that process execution starts,

ends or is aborted.

2) Merging Logs:

The application of the PO Logging Client finally results in

the generation of a manual log. In the case, that an

information system is applied, there might also be an

automatic log available. We harness this situation by

combining the manual log with the automatic log. Doing

this, missing process information of one of the logs can be

completed by the other log. In order to be able to combine

the two logs, conformance between the recorded data of

both logs must be achieved. Therefore, we suggest a

component for merging the logs, i.e., locating (matching)

and unifying processes that were recorded in the manual log

as well as in the automatic log. This results in one consistent

log that contains the execution data of IS-unsupported as

well as IS-supported processes.

C. Guidance through process execution

According to our classification in Fig. 1, many process

executions are not assisted by a guidance component, i.e.,

the participants must decide for themselves which process

step they want to perform next. Only WF-supported

processes do provide this feature. In this subsection, we will

show how the PO offers such guidance. It consists of two

sub-features: dynamic recommendations and auto-suggest

function.

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

1) Dynamic Recommendations:

Dynamic recommendations are generated in the following

way: After the completion of a process step, the PO

immediately starts a process mining algorithm analyzing

available log data. It then tries to classify this current

process execution into former process executions. If it is

successful, the PO can recommend the execution of a

subsequent process step according to the processes that have

been executed formerly. This recommendation service

becomes more and more reliable the more process instances

have been executed under the guidance of the PO. When

only a few or even none processes of this type have been

executed so far, no recommendations can be made for the

particular process. Especially when only a few process

instances have been performed so far, the recommendation

can be inconsistent. Then, process participants can ignore

this recommendation. In order to know about the quality of

the recommendation, the number of process instances the

recommendation is based upon is displayed in the user

interface.

Example: A process participant just completed a process

step A. This step has already been completed and recorded

10 times before by other agents. On the one hand, step B

was executed 7 times after step A; on the other hand, step C

was executed 3 times after step A. The PO now starts

process mining and generates a process model that contains

the information that process A shows two subsequent

processes B and C. Furthermore, the tool takes into account

that step B occurred 7 times and step C occurred 3 times

after step A in the log. Thus, a dynamic recommendation is

shown to the user suggesting to continue with step B (70%)

or step C (30%).

2) Auto Suggest Function:

The second aspect of guidance during process execution

is provided by an auto-suggest function. This function helps

the process participant to enter required information. The

PO compares previously recorded process names, data, tool

names, etc. with the currently entered term and auto-

suggests terms. This function supports two issues: first, the

user might nicely be supported through information

provision; secondly, by suggesting already used terms, the

probability of having to deal with too many aliases in the

system is diminished to a certain extent.

Example: Agent 1 is executing a process "Drinking Coffee".

Agent 1 starts the process by recording the process name,

i.e., Agent 1 enters "Drinking Coffee". The agent starts and

completes the process. The process gets a unique identifier

and is recorded in the log. Later, Agent 2 also wants to drink

coffee and executes this process with support of the PO. He

starts by typing "Coffee" instead of "Drinking" in the

process name row. This would easily result in the recording

of a process name like “Coffee Drinking” or just "Coffee".

So, aliases are produced without even recognizing.

However, in this case an auto suggestion will appear,

recommending to choose the process "Drinking Coffee".

Agent 2 happily chooses the suggested process and thus

ensures homogenous naming of the process step.

3) Visualization and manual mapping of processes:

Example: If the example from the former sub-section

would occur as described, this would be ideal. However, in

many cases same processes will be referenced by different

aliases and thus stay unrecognized by the PO. In order to

handle problems like this, the PO offers an administration

interface, which allows process administrators to visualize

recorded processes. Administrators can start process mining

algorithms and thus generate process models visualizing

observed processes. Doing this, different aliases of

processes can be discovered. However, this must be done

manually by the administrator. In order to map different

aliases of the same process, the PO administration interface

offers a mapping panel. This mapping can be declared valid

for multiple processes (Fig. 2). After defining a mapping

between processes, a repeated execution of process mining

results in the visualization of the amended process model.

Figure 2. Sample mapping of recorded processes

D. Usage scenarios for the Process Observer

As a conclusion, we will give a short description of three

different application scenarios of the PO.

1) Use Case 1 – Generation of manual logs:

Figure 3. First use case – generation of manual logs

The first use case comprises the generation of a manual

log (Fig. 3) without an information system being available.

The participating agents are executing the corresponding

processes under the guidance of the PO. The manual log is

finally analyzed by process mining algorithms. The

resulting process models can be fed into a WFMS if wanted

and if available. Thus, processes can afterwards be executed

by a WFMS.

2) Use Case 2 – Merging of logs:

The second use case comprises the application of the PO

in parallel to an information system (Fig. 4). After the

generation of a manual log, we have to merge the automatic

and the manual log.

Getting

Caffeinated

Drinking

Coffee

Coffee

Drinking

Drinking

Coffee

Recorded

Processes

Mapping

Execution/

Logging with

ProcessObserver

Manual

Mapping

Process

Mining

WFMS

Log

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

Figure 4. Second use case – merging of logs

The intention is to complete the log information mutually.

Identical processes are merged to one single process.

Process Mining is finally applied to the joint log. Identified

processes can be fed back into information systems.

3) Use Case 3 – Running WFMS:

Figure 5. Third use case – running WFMS

The third use case assumes a fully-fledged WFMS running

(Fig. 5). Here, manually logging is not necessary anymore

because the WFMS includes all the processes being

executed. It is important to define a threshold, when process

management can shift from case 2 to case 3. Therefore, we

define a value matching_count (1) as the number of matched

processes from the manual log and the automatic log

divided by the complete number of processes recorded in

the manual log. The procedure of calculating this value is

the following: the algorithm runs through both logs. It

compares each process of the manual log with the processes

of the automatic log. If an ontology matching algorithm

identified two processes as equal, the numerator

#matched_processes will be increased by 1. After finishing

traversing both log files, the resulting value of

#matched_processes is divided by the total number of

recorded processes within the manual log.

 (1)

Like this, the calculated value reflects how many processes

are already executed with support of the WFMS. Generally,

an organization finally tries to execute all processes under

the guidance of the WFMS, but the preferred value of

matching-count can also alternatively be defined by the

management. For a special organization a matching-count

value of 0.9 may be enough. This means, 90% of the

executed processes are implemented and supported by the

WFMS. Like this, the right time of the application end of

the PO can be declared by continuously calculating the

matching_count (1) value.

IV. ARCHITECTURE AND IMPLEMENTATION

In this section, we will describe the architecture and
implementation of the PO. In the first part, we will show
implementation details of the PO Logging Client. After that,
process mining implementation and data structures will be
explained. Furthermore, we present the administration and
mapping components.

A. Process Observer Logging Client

The core of the PO is constituted by the PO Logging
Client. We decided to choose a web based implementation of
the logging interface. This guarantees a great coverage of
application scenarios, i.e., the PO can be used in almost all
applications. If the users are working in a "normal" office,
the PO can run on a stationary PC or notebook, if users are
working "in the field", the PO could as well run on a mobile
device (e.g., smartphone). For our prototype we chose an
implementation based on Microsoft ASP.NET 4.0 and the
MS SQL Server 2008 database, but surely any equally
equipped database and server technology would be suitable.
The core of the web application that implements the PO
Logging Client is located on a web server connected to a
database. Users have to identify themselves by logging in
with their username and password. Users can be assigned to
one or more organizational roles. Hence, recommendations
and suggestions can be personalized to the users’ roles.
When users enter process names they want to log, these text
strings are immediately sent to the PO to test for similar
process names. The names of all processes containing a
similar string are sent back to the client as a generic list. This
list is finally displayed to the user as an auto suggestion list
(Fig. 6). The user can select a process from this list. If none
of the suggested processes is appropriate, the input process
name is added as a new process. Accordingly, all other
process data are captured (e.g., superordinate process, current
process instance, used and produced data/documents and
supporting tools). Finally, the user starts the process.

Figure 6. Example of auto suggestion list

B. Implementation of process mining, data structures and

dynamic recommendations

As already described in Section III, the PO offers

dynamic recommendations of how to continue after

finishing a process step. Therefore, a process mining

algorithm is executed after each process step. In our

prototype we use the alpha algorithm of [3] in order to

analyze the available logging information. The algorithm

analyzes the log and builds up a dependency graph.

Therefore, we used the graph data structure QuickGraph of

Execution/Logging

with

ProcessObserver

Process

Mining and

Evaluation

Automatic

Matching and

Merging of

Logs

Manual

Log

Execution/Logging

with Information

System (IS)

Joint

Log
Automatic

Log

Process

Mining
Execution/Logging

with WFMS
Automatic

Log

Process Evaluation

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

[16]. For implementation details concerning the alpha

algorithm we refer to [3]. The logged execution information

results in process models represented as graphs. A node is

an instance of a class "Process" containing fields for process

name, the executing originator role, used and produced data

items as well as supporting tool items. Furthermore, the

class contains two fields for the pre- and post-connectors

which represent the semantic connection to previous and

following processes. This information is also provided by

the alpha algorithm. Once a process model has been

generated as a graph, the PO can use it in order to display

recommendations after a user has finished a process step.

Therefore, the recently completed process is searched within

the process model, i.e., the graph is traversed until the

current process ID is identical to the recently completed

one. After that, all available edges of this node are examined

and their occurrence is counted. Like this, we generate a list,

containing the processes that were executed after the

recently completed one. Thus, a popup is displayed, giving

the user the possibility to choose the following process step.

C. Administration interface

Additionally, the PO offers an administration interface that
allows process administrators to visualize recorded processes
as well as defining mappings between logged processes as
described in Section III. The application consists of two
panels, one for process model selection and visualization and
the other one for defining mappings between processes. One
could easily imagine additional applications, like agent-role
assignments or dataflow applications. Those are planned for
future versions.

1) Process visualization:

In order to visualize the generated process model we use

basic graph visualization frameworks. In our prototype we

used the Graph# framework [17] to display the QuickGraph

data structures. The visualization procedure is started by

examining the recorded event log for contained composite

processes. A process is recognized as composite, if it was

chosen as a superordinate process by a process participant

during the logging phase of a process with the PO. The

names of the composite processes are loaded in a tree view.

The user selects a composite process that should be

displayed from the tree view. The tree view shows the

underlying process hierarchy. Processes that are contained

within another one can be displayed by extending a process

entry. After the selection of an entry, all event log

information concerning the selected process is fetched from

the database. After that, the alpha algorithm is applied to the

resulting event log data. As stated before, the algorithm

generates a dependency graph. This graph is finally assigned

to the Graph# framework and displayed to the user. Here,

the user has various possibilities to scroll within the

visualization or to open the model of underlying composite

processes by selecting the corresponding process nodes.

2) Mapping definition panel:

Furthermore, the administration interface offers a separate

panel to define mappings between logged processes.

Therefore, the database provides a separate mapping table

with three columns: “superordinate process”, i.e., the super

process within the mapping is valid, “target process”, i.e.,

the process on which another one is mapped and finally

“mapped process”, i.e., the process which is mapped.

Considering this data model, the mapping panel consists of

three columns, too. They appear after the first things first

principal. In the first list, the user selects the superordinate

process within the mapping should be valid. After this

selection, the target process list appears. The list is

initialized with all processes occurring within the chosen

superordinate process. Like this, the user can choose the

target process for the defined mapping. Last but not least,

the last list, i.e., a checkbox list, appears. It is again

initialized with all processes of the corresponding super

process. Here, the user checks all the corresponding boxes

of the processes he would like to map on the target process

chosen before. Finally, the mapping is applied to the

database.

V. CHANGES WITHIN THE PROCESS LIFECYCLE THROUGH

THE PROCESS OBSERVER

In this section, we will describe the impact of the PO on
different phases in the process lifecycle. As already
mentioned, the previous process lifecycle [1] consists of an
initial modeling phase that is very time consuming. In this
lifecycle, process mining is only used for the evaluation of
the process being executed with support of a WFMS. As any
WFMS needs at least one predefined process model in order
to be operable [3], there is no possibility to support the
intense process modeling phase with the automatic process
discovery possibilities of process mining. The development
of the PO offers the possibility to change this situation. With
support of the PO, the lifecycle can be rearranged in the
following way (Fig. 7). The initial step consists of process
execution (as usual) accompanied by manual logging, i.e.,
the generation of a manual log, with the PO. This phase is
followed by a process mining step. Afterwards, the results of
process mining possibly have to be reworked in a process
remodeling phase. The benefit of the application of the PO
consists of the time saving between the previous process
modeling phase and the less time consuming remodeling
phase.

Figure 7. Adapted process lifecycle through the application of the PO

Process
Execution /
Logging

Process
Mining

Process
Remodeling

Process
Evaluation

Improvement

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

The previous modeling phase, i.e., the project of process
discovery and process definition, had to be operated
completely manual. The process management team had to do
several interviews with agents, live observations of processes
and the tracking of documents, for example. In contrast to
that, process discovery with the PO is generally more
automatable. Merely reworking effort is required in order to
annihilate possibly occurring exceptions or execution errors.
Based on the results of these first three steps, business
processes can be evaluated and finally optimized.

VI. CONCLUSION AND OUTLOOK

In this paper, we discussed the problem of the availability

of complete process execution event logs in order to offer

automatic process model generation possibility by process

mining techniques. Therefore, we presented the Process

Observer (PO) project that generates manual logs and

guides process participants through process execution. Like

this, our project offers the possibility for the automatic

generation of process models within organizations, without

the availability of any information system. Process

participants are encouraged to work with the PO by various

process execution support functions, like the auto-

suggestion of process data and dynamic recommendations

of following processes. This kind of guidance during

process execution is typically exclusively offered by

WFMS. Our future research activity in the field of the PO

will start with the development of matching methods in

order to match and merge identical processes. We will also

implement a module to transfer the recorded process data

into the new the eXtensible Event Stream (XES) format

[18]. Furthermore, we will face the problem of recording

and logging processes in different granularities. This

research faces one of the great challenges of process mining

declared during the meeting of the IEEE Task force on

process mining at the BPM conference in 2011. In order to

deal with execution exceptions and wrongly logged

processes, we will implement a heuristic process mining

algorithm [9]. Like this, some of the manual mapping

activity will be obsolete. Additionally, the control-flow

mining algorithm should be featured by decision mining [4]

in order to enrich the process models with decision

information based upon data extensions. Furthermore, we

are developing a new process discovery approach based

upon explicit semantic definitions. Finally, we are looking

forward to an extensive application of the PO in an

organization, accompanied by a detailed documentation of

the practice.

REFERENCES

[1] Zur Muehlen, M. and Ho D.: “Risk management in the BPM
lifecycle”. In: Business Process Management Workshops,
LNCS, vol. 3812, 2006, pp. 454-466.

[2] Zairi, M.: “Business process management: a boundaryless
approach to modern competitiveness”. In: Business Process
Management Journal, vol. 3, 1997, pp. 64-80.

[3] Van der Aalst, W., Weijters, T., and Maruster, L.: “Workflow
mining: Discovering process models from event logs”. In:
IEEE Transactions on Knowledge and Data Engineering,
vol.16 (9), 2004, pp. 1128-1142.

[4] Rozinat, A. and Van der Aalst, W.: “Decision mining in
business processes”. In: BPM Center Report BPM-06-10,
BPMcenter.org, 2006.

[5] Van der Aalst, W. and Weijters, A.: “Process mining: a
research agenda”. In: Computers in Industry, vol. 53 (3),
2004, pp. 231-244.

[6] Cook, J.E. and Wolf A.L.: “Automating process discovery
through event-data analysis”. In: 17th International
Conference on Software Engineering, Apr. 1995, Seattle,
USA.

[7] Van der Aalst, W., Reijers,H., Weijters, A., Van Dongen, B.,
De Medeiros, A., Songa, M., and Verbeek, H.: “Business
process mining: An industrial application”. In: Information
Systems, vol. 32 (5), 2007, pp. 713-732.

[8] Van Dongen, D., De Medeiros, A., Verbeek, H., Weijters, A.,
and Van der Aalst, W.: “The ProM framework: A new era in
process mining tool support”. In: Applications and Theory of
Petri Nets, LNCS, vol. 3536, 2005, pp. 444-454.

[9] Weijters, A., Van der Aalst, W., and De Medeiros, A.:
“Process mining with the heuristics miner-algorithm”.
Department of Technology, Eindhoven University of
Technology, 2006, Eindhoven, The Netherlands.

[10] Witschel, H., Hu, B., Riss, U., Thönssen, B., Brun, R., Martin,
A., and Hinkelmann, K.: “A collaborative approach to
maturing process-related knowledge”. In: Business Process
Management, LNCS, vol. 6336, 2010, pp. 343-358.

[11] Stoitsev, T., Scheidl, S., Flentge, F., Mühlhäuser, M.: “From
Personal Task Management to End-User Driven Business
Process Modeling”. In: Business Process Management,
LNCS, vol 5240, 2008, pp. 84-99.

[12] Noy, N. and Musen, M.: “Algorithm and tool for automated
ontology merging and alignment”. In: Proceedings of the 17th
National Conference on Artificial Intelligence, Aug. 2000,
Austin, USA.

[13] Jablonski, S. and Goetz, M.: “Perspective oriented business
process visualization”. In: Business Process Management
Workshops, LNCS, vol. 4928, 2008, pp. 144-155.

[14] Jablonski, S. and Bussler, C.: “Workflow management:
modeling concepts, architecture and implementation”.
International Thomson Computer Press, London, 1996, ISBN
1850322228.

[15] Jablonski, S., Igler, M., and Günther, C.: “Supporting
collaborative work through flexible process execution”. In: 5th
International Conference on Collaborative Computing, Nov.
2009, Washington DC, USA.

[16] Halleux, J.d.: “QuickGraph, Graph data structures and
algorithms for .net”. Last access: Mar. 2012. Available:
http://quickgraph.codeplex.com..

[17] Microsoft: “Graph# - Layout algorithms and graph layout
control for WPF applications”. Last access: Mar. 2012.
Available: http://graphsharp.codeplex.com.

[18] Verbeek, H., Buijs, J., Van Dongen, B., and Van der Aalst,
W.: “XES, XESame, and ProM 6”. In: Information Systems
Evolution, Lecture Notes in Business Information Processing,
vol. 72, 2011, pp. 60-75.

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

