
Detecting Obfuscated JavaScripts using Machine Learning

Simon Aebersold∗, Krzysztof Kryszczuk∗, Sergio Paganoni†, Bernhard Tellenbach∗, Timothy Trowbridge∗
∗Zurich University of Applied Sciences, Switzerland

†GovCERT.ch, Reporting and Analysis Centre for Information Assurance MELANI

Abstract—JavaScript is a common attack vector for attacking
browsers, browser plug-ins, email clients and other JavaScript
enabled applications. Malicious JavaScripts redirect victims to
exploit kits, probe for known vulnerabilities to select a fitting
exploit or manipulate the Document Object Model (DOM) of
a web page in a harmful way. Malicious JavaScript code is
often obfuscated in order to make it hard to detect using
signature-based approaches. Since the only other reason to use
obfuscation is to protect intellectual property, the share of scripts
which are both benign and obfuscated is quite low, and could
easily be captured with a whitelist. A detector that can reliably
detect obfuscated JavaScripts would therefore be a valuable tool
in fighting malicious JavaScripts. In this paper, we present a
method for automatic detection of obfuscated JavaScript using a
machine-learning approach. Using a dataset of regular, minified
and obfuscated samples from a content delivery network and
the Alexa top 500 websites, we show that it is possible to
distinguish between obfuscated and non-obfuscated scripts with
precision and recall around 99%. We also introduce a novel set
of features, which help detect obfuscation in JavaScripts. Our
results presented here shed additional light on the problem of
distinguishing between malicious and benign scripts.

Index Terms—Computer security; Machine learning; Pattern
analysis; Classification algorithms; JavaScript, Random Forest;
Malicious

I. INTRODUCTION

JavaScript is omnipresent on the web. Almost all websites
make use of it and there are a lot of other applications,
such as Portable Document Format (PDF) forms or HyperText
Markup Language (HTML) e-mails, where JavaScript plays
an important role. This strong dependence creates an attack
opportunity for individuals looking for an entry point into
a victims system. The main functionalities of a malicious
JavaScript are reconnaissance and exploitation, and cross-site
scripting (XSS) vulnerabilities in web applications.

JavaScript exploit kits belong to the first category of func-
tionality and typically contain code for identification of the
victim’s browser and its plug-ins. Most of the malicious
JavaScripts are obfuscated in order to hide what they are doing
and to evade detection by signature based security systems.
Since the only other reason to use obfuscation is to protect
intellectual property, the share of benign obfuscated scripts is
quite low and could probably be captured with a whitelist. A
detector that can reliably detect obfuscated JavaScripts would
therefore be a valuable tool in fighting malicious JavaScripts.

The most common method to address the problem of ma-
licious JavaScripts is having malware analysts write rules for
anti-virus or intrusion detection systems that identify common
patterns in obfuscated (or non-obfuscated) malicious scripts.
While signature based detection is good at detecting known
malware, it often fails to detect it when obfuscation is used to

alter the features captured by the signature [1]. Furthermore,
keeping up with the attackers and their obfuscation techniques
is a time consuming task. This is why a lot of research effort
is put into alternative solutions to identify/classify malicious
JavaScripts. One area is to automate at least parts of the
manual analysis required to identify whether or not a script
is malicious and to craft suitable signatures. JSDetox [2] and
Wepawet [3] are two solutions that help with the dynamic
analysis of JavaScript samples.

Likarish et al. [4] take another approach and apply machine
learning algorithms to detect obfuscated malicious JavaScript
samples. The authors use a set of 15 features like the number
of strings in the script or the percentage of white-space that
are largely independent from the language and JavaScript
semantics. The results from their comparison of four machine
learning classifiers (naive bays, ADTree, SVM and RIPPER)
are very promising: the precision and recall (see III-E for a
definition) of the SVM classifier is 92% and 74.2%. But since
their study originates from 2009, it is unclear how recent trends
like the minification of JavaScripts (see II-A) would impact on
their results.

A more recent study from Kaplan et al. [5] addresses
the problem of detecting obfuscated scripts using a Bayesian
classifier. They refute the assumption made by previous pub-
lications that obfuscated scripts are mostly malicious and
advertise their solution as filter for projects where users can
submit applications to a software repository such as a browser
extension gallery for browsers like Google Chrome or Firefox.
Also techniques such as AdSafe [6], severely restrict what is
allowed JavaScript and what not to simplify analysis.

Wang et al. [7] propose another machine learning based
solution to separate malicious and benign JavaScript. They
compare the performance of ADTree, NaiveBayes and SVM
machine learning classifiers using a set of 27 features of which
some are similar to those of Likarish et al. [4]. Their results
suggest a significant improvement over the work of Likarish
et al.

In this paper, we present a method for automatic detection of
obfuscated JavaScript using a machine-learning approach. We
confirm results from other researchers that using approaches
based on machine learning, it is possible to distinguish be-
tween obfuscated and non-obfuscated scripts with precision
and recall above 95%. Our results complement previous re-
search in that they expose a substantial challenge to obtain
those good results. Our results suggest that it is difficult to train
detectors to be robust versus changes in the way obfuscation
is done. If there are no samples of scripts obfuscated with
a specific obfuscation tool or method, detection rates drop

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

significantly.
Today’s JavaScript is mostly minified code. The second

contribution of this paper is an investigation whether mini-
fication has an impacts on the detection of obfuscated JS
using machine learning techniques. Finally, we shed additional
light on the problem of distinguishing between malicious and
benign scripts using a custom database. In our experiments we
could not confirm the promising results from previously pub-
lished research, where similar features and machine learning
approach was taken.

The rest of the paper is organized as follows. Section II
briefly explains the different JavaScript classes, which we
aimed to separate in this work. In Section III, we discuss the
machine-learning approach adopted in the presented work, as
well as the discriminatory features and classifiers we used.
Section IV presents our results, followed by a discussion and
conclusions in Section V.

II. SYNTACTIC AND FUNCTIONAL VARIETIES OF
JAVASCRIPT

The client-side JavaScript for JavaScript-enabled applica-
tions can be attributed to one of the following four classes:
regular, minified, obfuscated and malicious. The regular class
contains the scripts as they have been written by their devel-
opers. These scripts are typically easy to read and understand
by human beings. Obfuscation and minification are code
modifications that change the syntax but not the functionality
of the code. In this work, we refer to different syntactic and
functional varieties of JavaScript as classes.

A. Minification

Since the introduction of the YUI Compressor [8] and other
minification tools, more and more JavaScript in the Internet
is minified. It is considered good practice to concatenate and
minify JavaScript files to arrive at smaller file sizes and fewer
requests. Minification removes spaces, line breaks and renames
functions and variables to obtain a more compact version of
the script. While this makes the scripts harder to read and
understand for a human, the program flow remains the same.

B. Obfuscation

In contrast to minifiers, obfuscation tools do modify the
program flow with the goal to make it hard to understand
while keeping the original functionality. Many obfuscation
techniques exist. For example, encoding obfuscation encodes
strings using hexadecimal character encoding or Unicode
encoding to make strings harder to read. Other obfuscation
steps involve hiding code in data to execute it later using the
eval JavaScript function. The following listing shows a sample
use of the latter technique:

1 var a = "ale";
2 a += "rt(";
3 a += "’hello’";
4 a += ");";
5 eval(a);

Listing 1. A simple example for data obfuscation

C. Malicious vs benign

The dichotomy benign/malicious is of functional rather than
syntactic nature. In contrast to the regular, minified and obfus-
cated class, scripts in the malicious class can have a regular
form or make use of minifiers or obfuscators. This makes
it difficult to detect those scripts using features that focus
on differentiating the first three classes only. Previous work
sometimes conflates obfuscation with maliciousness. In this
work and in prior art (see [5]), it is explicitly stated that neither
all obfuscated code is malicious nor is all malicious code
obfuscated. Although formally speaking malicious JavaScript
does not have to be obfuscated, in practice, it usually is.

III. MACHINE LEARNING APPROACH TO JAVASCRIPT
CLASSIFICATION

In order to evaluate the feasibility and accuracy of distin-
guishing between different classes of JavaScript, we adopted a
classical machine learning approach. We collected a database
containing a number of instances representing each of the
classes of interest, i.e., regular, minified, obfuscated, benign
and malicious. For each of the samples in the database we
extracted a set of discriminatory features, which we list in Ta-
ble II below. The extracted features form fixed-length feature
vectors, which in turn are used for training and evaluation of
classifiers.

A. Data Set

Our dataset consists of data from three different sources:
(1) the complete list of JavaScripts available from the jsDelivr
content delivery network, (2) the Alexa Top 500 websites
and (3) a set of malicious JavaScript samples from the Swiss
Reporting and Analysis Centre for Information Assurance
MELANI.

jsDeliver: contains a large number of JavaScript libraries
and files in both a regular and a minified version. Since the
files are subject to manual review and approval and should
not make use of obfuscation, we used the regular versions of
the files as a basis for our evaluation. After a preprocessing
step including rule-based filtering, de-duplication as well as
manual sampling to check and make sure that the assumed
properties (minified, obfuscated or malicious) are met,
we generated three additional file sets from these files.
For the first set, we processed the files with uglifyjs [9],
the most popular JavaScript minifier to obtain a minified
version of them. uglifyjs works by extracting an abstract
syntax tree (AST) from the JavaScript source and then
transforming it to an optimized (smaller) one. For the second
and third set, we used the Dean Edwards’ Packer [10] and
javascriptobfuscator.com [11] to create obfuscated versions
of these files. Note that the second and third set can also
be considered to be minified. The two obfuscators remove
whitespaces and make the scripts more compact. Scripts
that are first minified and then obfuscated look similar or
are the same as when obfuscation is applied only. Applying
obfuscation and then minification might lead to partial

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

de-obfuscation (e.g., decoding of encoded strings) and is
therefor unlikely to be used in practice.

Alexa Top 500: To have a more comprehensible
representation of actual scripts found on websites [12],
we created a set of files consisting of the JavaScripts
found on the Alexa Top 500 websites [13]. To extract
the scripts from these websites, we parsed them with
BeautifulSoup [14] and extracted all scripts that were either
inlined (e.g., <script>alert("foo");</script>)
or referenced via external files (e.g., <script
type="text/javascript" src="filename.js"
></script>). Since we make no assumption about the
properties of these files other than that they are non-malicious,
no preprocessing was performed except for de-duplication.

MELANI: The fileset from MELANI contains only
malicious samples. Most of the malicious samples in the set
are either JS droppers used in drive-by-download attacks or
Exploit Kits for exploiting vulnerabilities in browser plugins.
Most samples are at least partially obfuscated and seem to
make use of different obfuscation techniques and tools.

B. Preprocessing

Since a manual inspection of a random subset of the non-
minified files downloaded from jsDeliver showed that 10% of
them were minified nevertheless, we preprocessed them by
applying the following simple heuristic:

• Remove files with less than 5 lines
• Remove files if less than 1% of all characters are spaces.
• Remove files where more than 10% of all lines are longer

than 1000 characters).
While we did not inspect all of the removed files (around

10% of the files), a manual inspection of a subset of them
showed no false positives. We did not find false negatives in
the files that were not removed. It must be noted, however,
that the above heuristic may not necessary be valid for
other JavaScript datasets. If the data source contains a large
number of small JavaScript snippets, the first rule might prove
problematic.

In a next step, we used DoubleKiller [15] to remove all
duplicate files. DoubleKiller compares files based on file
name, size, modification date and content (CRC32). After
preprocessing and de-duplication of the jsDeliver fileset a total
of 4218 unique JavaScript files were left. After de-duplication
of the Alexa Top 500 fileset, a total of 9459 files remained.

C. Feature Selection

For our experiments reported in this paper, we selected a
set of 21 features derived from manual inspection, related
work ([4], [16]) and analysis of the histograms of candidate
features. For example, observations showed that obfuscated
scripts often make use of encodings using hexadecimal or
Unicode characters (F17) and often remove white spaces
(F8). Furthermore, some rely on splitting a job in a lot of
functions (F14) and almost all use a lot of strings (F7) and

TABLE I
DATA COLLECTIONS

Collection Properties #Files
jsDelivr.com regular 4218
jsDelivr.com minified (uglifyjs) 4218
jsDelivr.com obfuscated (Dean Edwards Packer) 4218
jsDelivr.com obfuscated (javascriptobfuscator.com) 4218
Alexa Top 500 unknown 9459
MELANI malicious, obfuscated 132

are lacking comments (F9). An example of a comparison of
feature distributions across classes is shown in Figure 1. Here,
it can be noted that if a script has 70% or more of its characters
in strings, this is a strong indication that the file is obfuscated
or malicious.

Fig. 1. Histogram for feature F7: The share of scripts that have x% of their
characters in strings.

Table II lists the discriminatory features we used for training
and evaluation of the classifiers in the reported experiments.
These features are complemented with 26 features reflecting
the frequency of 26 different JavaScript keywords: break,
case, catch, class, continue, do, else, false, finally, for, if,
instanceof, new, null, return, switch, this, throw, true, try,
typeof, var, while, toString, valueOf and undefined. While
the present set yielded promising results in our experiments,
further investigations are required to determine an optimal set
of classification features for the problem. The features labeled
as ’new’ in Table II are a novel contribution of the present
paper. The special JavaScript elements used in feature F15
are elements often used and renamed (to conceal their use) in
obfuscated or malicious scripts. This includes the following
functions, objects and prototypes:

• Functions: eval, unescape, String.fromCharCode,
String.charCodeAt

• Objects: window, document
• Prototypes: string, array

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

TABLE II
DISCRIMINATORY FEATURES

Feature Description Used in:
F1 total number of lines [4]
F2 avg. # of chars per line [4]
F3 # chars in script [4]
F4 % of lines ¿1000 chars new
F5 Shannon entropy of the file [16]
F6 avg. string length [4]
F7 share of chars belonging to a string new
F8 share of space characters [4]
F9 share of chars belonging to a comment [4]
F10 # of eval calls divided by F3 new
F11 avg. # of chars per function body new
F12 share of chars belonging to a function

body
new

F13 avg. # of arguments per function [4]
F14 # of function definitions divided by F3 new
F15 # of special JavaScript elements divided

by F3
new

F16 # of renamed special JavaScript elements
divided by F3

new

F17 share of encoded characters (for example
\u0123 or \x61)

[4]

F18 share of backslash characters new
F19 share of pipe characters new
F20 # of array accesses using dot or bracket

syntax divided by F3
new

D. Feature Extraction

To extract the above features, we implemented a Node.js
application traversing the abstract syntax tree (AST) generated
by Esprima [17], a JavaScript parser compatible with Mozilla’s
SpiderMonkey Parser API [18]. Traversing the AST and
extracting all of the above features for an average JavaScript
library with around 20K characters takes around 330ms.

E. Machine Learning

The extracted set of feature vectors was used to train and
evaluate three different classifiers:

• Linear Discriminant Analysis (LDA) Due to it’s simple
design it avoids function overfitting. This means it is still
possible to overtrain this classifier, but only by training
insufficient amount of data.

• Random Forest (RF) Random Forest uses a tree based
approach. In comparison to decision trees it is less
prone to overfitting because it selects a random subset
of features to build multiple decision tress.

• Support Vector Machine (SVM) SVM works by search-
ing a hyperplane in a feature space that separates labels/-
classes. We use a radial basis function kernel (RBF) with
parameters γ=0.03, C=8.0 to capture non linearities.

For exhaustive details on the used classifiers, the reader is
referred to [19]. We used scikit-learn [20], which contains
the implementation of the above mentioned classifiers. We
performed following steps per experiment:

1) Normalization of the data using the StandardScaler of
scikit-learn

2) Random partitioning of the data set to be evaluated into
training and testing subsets. With one exception (see
IV-A), 60% of the data are used for training, 40% for
testing.

3) Training and testing of the classifiers. The partitioning
and the training and testing is done 10 times (10-fold
cross validation).

4) The results from the 10 rounds are averaged and the
standard deviation is calculated.

We report the (p)recision, (r)ecall, (f1)-score and (s)upport
for each considered class and considered classifier. Precision
is the number of true positives divided by the number of
true positives and false positives. Recall is the number of
true positives divided by the number of true positives and the
number of false negatives. The F1 Score conveys the balance
between precision and recall and is equal to 2∗ precision∗recall

precision+recall .
Finally, support is the total number of scripts tested for a
specific label. Note that since we used 10-fold cross-validation,
this number is the sum of the scripts tested in the 10 runs.

IV. RESULTS

In this section, we present how the partitioning of the dataset
impacts on classification accuracy and how well the classifiers
are able to distinguish obfuscated from non-obfuscated scripts.
Finally, we show our results from experiments where the
classifiers had to distinguish malicious from benign samples.

A. Partitioning and Accuracy

To check the impact of the size of the training set on the
observed accuracy, we first tested all splits from 1% to 99%
of test versus training data and calculated the share of scripts
whose label is predicted correctly. Figure 2 shows the impact
of the split of training and test data on the observed accuracy.
The x-axis shows the test dataset size in %, the y-axis shows
the accuracy in %. The training dataset size is equal to 100%
minus the test dataset size. Over 95% of the scripts are labeled
correctly for all classifiers if at least 15% of the data vectors is
used for training. At 60% training data, 2 out of 3 classifiers
reach a plateau in accuracy, hence we used 60% of our data
for training.

Fig. 2. Impact of the split of training and test data on the observed accuracy.

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

B. Obfuscated vs. Non-Obfuscated

To test the performance of the three machine learning
classifiers, we conducted the following three experiments. For
the first experiment, we used the jsDelivr.com data set and
labeled the regular and minified files as non-obfuscated, and
we labeled the files processed with one of the obfuscator tools
as obfuscated. Figure 3a shows the classification results after
10-fold cross-validation and a split of 60%/40% for training
and test datasets. On average, per cross-validation round, only
0.60% non-obfuscated scripts out of 3377 were classified as
obfuscated and only 1.67% obfuscated scripts out of 3366
were classified as non-obfuscated.

In order to verify the performance of the classifiers trained
with the jsDelivr.com dataset when deployed to classify
a broad set of scripts from various sources, we used the
JavaScripts found in the Alexa Top 500 websites as the eval-
uation dataset. Figure 3b shows the results of this experiment.
99.4% of the scripts were labeled non-obfuscated and 0.6% as
obfuscated. A manual inspection of the 52, 17 and 140 scripts
for the SVM, random forest and LDA classifier revealed that
about 30% of these scripts are true positives whilst 70% are
false positives. The false negative (FN) rate is not measurable
without manually classifying all the Alexa scripts. A manual
inspection of a random sample of 50 of the scripts labeled as
non-obfuscated did not contain obfuscated scripts. Based on
this limited sample inspection we assume the database contains
a negligible number of obfuscated scripts.

Figure 3 shows the results for the third experiment where
we trained the classifiers with the full jsDelivr.com dataset and
then tested them with the MELANI dataset. Since all of the
scripts in the MELANI dataset are obfuscated and therefore
have the correct label, not false positives are possible resulting
in a precision of 100%. However, there are quite a lot of false
negatives which results in low (for SVM) or even very low
(for RF/LDA) recall.

C. Malicious vs. Benign

In the previous experiments, we focused on detecting
obfuscation rather then maliciousness. Because our ultimate
goal is to be able to distinguish between benign and
malicious JavaScript, we trained and evaluated the classifiers
to distinguish between benign and malicious scripts as well.
The MELANI data set with malicious files is not large
or representative enough for this result to be statistically
significant. However, the results provide an indication whether
the set of features and the machine learning approach can
be used to detect malicious JavaScript. For this experiment,
the jsDeliver.com and MELANI data sets were both serving
as training and test data using a 10-fold cross-validation
using a 60%/40% split. Figure 4b shows the results of this
experiment. Less than one benign script has been classified
as malicious per round and therefore precision and recall for
benign samples is high.

SVM RF LDA
Non p 99.35% 99.81% 99.17%
Obfuscated r 99.40% 99.97% 99.38%

f1 98.87% 98.89% 99.27%
s 33770 33770 33770

Obfuscated p 99.40% 99.97% 99.37%
r 98.33% 99.80% 99.16%
f1 98.86% 98.89% 99.26%
s 33660 33660 33660

(a) Classification results for the jsDelivr.com data set with 10-fold cross-
validation and a split of 60%/40% for training and test data.

SVM RF LDA
Non p 100.00% 100.00% 100.00%
Obfuscated r 99.45% 99.82% 98.52%

f1 99.72% 98.91% 99.25%
s 9459 9459 9459

(b) Classification results for the Alexa Top 500 data set for the classifiers
trained with the jsDelivr.com data set, based on the assumption that it
contains no obfuscated scripts.

SVM RF LDA
Obfuscated p 100.00% 100.00% 100.00%

r 60.61% 19.70% 22.73%
f1 75.47% 32.91% 37.04%
s 132 132 132

(c) Classification results for the MELANI data set when the classifiers
are trained with the jsDelivr.com data set. All scripts in the MELANI data
set are obfuscated but with different obfuscation techniques and tools than
used in the jsDelivr.com data set.

Fig. 3. Performance of the classifiers with respect to distinguishing between
obfuscated and non-obfuscated scripts, for different test data sets.

Figure 4 contains the results of our last experiment where
we deployed a classifier trained with the jsDelivr.com and
MELANI data sets to classify the Alexa Top 500 dataset. Since
all of the scripts in this data set are labeled as benign, the
precision is 100%. The recall of above 99% shows, that only
a few of the Alexa Top 500 script were labeled as malicious.
A verification of theses scripts did not reveal any malicious
content.

V. DISCUSSION AND CONCLUSIONS

The results presented in Section IV-B give a summary of the
evaluation of a machine-learning approach to distinguishing
obfuscated vs. non-obfuscated JavaScripts. The results show
that if the training dataset contains a representative set of
samples of a particular type of obfuscation, it is likely to be
reliably detected in the testing phase. One intriguing question
presents itself: is the classifier learning a particular syntactic
structure of a particular type of obfuscator, or do different
types of obfuscation share some inherent characteristics that
can be captured in the learning phase. The data in Figure 3b
containing the results obtained for the Alexa 500 dataset
suggest that the obfuscation techniques may share certain
common syntactic characteristics. A more detailed analysis is
required to identify the root cause and to improve classification

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

SVM RF LDA
Benign p 99.87% 99.84% 99.59%

r 99.98% 100.00% 99.58%
f1 99.93% 99.92% 99.59%
s 67414 67414 67414

Malicious p 97.65% 99.76% 48.63%
r 83.88% 79.22% 49.08%
f1 90.25% 88.31% 48.85%
s 546 546 546

(a) Classification results for the combination of jsDelivr.com and the
MELANI data set with 10-fold cross-validation and a split of 60%/40%
for training and test data.

SVM RF LDA
Benign p 100.00% 100.00% 100.00%

r 99.65% 99.97% 99.26%
f1 99.83% 99.98% 99.63%
s 9459 9459 9459

(b) Classification results for the Alexa Top 500 dataset, when the
classifiers are trained with the combined jsDelivr.com and MELANI
datasets.

Fig. 4. Performance of the classifiers with respect to distinguishing malicious
vs. benign scripts, for different test data sets.

results. However, low recall for the MELANI dataset 3 clearly
suggests that there might be limits that could be challenging
to overcome if custom obfuscation strategies or tools are used.

Our results presented in this paper suggest that it may
be feasible to detect malicious JavaScripts. As the numbers
reported in Figure 4 indicate, the precision and recall on the
task of discriminating between malicious and benign scripts
is high. These results, however, must be approached with
caution. Since the database of malicious scripts was limited
and much smaller than that of benign ones, it is not evident that
the classifier is capturing the actual syntactic characteristics
correlated with the malicious behavior. It is possible that the
mere syntactic structure of the scripts in the MELANI database
is sufficiently different from that of the jsDelivr.com to allow
an accurate classification. As mentioned in the Introduction,
the malicious script behavior is due to the script’s functionality
and not syntax per se. An in-depth analysis of the link between
the functionality and syntax of a malicious code must be
performed in order to deliver conclusive results.

We envision to continue our efforts towards understanding
of the problem of automatic detection of malicious JavaScript
code by collecting more representative datasets. Given such
a dataset, an analysis of the statistical distribution of syn-
tactic features and their dependence on the malicious code
behavior will be studied. Consequently, we intent do develop
a dedicated set of classification features insensitive to the type
of obfuscation, which will allow for automatic detection of
malicious JavaScript.

REFERENCES

[1] W. Xu, F. Zhang, and S. Zhu, “The power of obfuscation techniques
in malicious javascript code: A measurement study,” in Malicious and

Unwanted Software (MALWARE), 2012 7th International Conference
on. IEEE, 2012, pp. 9–16.

[2] sven t, “JSDetox,” last accessed on 2016-01-30. [Online]. Available:
http://www.relentless-coding.com/projects/jsdetox

[3] “Wepawet,” last accessed on 2016-01-30. [Online]. Available: http:
//wepawet.iseclab.org/

[4] P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious javascript detection
using classification techniques,” in Malicious and Unwanted Software
(MALWARE), 2009 4th International Conference on, Oct 2009, pp. 47–
54.

[5] S. Kaplan, B. Livshits, B. Zorn, C. Siefert, and C. Curtsinger, “”no-
fus: Automatically detecting” + string.fromcharcode (32)+” obfus-
cated”.tolowercase()+” javascript code,” Microsoft Research, 2011.

[6] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi,
“Adsafety: Type-based verification of javascript sandboxing,” CoRR,
vol. abs/1506.07813, 2015. [Online]. Available: http://arxiv.org/abs/
1506.07813

[7] W.-H. Wang, Y.-J. LV, H.-B. Chen, and Z.-L. Fang, “A static malicious
javascript detection using svm,” in Proceedings of the International
Conference on Computer Science and Electronics Engineering, vol. 40,
2013, pp. 21–30.

[8] J. Lecomte, “Introducing the YUI Compressor,” last accessed on 2016-
01-30. [Online]. Available: http://www.julienlecomte.net/blog/2007/08/
13/introducing-the-yui-compressor/

[9] M. Bazon, “UglifyJS,” last accessed on 2016-01-30. [Online]. Available:
http://lisperator.net/uglifyjs/

[10] D. Edwards, “Dean Edwards Packer,” last accessed on 2016-01-30.
[Online]. Available: http://dean.edwards.name/packer/

[11] “JavaScript Obfuscator,” last accessed on 2016-01-30. [Online].
Available: http://javascriptobfuscator.com/

[12] P. Likarish and E. Jung, “A targeted web crawling for building malicious
javascript collection,” in Proceedings of the ACM first international
workshop on Data-intensive software management and mining. ACM,
2009, pp. 23–26.

[13] “Alexa Top 500 Global Sites,” last accessed on 2016-01-30. [Online].
Available: http://www.alexa.com/topsites

[14] L. Richardson, “Beautiful Soup,” last accessed on 2016-01-30. [Online].
Available: http://www.crummy.com/software/BeautifulSoup/

[15] “DoubleKiller,” last accessed on 2016-01-30. [Online]. Available:
http://www.bigbangenterprises.de/en/doublekiller/

[16] B.-I. Kim, C.-T. Im, and H.-C. Jung, “Suspicious malicious web site de-
tection with strength analysis of a javascript obfuscation,” International
Journal of Advanced Science and Technology, vol. 26, 2011, pp. 19–32.

[17] A. Hidayat, “Esprima JavaScript Parser,” last accessed on 2016-01-30.
[Online]. Available: http://esprima.org/

[18] “SpiderMonkey Parser API,” last accessed on 2016-01-30.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/SpiderMonkey/Parser API

[19] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd
Edition, 2001.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, 2011, pp. 2825–2830.

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

