
SLOPPI — a Framework for Secure Logging with
Privacy Protection and Integrity

Felix von Eye, David Schmitz, and Wolfgang Hommel
Leibniz Supercomputing Centre, Munich Network Management Team, Garching near Munich, Germany

Email:{voneye,schmitz,hommel}@lrz.de

Abstract—Secure log file management on, for example, Linux
servers typically uses cryptographic message authentication codes
(MACs) to ensure the log file’s integrity: If an attacker modifies
or deletes a log entry, the MAC no longer matches the log file
content. However, some privacy and data protection laws, for
example in Germany, require the deletion or anonymization of
log entries with personal data after a retention period of seven
days. Such changes therefore do not constitute an attack. Previous
work regarding secure logging does not support this use case
adequately. A new log management approach with a focus on
both the integrity and the compliance of the resulting log files
with additional support for encryption-based confidentiality is
presented and discussed.

Keywords-log file management; secure logging; compliance

I. INTRODUCTION

System and application logs are of great value for adminis-
trators, e. g., for monitoring, fault management, and forensics.
The predominant format for logs is plain text, which is the
focus here; for example, the syslog daemon on UNIX and
Linux systems, as well as applications like the Apache web
server, store log entries in line-oriented plain text. Alterna-
tively, proprietary binary or XML-based file formats as well as
relational databases may be used; for example, this is used by
the Microsoft Windows event log. Independent of the storage
format, secure logs must fulfill the following basic criteria in
practice:

• The log’s integrity must be ensured: Neither a malicious
administrator nor an attacker, who has compromised a
system, may be able to delete or modify existing, or insert
bogus log entries.

• The log must not violate compliance criteria [1]. For
example, European data protection laws regulate the
retention of personal data, which includes, among many
others, user names and IP addresses. These restrictions
also apply to log entries according to several German
courts’ verdicts that motivated our work.

• The confidentiality of log entries must be safeguarded;
i. e., read access to log entries must be confined to an
arbitrary set of users.

• The availability of log entries must be made sure of.
In a typical data center or network operations environment,

the integrity criterion is usually fulfilled by using a trustworthy,
central log server: Log entries are not (solely) stored locally
on a device, but sent over the network to another machine;
therefore, an attacker would have to compromise both this

device and the log server before being able to manipulate the
log without being detectable. The compliance criterion can
be fulfilled by deleting old log files, e. g., after the common
duration of seven days. As of today, confidentiality is typically
handled in a per-file manner; for example, UNIX file system
permissions are often used to make a log file readable for a
specific user or group. Prospective modern logging facilities
also enable confidentiality in a per-entry granularity, but are
not yet in such wide use. Finally, the availability requirement
for log files is the same as for other important data and
typically ensured by data redundancy, i. e., copies and backups.

Our work is motivated by the large-scale distributed envi-
ronment of the SASER-SIEGFRIED project (Safe and Secure
European Routing) [2], in which more than 50 project partners
design and implement network architectures and technologies
for secure future networks. The project’s goal is to remedy
security vulnerabilities of todays IP layer networks in the 2020
timeframe. Thereby, security mechanisms for future networks
will be designed based on an analysis of the currently predom-
inant security problems in the IP layer, as well as upcoming
issues such as vendor backdoors and traffic anomaly detection.
The project focuses on inter-domain routing, and routing
decisions are based on security metrics that are part of log
entries sent by active network components to central network
management systems; therefore, the integrity of this data must
be protected, providing a use case that is similar to traditional
intra-organizational logfile management applications.

In this paper, the focus is on integrity as well as compliance
and the presentation of a novel, cryptographically enhanced
log storage and processing approach that fulfills both cri-
teria with or without a central log server. In the SASER-
SIEGFRIED context, a central log server can use the presented
framework to proof the logs’ integrity so that the security
metrics based on data from this log source can be considered
reliable. On the other hand, the presented framework can also
be used in other scenarios where a central log server may not
be applicable or may not be a suitable solution, e. g.:

• Small organizations or small enterprises that do not have
the resources, i. e., budget and/or skills, to operate a
central log server.

• Machines and devices that do not have permanent net-
work connectivity to a central log server, e. g., sensor
networks, mobile devices, or servers that keep radio
silence for a purpose, such as honeypots, which must
appear to be easy prey for attackers.

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

• Massively distributed systems with a high rate of log
entries that do not need to be correlated on a regular
basis, in which a central log server would become a
performance bottleneck.

Especially in environments without trustworthy systems,
such as a reliable central log server, cryptographic functions
are used to make log files more secure. For example, message
authentication codes (MACs) can be used to make log files
evident of simple modifications: If an attacker manipulates or
deletes a log entry, the log file’s MAC no longer matches its
content, making the attack obvious. However, previous work
on secure logging did not account for desired changes to the
log entries’ content, such as the deletion of old log files.
Doing so required the complex re-calculation of MACs and
cryptographic hash values, impeding the practical use of these
other approaches.

We present a secure logging approach that supports this
use case of deleting old log files after an arbitrary retention
period without re-keying. This approach uses cryptographic
hash functions and asymmetric encryption to implement log
entry integrity verification. Fresh cryptographic key material
is generated after an arbitrary amount of time, e. g., daily, or
when a certain number of log entries have been processed.
However, unlike previous approaches, the solution fulfills the
compliance criterion by allowing log files to be removed
without violating the overall log data integrity and without
the need to keep old cryptographic keys or re-calculate MACs
for the whole log file. This approach also keeps the log files
needed by applications in plain text, so they can, unlike a fully
encrypted log file, be processed using any software tools that
the administrator is already familiar with.

The presented solution can be extended to also ensure per-
entry confidentiality and additional measures can be taken to
improve the high availability. However, integrity and compli-
ance are in the focus of this paper, which is structured as
follows: In the next section, the terminology that is used
throughout this paper is introduced. In Section III, previous
approaches to secure logging and related work are summarized
in order to outline the shortcomings that are addressed. The
details of our approach are presented in Section IV. The paper
closes with a conclusion in Section VI.

II. TERMINOLOGY

The following terms and symbols are used in this paper with
the specified meaning:

• The untrusted device U , e. g., a web server. As a matter
of its regular operations, U produces log data. It could be
assumed that U may be compromised by an attacker and
therefore the log data is not guaranteed to be trustworthy.
However, this approach can be used to ensure the integrity
and compliance of log data produced by U , making it
reliable.

• A trusted machine T . In any related work and also in the
presented work there is a need for a separate machine
T 6= U . The working assumption in the related work is
that T is secure, trustworthy, and not under the control

of an attacker at any point in time. In the presented
approach, T could be a connected printer, because a place
is needed where only one initial key is saved, i. e., printed,
without the possibility of intruder access.

• The verifier V . The related work often differentiates T
and V; V then is only responsible for verifying the
integrity and compliance of a log file or log stream. In
this case, T is only used to store the needed keys and V
has not to be as trustworthy as T . Also in this case T is
able to modify any log entry while V is not.

These symbols are used for cryptographic operations:

• A strong cryptographic hash function H , which has to
be a one way function, i. e., a function which is easy to
compute but hard to reverse, e. g., sha-256(m).

• HMACk(m). The message authentication code of the
message m using the key k.

In our proposal we do not anticipate, which particular
function should be used for cryptographic functions; instead,
they should be chosen specifically based on each implementa-
tion’s security requirements and constraints, such as available
processing power and storage overhead.

Furthermore, without loss of generality, the terms a) log
files, b) log entries, and c) log messages are discerned. A
log file is an ordered set of log entries. For example, on a
typical Linux system, /var/log/messages is a text-based
log file and each line therein is a log entry; log entries are
written in chronological order to this log file. Log messages
are the payload of log entries; typically, log messages are
human-readable strings that are created by applications or
system/device processes. Besides a log message, a log entry
includes metadata, such as a timestamp and information about
the log message source.

As shown in Figure 1, the presented approach uses a
couple of log files, which are related to each other in the
following way. The master log Lm is only used twice a day
to first generate and to then close a new integrity stream
for the so-called daily log Ld. This log file Ld is used to
minimize the storage needs for the master log Lm, which
must never be deleted; otherwise, no complete verification
could be performed. Ld is kept as long as necessary and
contains a new integrity stream for the application logs La.
These logs, e. g., the access.log or the error.log by
an Apache web server or the firewall.log by a local
firewall, are re-started from scratch once per day and yield
all information generated by the related processes; they are
extended by integrity check data. After a specified retention
time – seven days in the scenario – these logs, which contain
privacy-law protected data, have to be deleted completely
because of legal constraints in Germany and various other
countries. It is important to mention that a simple deletion
would also remove any information about attempted intrusions
and other attack sources. This would cover an intruder, who
could be detected by analyzing the log files, so the log file
should be analyzed periodically before this automated deletion.
Other time periods than full days or a rotation that is based,

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

init init

init

Start day 1

START

Master Log

Stop day 1

Start day 2

Stop day 2

Start day 3

Stop day 3

..
.

..
.

Start app 1

START

Start app 2

Stop app 2

Stop app 1

END

Start app 1

START

Daily Log (day 2)

Start app 2

Stop app 1

Stop app 2

END

..
.

Log entry

START

Application 1 (day 1)

Log entry

...

END

Log entry

START

...

END

Log entry

START

...

END

init

init

init

close

close

close

close

Daily Log (day 1)

Application 2 (day 1)

Application 1 (day 2)

Fig. 1. Overview of all relevant log files.

e. g., on a maximum number of log entries per log file, as well
as other deletion periods may be applied – but for the sake
of simplicity daily logs and a seven day deletion period are
used for the remainder of this paper.

III. RELATED WORK

With the exception of Section III-A, none of related work
offers a possibility to fulfill compliance as it is not possible
to delete logs afterwards. Complementary, the approach sum-
marized in Section III-A does not address the integrity issues.

A. Privacy-enhancing log rotation

Metzger et al. [3] presented a system, which allows privacy-
enhancing log rotation. In this work, log entries are deleted
by log file rotation after a period of seven days, which is
a common retention period in Germany based on several
privacy-related verdicts. Based on surveys, Metzger et al. iden-
tified more than 200 different types of log entry sources that
contain personal information in a typical higher education data
center. Although deleting log entries after seven days seems
to be a simple solution, the authors discuss the challenges of
implementing and enforcing a strict data retention policy in
large-scale distributed environments.

B. Forward Integrity

Bellare and Yee [4] introduced the term Forward Integrity.
This approach is based on the combination of log entries with
message authentication codes (MACs). Once a new log file is
started, a secret s0 is generated on U , which has to be sent in
a secure way to a trusted T . This secret is necessary to verify
the integrity of a log file.

Once the first log entry l0 is written in the log file, the
HMAC of l0 based on the key s0 is calculated and also
written to the log file. To protect the secret s0, there is another
calculation of s1 = H(s0), which is the new secret for the
next log entry l1. To prevent that an attacker can easily create

l0

s0

s1=H(s0)

s2=H(s1)

s3=H(s2)

s4=H(s3)

s5=H(s4)

l1

l2

l3

l4

HMACs (l0)
 0

HMACs (l1)
 0

HMACs (l2)
 0

HMACs (l3)
 0

HMACs (l4)
 0

Fig. 2. The basic idea behind Forward Integrity as suggested in [4]

or modify log entries, the old and already used secret key
for the MAC function is erased after the calculation securely.
Because of the characteristic of one way functions it is not
possible for an attacker to derive the previous key backwards
in maintainable time. Figure 2 shows the underlying idea.

In their approach, in order to verify the integrity of the
log file, V has to know the initial key to verify all entries
in sequential order. If the log entry and the MAC do not
correspond, the log file has been corrupted from this moment
on, and any entry afterwards is no longer trustworthy.

However, the strict use of forward integrity also prohibits
authorized changes to log entries; for example, if personal
data shall be removed from log entries after seven days, the
old MAC must be thrown away and a new MAC has to be
calculated. While this is not a big issue from a computational
complexity perspective, it means that the integrity of old log
entries may be violated during this rollover if U has meanwhile
been compromised.

C. Encrypted log files

Schneier and Kelsey [5] developed a cryptographic scheme
to secure encrypted log files. They motivated the approach
for encrypting each log entry with the need of confidential
logging, e. g., in financial applications. Figure 3 shows the

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

Fig. 3. The Schneier and Kelsey approach taken from [5]

Figure 4: Forward security with public verifiability.

entry could create arbitrary alternative entries which
would also appear correct.

Public key cryptography provides the ability to
separate signing from verification and encryption
from decryption. This section describes how the sign-
ing/verification separation can be used to create logs
which can be verified by anyone. We omit discussion
of creative applications of the encryption/decryption
separation, although several such applications are
possible, particularly when using identity based en-
cryption.

Bellare and Miner proposed a public key counter-
part to hash chains in [2] which could be used with
our simple system. Here we propose a system which
is perhaps less elegant, but which can be used with
any signature scheme, avoiding the uncertainty asso-
ciated with less established public key constructions.
Then we present an optimization which works with
any identity-based signature scheme.

Figure 4 shows the public key variant of Logcrypt.
A signature replaces the MAC, and we add a special
log meta-entry listing the next n public keys which
will be used for signing. Then the next n− 1 entries
can be described as follows (i ∈ (1..n− 1)):

Li = 〈logi, Sign(privatei, logi)〉
The last private key, privaten, is used to sign the

meta-entry listing the next n public keys.
More formally, the Logcrypt algorithm for

signature-based integrity protection is as follows:
Given

A public-key signature function
Sign(private,message)

A value n describing how many public/private
keypairs will be stored in memory.

Begin
Generate an initial random public/private key-

pair, (pub0, private0)
Store pub0 securely (generally, by sending it to

a separate machine)
Loop

Figure 5: Verifying entries in the public key scheme.

Create random keypairs
〈(pub1, private1)..(pubn, privaten)〉

Create the meta-entry listing the public
keys: meta = 〈pub1..pubn〉

Generate the signature on the meta-entry:
sig0 = Sign(private0,meta)

Securely delete private0. (pub0 may also be
removed).

Output 〈meta, sig0〉
Set i = 0
Loop

Increment i
If i == n, exit the inner loop
Wait for the next log entry: logi
Calculate sigi = Sign(privatei, logi)
Securely delete privatei. (pubi may also

be removed).
Output 〈logi, sigi〉

Set pub0 = pubn
Set private0 = privaten

Recall that the second principle listed as founda-
tional to Logcrypt’s security in section 4 is the ability
to validate a later log state using the state at an ear-
lier entry. Hash chains actually derive later secrets
from earlier secrets, even though all we need is val-
idation. Consequently, it suffices to sign the public
key that will be used at a later time using an ear-
lier key, then throw away the signing key to fulfill the
requirement that secrets be erased after they’re used.

Verification proceeds as follows:
Given

The initial public key pub0
A public-key signature verification function

V erify(pub, sig,message) which returns
true iff sig is a signature for message made
with pub

A list of log entries such that Li = 〈logi, sigi〉
Begin

Set i = 0
Loop

Set meta = logi
Abort unless V erify(pub0, sig0,meta) re-

turns true

Fig. 4. The Holt approach taken from [6]

process to save a new log entry. Any log entry Dj on U is
encrypted with the key Kj , which in turn is built from the
secret Aj (in the paper sj) and an entry type Wj . This entry
type allows V to only verify predefined log entries. There is
also some more information stored in a log entry, namely Yj

and Zj , which are used to allow the verification of a log entry
without the need of decryption of Dj . Therefore, only T is
able to modify the log files.

However, this approach does not allow for the deletion
method of log entries or parts thereof because then the
verification would inevitably break.

D. Public key encryption

Holt [6] used a public/private-key-based verification process
in his approach to allow a complete disjunction of T and V .
Therefore, a limited amount of public/private-key pairs are
generated. The public keys are stored in a meta log entry,
which is signed with the first public key, which should be
erased afterwards securely. All other log entries are also signed
with the precomputed private keys. If there are no more keys
left, a new limited amount of public/private-key pairs are
generated.

The main benefit of this approach is that the verifier V can
not modify any log entry because he only knows the public
keys, which can be used for verifying the signature but does
not allow any inference on the used private key.

E. Aggregated Signatures
In scenarios where disk space is the limiting factor it is

necessary that the signature, which protect each single log
entry do not take much space. In all of the approaches sketched
above, the disk usage by signatures is within O(n), where
n is the total amount of log entries. To deal with a more
space-constrained scenario, Ma and Tsudik [7] presented a
new signature scheme, which aggregates all signatures of the
log entries. This approach uses archiving so that the necessary
disk space amount is reduced to only O(1).

The main drawback of this approach is that a manipulation
of a single log entry would break the verification process
but the verifier is not able to determine, which (presumably
modified) entry causes the verification process to fail. As a
consequence, it is also not possible to delete or to modify
log entries, e.g., to remove personal data after reaching the
maximum retention time.

IV. THE SLOPPI FRAMEWORK

The survey of the related work shows that there is no
solution yet that fulfills both necessary characteristics for
log files: integrity and compliance. This approach combines
key operations from those previous approaches in a new
innovative way to achieve both characteristics. As introduced
in Section II, a couple of types of log files, which are all
handled a bit differently, are used for the framework.

First, the application log file La can be protected by any
approach presented in Section III. After, for example, seven
days these log files can also be deleted for compliance reasons.
It is also possible to use log rotation techniques to fulfill local
data protection policies. It is necessary to mention that any
information about an attacker, which is not detected during
this period, will be lost and cannot be recovered. But this is
not a drawback of the presented framework because this is
necessary to fulfill the data protection legislation especially in
Europe or in Germany, which mandates to erase any privacy
protected data after seven days. In scenarios where the log files
can only be read after a longer offline period, e. g., low power
sensor-networks devices, the period to delete log files should
be set individually so an administrator is able to analyze any
log data before they are deleted.

In the next step, the master log file Lm has to be secured.
As it has only a few entries a day, it can be protected a
public key scheme, e. g., RSA, to protect the log entries, which
is described in detail in the upcoming Section IV-A. In the
following work, the two keys of a public key scheme are called
signing key (ksign) and authentication key (kauth).

Last but not least the daily log file Ld is considered in
Section IV-B. Similar to the master log file, it only has very
few entries per day, but they already must be considered too
many entries for using public key schemes, so a symmetric
key scheme is mostly the best choice.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

A. Master Log

To protect Lm, the following steps are followed:
• Log initialization. Whenever a new master log is ini-

tialized, U generates a authentication key (k1auth) and a
signing key (k1sign), and sends k1auth to T over a secure
connection, e. g., a TLS connection. k1auth and k1sign are
the actual used secret. U can now initialize the log file
by saving the first message STARTING LOG FILE in
the log file as described next.

• Saving new log entries. Let m be the log message of
the log entry to be stored in the log file. Between saving
the last entry and the actual one, it can be assumed
that there is enough time to generate a new authentica-
tion/signing key pair (kn+1

auth, k
n+1
sign), while (knauth, k

n
sign) is

the actual secret. U now generates the log entry m∗ =
(timestamp,m, kn+1

auth) and computes Enckn
sign

(m∗). The
last result is the new log entry, which is written to the log
file. Immediately after calculating the encrypted result,
the key pair (knsign,knauth) is erased securely. Only the
encrypted parts of the calculation are written to the log
file.

• Closing the log file. If the master log file has to be
closed, the last message CLOSING LOG FILE is saved
into the log file. It is important that in this case it is not
necessary to generate a new key pair and to save the next
authentication key into the log file.

As Lm is used as meta log, which does not contain
any application or system messages, we use message m.
As mentioned before, the daily log is encrypted with a
symmetric crypto scheme. Every day a new daily log is
initialized by the system. The name and location of the
created daily log is p1. Furthermore p2 is the first entry in
Ld and finally p3 appoints the necessary key for the log
initialization step. m is then the concatenation of p1, p2, and
p3, e. g., /var/log/2012-12-21.log;STARTING LOG
FILE;VerySecretKey together with H(p1, p2, p3).

Because of the need to detect manipulations of the Lm, it is
necessary that m also contains a hash value of p1, p2, and p3.
With the knowledge of H(p1, p2, p3) it is possible to detect,
where the decryption process failed.

To verify an existing master log, it is necessary to use
the authentication key saved during the generation of the
log file. With this key it is possible to decrypt the first
entry, which leads to the next authentication key. This
step can be performed until the actual last message or the
CLOSING LOG FILE entry is reached. Because m consists
of the necessary information about the daily log files, it is
possible to verify any daily log that is still available. If a
daily log has already been deleted, then this daily log and the
connected application logs cannot be verified any more, but it
is still possible to use the upcoming log entries of Lm.

B. Daily Log

Similar to the master log, the daily log is also processed in
the three steps:

• Log initialization. Every day a new daily log has to be
initialized. The above described systems U and T are in
this case U = Ld and T = Lm. U generates a symmetric
key ksym and sends ksym to T together with the name
and path of the actual log file and also the first message
STARTING LOG FILE. The actual used secret is now
ksym. U can then initialize the log file by saving the
first message STARTING LOG FILE in the log file as
described next.

• Saving new log entries. As above, a symmetric key
scheme is used for the daily log, e. g., AES. Let m be
the message that has to be stored in the log entry and
ksym the actual used secret key. U now randomly choses
a new secret key knew

sym. Because of the use of symmetric
key schemes, this step is not computationally expensive.
The new log entry now is Encksym

(m∗) with the content
m∗ = (timestamp,m, knew

sym, H(timestamp,m, knew
sym)),

which is written to the log file. The hash value is stored
for verification purpose, so it is possible to detect the
exact log entry, where a manipulation took place.

• Closing the log file. If the master log file has to be closed,
the last message CLOSING LOG FILE is saved. This
message, the file name and location, the MAC of the
entire log file, and the last generated key are sent to the
master log.

In the daily log, there are only three types of messages
besides STARTING LOG FILE and CLOSING LOG FILE:

• START APPLICATION LOG. It contains a timestamp
(in plain text), the file name and location of the log
(plain text), the initialization key of the application log
(encrypted), the first message of the application log
(encrypted), and the file name and location of the log
(encrypted). The encrypted parts of the message are
condensed in one encryption step.

• STOP APPLICATION LOG. Similar to the start mes-
sage, this message contains a timestamp (plain text), the
file name and location of the log (plain text), the last
key of the application log (encrypted), the last message
of the application log (encrypted), and the file name and
location of the log (encrypted). The encrypted parts are
again condensed in one encryption step.

• ROTATING APPLICATION LOG. In case of a log ro-
tation procedure this message contains a timestamp (plain
text) and both file name before and after a rotation (plain
text). As in the previous message type there are also the
file names and locations in ciphertext.

It is important that all application logs, which have their
starting message in a daily log, have to write their stopping
message also to the same daily log. This is the reason why
some contents in the log file are still in plain text. Otherwise
the logging engine would have to remember, which application
log is connected to which daily log. This also means that it is
possible that a daily log is still open when the next daily log
is initialized. The ROTATING APPLICATION LOG message
could be in later daily logs because the specifics of the log

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

rotation algorithm are not known and it could be that a log
rotation is performed only once a week.

The main reason to use the daily log is to reduce the space
requirements of the main log. It is quite unusual that the main
log is initialized for a second time if the system is running
normally. There are round about two entries per day, which
have to be stored over a long time. The daily log could be
deleted after all application logs mentioned in this specific
daily log are deleted. Depending on the amount of running
applications on a server it is not unusual that there is more
than one application log used on a system.

V. VERIFYING LOG ENTRIES AND SECURITY ANALYSIS

To verify log entries, the initial master key is needed. As
described above, each log entry in the master log is encrypted
as Enckn

sign
(m∗) with m∗ = (timestamp,m, kn+1

auth). To
decrypt the message only the authentication key is needed,
which is stored at the log file initialization step. After the first
log entry is decrypted, the authentication key to decrypt the
second log entry is obtained and so on. The first time the
next log entry could not be decrypted shows a manipulation
of the log files, which causes by an attacker or a malicious
administrator who has tried to blur his traces.

This verification step is to verify the master log and to
obtain the verification keys for the daily log. As the entries
in the daily log looks like Encksym

(m∗) with the content
m∗ = (timestamp,m, knew

sym) the first entry could be de-
crypted by using the symmetric key stored in the master log.
The symmetric key for any other entries are in the message
payload of the previous log entry. As above in the master log,
it is not possible for an attacker to modify any log entry in
such a way that the encryption step works correctly.

To verify the application log it is necessary to take a
look at Section III as it depends on the method used to
protect the application logs. Generally it is necessary to use
the secret stored in the daily log. In the following a short
security analysis on the approach is shown. This analysis does
not regard the application log as the security analysis in the
original papers are sufficient.

On the one hand it is not possible for an attacker to gain
information from the daily log or the master log as they are
both encrypted with well known crypto schemes. On the other
hand it is not possible to delete any entry of the log files
because during the verification step, the decryption of the
entry would fail and the manipulation would become evident.
Furthermore, assumed that there is no implementation bug, any
used key is deleted immediately so no attacker could restore
it.

The only possibility of an attacker is to be fast enough to
gain access to the system and to shut the logging mechanism
out of service before any log entry is written to the disk. This
could happen when the attacker is trying a DoS attack on the
system before he is breaking in. Standard implementations of
the logging service of the system are able to prevent the system
from this method of attack.

VI. CONCLUSION

Data protection and privacy laws in Europe and several court
verdicts in Germany demand the deletion of personal data
from log files after a given retention time, which is a use case
that is not supported by previous secure logfile management
approaches. Motivated by these legal issues and log manage-
ment requirements in the pan-European SASER-SIEGFRIED
project, SLOPPI is a novel cryptographic logging framework
that supports the deletion of old log entries without the need
to re-calculate message authentication codes and to re-write
the remaining log file entries. After outlining the requirements
for a secure logging solution, establishing a terminology, and
reviewing related work, the SLOPPI framework was presented
in this paper along with its primary components, the master
log, the daily logs, and the application of cryptographic func-
tions to make the resulting logging solution tamper-evident.
Finally, the verification scheme and relevant attack paths were
discussed.

In the next step, SLOPPI will be implemented in the
SASER project to gain first practical experiences in both setup
variante, i. e., with and without a reliable central log server.
SLOPPI will also be extended to facilitate the partial deletion
of log entries, i. e., only those parts of log entries that contain
personal data will be removed after reaching the retention
period, whereas the rest of each log entry can be retained
for an arbitrary longer time. Besides the removal of personal
data, SLOPPI will also be extended to support anonymization
and pseudonymization of personal data. The implementation
will be made available as open source.

ACKNOWLEDGMENT

Parts of this work has been funded by the German Ministry of
Education and Research (FKZ: 16BP12309).

REFERENCES

[1] W. Hommel, S. Metzger, H. Reiser, and F. von Eye, “Log file management
compliance and insider threat detection at higher education institutions,”
in Proceedings of the EUNIS’12 congress, Oct. 2012, pp. 33–42.

[2] The SASER-SIEGFRIED Project Website. [retrieved: 03.04.13]. [Online].
Available: http://www.celtic-initiative.org/Projects/Celtic-Plus-Projects/
2011/SASER/SASER-b-Siegfried/saser-b-default.asp

[3] S. Metzger, W. Hommel, and H. Reiser, “Migration gewachsener
Umgebungen auf ein zentrales, datenschutzorientiertes Log-Management-
System,” in Informatik 2011. Springer, 2011, pp. 1–6, [retrieved:
03.04.13]. [Online]. Available: http://www.user.tu-berlin.de/komm/CD/
paper/030322.pdf

[4] M. Bellare and B. S. Yee, “Forward integrity for secure audit logs,” De-
partment of Computer Science and Engineering, University of California
at San Diego, Tech. Rep., Nov. 1997.

[5] B. Schneier and J. Kelsey, “Cryptographic support for secure logs on
untrusted machines,” in Proceedings of the 7th conference on USENIX
Security Symposium, vol. 7. Berkeley, CA, USA: USENIX Association,
Jan. 1998, pp. 53–62.

[6] J. E. Holt, “Logcrypt: forward security and public verification for secure
audit logs,” in ACSW Frontiers, ser. CRPIT, R. Buyya, T. Ma, R. Safavi-
Naini, C. Steketee, and W. Susilo, Eds., vol. 54. Australian Computer
Society, Jan. 2006.

[7] D. Ma and G. Tsudik, “A new approach to secure logging,” in ACM
Transactions on Storage, vol. 5, no. 1. New York, NY, USA: ACM,
Mar. 2009, pp. 2:1–2:21.

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

