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Abstract—When looking the World Wide Web (and the
Internet at large) as one giant application, we observe certain
desirable properties that would also be welcome, but cannot
be taken for granted, in industrial automation systems. In
particular, subtasks that are unrelated from a functional point
of view (such as Web sites) are usually well-separated from
each other. Web services can play a key role in bringing
separation of concerns to automation systems. The paper
introduces a relevant standard (OPC UA). It also presents the
Normalized Systems theory as a structured way of ensuring
separation of concerns which is applicable to a wide range
of application domains, from the Web to programs within
automation controllers.

Keywords-OPC UA; Normalized Systems; Evolvability; Indus-
trial Automation.

I. INTRODUCTION

Already before the Internet was adopted worldwide, and,
in parallel, IP-based networks obtained their dominant role
in the office world (no matter in which sector of the
economy) [1], some authors have tried to figure out whether
the Internet could ‘crash’ or not. Ted Lewis answered the
question ‘Is it possible for the Internet to overload and
blow a fuse’ with ‘probably’ [2], following a (simplified)
comparison of the Internet with an ‘infinite bus’, which can
indeed become overloaded – at least partly. Consequently,
the threat has to do with a potential lack of hardware
resources, or even physical unavailability in case of, e.g.,
a fire in one or more buildings. However, a crash of the
entire Internet is considered improbable [3]. Still, this only
applies to the entire Internet as a system; parts of this
system, in particular individual application servers, certainly
can crash. To prevent services becoming unavailable due
to such object crashes, authors for example consider ways
to implement highly-available distributed World Wide Web
(WWW) servers [4].

Considering this, the Internet appears to be a stable
system. In the literature, the meaning of stability varies [5].
For a more formal specification of this assumption for our
purposes, we shall consider the generic concept of stability
as defined in the fields of signal processing, systems theory,
and control theory, BIBO (Bounded Input Bounded Output)
stability. In these fields, (BIBO) stability is considered one
of the most fundamental properties of a system [6], [7].

It implies that a bounded input function should result in
bounded output values, even as t→ ∞ (with t representing
time).

When we call the Internet a system in this sense, we
focus on the fact that objects, services, clients and servers
are being continuously added to it, updated and removed
from it. We consider these changes as inputs to the (Internet)
system, and consider the impact of those changes as outputs.
The Internet apparently copes well with these continuous,
worldwide changes. Their consequences are bounded: An
object crash does not affect the robustness of the system as
a whole. Also, the effort for making changes does not rise
as the system evolves: For example, creating a new web site
is not harder today than last year (given that the new site
should provide the same functionality and given the same
tools and availability of other resources). Of course, adding
a more complex web site requires more effort than adding a
simple one; but the effort required does not depend on the
size of the web at large. The effort only depends on the size
of the change itself.

For software systems in general, however, this is not the
case. Industrial automation control systems are no exception
[8]. Stability or long-term maintainability is a challenge.
It is a desired characteristic, which is hard to control [5].
The issue of evolvability is widely known, and was already
specified in the form of a statement back in 1980 by Manny
Lehman: ‘As an evolving program is continually changed,
its complexity, reflecting deteriorating structure, increases
unless work is done to maintain or reduce it’ [9].

Thus, the Internet appears to be stable, while the software
systems, which make part of it, are not. This paper presents
approaches towards improving this situation, focusing on
separation of concerns in automation systems by applying
web based technology and appropriate formal guidelines.
Section II outlines the desirable properties we find in the
Internet as a system and how automation systems are dif-
ferent in contrast. Section III introduces the OPC Unified
Architecture standard as a way of applying web based
technology to automation systems. Section IV summarizes
the main theorems of the Normalized Systems theory, which
provides formal guidelines to building stable software sys-
tems independent of the application domain, and Section V
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discusses how to migrate industrial automation systems to
normalized systems. In Section VI, we conclude and present
suggestions for future research.

II. THE WEB AS A MODEL FOR SEPARATION BETWEEN
AUTOMATION SOFTWARE COMPONENTS

When looking at the world wide web, we notice various
desirable properties. We already mentioned the example of
web sites being independent of other web sites (as long as
they do not depend on each other for content) regarding the
effect of crashes as well as the effort required for launching a
new website. Also, a web browser is not going to crash when
a server does not respond in time. The Internet is robust
against changes, without the need for a specific maintenance
effort as stated by Lehman’s law [9]. We are seeing a huge,
stable system where essential concerns are well separated.
Broadly speaking, each web site could be considered such
a concern.

While our examples for desirable properties found in the
world wide web are probably so familiar that they do not
seem to be a special achievement at first sight, it is worth
remembering that these properties cannot simply be taken
for granted. As a case in point, the situation is significantly
different with industrial automation systems.

Industrial Programmable Logic Controllers (PLCs) are
usually programmed in one of the languages of the IEC
61131-3 standard [10]. An IEC 61131-3 Program Organiza-
tion Unit (POU) contains code, which can be a Function, a
Function Block, or a Program. The code can be written in
any one of these languages, depending on which of them is
most appropriate for the specific application.

Often a PLC controlled factory plant starts out from
a basic solution and is extended over time. For such a
basic solution in a starting SME (Small or Medium-sized
Enterprise) business, one single PLC might be enough to
implement production control (or a self-contained subpart).
If the business is successful and the production capacity has
to be expanded, the resource limit of the single PLC will
be reached at some point. Typically, a second one is then
added, which will result in a number of couplings between
these PLCs. In case engineers are focusing on functional
requirements only and neglect non-functional quality proper-
ties (like evolvability and stability), there is a risk that these
couplings could be so-called undesired couplings [11]. These
will cause combinatorial effects, resulting in an increased
impact of changes as the system size increases. Engineering
an evolving system based on functional requirements only
– and thus neglecting desirable maintenance activities with
respect to the software – typically results in a system with
a low amount of separable concerns. Without separation of
concerns, it is likely necessary to shutdown the entire system
if one of the many PLCs needs to be replaced; it could even
be necessary to re-engineer the entire system. All this is
due to the negative effect of coupling between POUs – in

contrast to the loose coupling that we observe to be in place
between web sites.

One of the very likely sources of undesired coupling
is that popular communication systems between PLCs are
based on global variables, shared memory, or shared I/O
(Input/Output) addresses (e.g., fieldbus systems). The exis-
tence of these systems is not necessarily a disadvantage, but
the way of use of these mechanisms can lead to invisible,
hidden dependencies (also referred to as ‘common coupling’
in this case [11]), resulting in combinatorial effects.

Of course, it is possible to create IEC 61131-3 programs
without causing common coupling (e.g., by carefully docu-
menting the use of all global variables). However, instead of
hoping that developers use these communication capabilities
without causing common coupling (which would at least
require thorough education), it would be preferable to have
concepts in place that actually remove the possibility of
common coupling [12].

Another relevant aspect in this context is the separation of
states. A simple example where this is achieved on the world
wide web would be the separation between web browser and
server in the example at the beginning of this section. On the
other hand, in industrial automation, some PLCs contain an
integrated diagnostic system to handle fieldbus failures that
can actually cause the PLC to shutdown if handling code
is not properly implemented. In other words, instead of just
notifying the PLC system of a fieldbus failure, a fieldbus
system failure can be propagated to cause further system
failures.

III. OPC UNIFIED ARCHITECTURE

Web services cleanly separate software components from
each other. They enable self-describing, modular appli-
cations to be published, located, and invoked across the
Web. Software modules collaborating via web services make
parameters and arguments explicit through the module’s
interface only. They allow modules to be loosely coupled.
Hence, combinatorial effects cannot propagate. In other
words, web services isolate web based applications from
each other. Therefore, we think that web services are a very
helpful means toward avoiding common coupling as outlined
in the previous section. We think that the structure they bring
to systems by way of their design can contribute significantly
to system stability.

The use of service oriented architecture and web services
in manufacturing systems has been previously studied in
depth by academic research groups [13], [14]. However,
the lowest level of control (also called the shop floor
layer) is characterized by a great heterogeneity of systems
and special fieldbus communication solutions. Unless they
support a common communication standard, the effort to
integrate these shop floor systems into a web services based
solution is prohibitive in industrial practice. Here, the OPC
specifications could play a major enabling role.
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The OPC Foundation set out to enable interoperability
between automation equipment and software of various
vendors. The first and still most successful specification,
called OPC Data Access, was designed as an interface
to communication drivers, allowing standardized read and
write access to real-time data in automation devices. The
major use case are HMI and SCADA systems accessing
data from different types of automation devices. The first
OPC specification family (released in the nineties) was
based on the DCOM (Distributed Component Object Model)
technology by Microsoft.

OPC has become the de facto standard for industrial
integration and process information sharing [15]. By now,
over 20,000 products are offered by more than 3,500 ven-
dors. Kalogeras et al. share the view that OPC is highly
accepted in industry [16]. Millions of installed OPC based
products are used in production, process industry, building
automation, and many other fields of application around the
world [17]. However, when the Internet gained widespread
adoption, the DCOM technology caused certain limitations.

To address this, the OPC UA specifications were released
in 2006, aligning OPC with the principles of service ori-
ented architecture. OPC UA is considered one of the most
promising incarnations of WS technology for automation
[18], [17], [19]. Its design takes into account that the field of
application for industrial communication differs from regular
IT communication: embedded automation devices provide
another environment for Web-based communication than
standard PCs.

OPC UA makes it feasible to provide a web services
based OPC UA interface directly on automation controllers,
with integrated protocol security. OPC UA can thus be
used to encapsulate PLC programs much in the way that
HTTP and HTML ‘encapsulate’ the implementation details
of a web server. For this purpose, an OPC UA companion
specification for representing IEC 61131-3 code using the
information modeling mechanisms of OPC UA is available.

While separation of concerns can also be achieved by
using proprietary, custom-made web services, using OPC
UA instead has additional benefits. The most important one
is that, being a standardized interface, it enables interop-
erability between automation systems by different vendors.
Given the fact that web services interfaces will usually
be provided by automation system vendors, the use of
non-standard interfaces makes considerable integration ef-
forts necessary in a multi-vendor system (Figure 1). Also,
automation system integrators typically do not have the
skills to develop custom-made webservices. Rather, they are
trained to write IEC 61131-3 code and configure commercial
SCADA products, often with a C-like scripting language.
The OPC UA specifications are an excellent way to stim-
ulate automation product vendors to provide standardized
interfaces, which can be configured by automation system
integrators in webbased or web-enabled automation software

Figure 1. Left: OPC UA based communication; Right: Communication
based on custom webservices

components.

IV. NORMALIZED SYSTEMS

The value of applying separation of concerns throughout
a system (in our case, an industrial automation system) is
apparent. Thanks to OPC UA, web services can be more
easily applied to achieve loose coupling between PLCs,
as well as between PLCs and SCADA systems. Still, un-
wanted couplings can also exist between POUs within a
PLC. Moreover, applying web services technology is only
one step towards achieving loose coupling; interfaces still
have to be designed carefully to avoid unwanted functional
dependencies. While comprehensive informal guidelines are
available to educate software developers about good design,
few formal contributions exist.

The Normalized Systems theory has recently introduced
an approach to attain evolvable modularity in software,
starting from a constructive point of view. Its authors state
that probably all necessary knowledge is available to build
stable software systems, but it seems to be hard to apply
this knowledge [20]. The reason why it is very challenging
to build stable software systems is not due to a lack of
knowledge, but because this knowledge mainly takes the
form of developers’ individual experience. The Normalized
Systems theory attempts to capture this knowledge in a
succinct and formal way.

In Normalized Systems theory, instead of taking the func-
tional requirements as the only starting point, elementary
software constructs are defined as basic building blocks.
Hence, the implementation of software can be seen as
the transformation of functional requirements into software
primitives. We can represent this implementation transfor-
mation γ as

S = γ(R) [21].

In this formula, S represents the set of elementary software
constructs, and R stands for the functional requirements.

In order to obtain evolvable modularity, the Normalized
Systems theory states that this transformation should exhibit
systems-theoretical stability. This means that a bounded
input function (i.e., a bounded set of requirement changes)
shall result in a bounded set of output values (i.e., a bounded
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Figure 2. Cumulative impact of changes over time [24]

impact or effort), even if an unlimited systems evolution
is assumed. The impact of a change shall only depend
on the nature of the change itself. Conversely, changes
causing impacts that are dependent on the size of the system
are termed combinatorial effects; they must be eliminated
from the system in order to attain stability. Stability in
this context amounts to a linear relationship between the
amount of requirements on the system (which is increasing
as the system evolves over time) and the effort required
to implement all these requirements. Systems that exhibit
stability are defined as Normalized Systems [20]. In such
a system, the effort required for adding a function with
given complexity does not depend on the overall system
complexity. This is in contrast to the situation typically
observed in software projects, where combinatorial effects
or instabilities cause this relationship to become exponential
(Figure 2).

Mannaert et al. also proposed that, in Normalized Sys-
tems, modular structures should strictly adhere to the fol-
lowing principles [21]:

1) Separation of Concerns: An Action Entity can only
contain a single task.

Each task must be able to evolve independently. If it
is expected that two or more aspects of a program
function (i.e., tasks) will evolve independently, they
must be separated. It is proven that if one module
contains more than one task, an update of one of the
tasks requires updating all the others, too. Therefore,
Normalized Systems shall be constructed of Action
Entities (independent code modules) dedicated to one
core activity.

Most discussions regarding the separation of concerns

remain vague about what a concern is actually. In
contrast, the Normalized Systems theory provides an
explicit definition by introducing the concept of so-
called change drivers: A module should not contain
parts that can evolve separately; rather, these parts
should be placed in separate modules.

2) Data Version Transparency: Data Entities that are
received as input or produced as output by action
entities need to exhibit Version Transparency.

Data Version Transparency requires that Data Entities
(variables, records) can exist in multiple versions
without affecting the actions that consume or produce
them. In other words, an update of a Data Entity shall
not affect the interface of an Action Entity, i.e., it
must be possible to use different versions of this Data
Entity in the same way when exchanging parameters
or arguments with an Action Entity.

3) Action Version Transparency: Action Entities that are
called by other Action Entities need to exhibit Version
Transparency.

Action Version Transparency implies that an Action
Entity can have multiple versions, without affecting
the way this Action Entity is invoked. In other words,
introducing a new version of an Action Entity or task
shall not require changes to any other Action Entities
calling (or called by) the Action Entity containing the
task.

4) Separation of States: The calling of an Action Entity by
another Action Entity needs to exhibit State Keeping.

This theorem focuses on the interaction of Action
Entities with other Action Entities, more specifically,
on the aggregation and mutual invocation of Action
Entities in order to perform a function encompassing
multiple tasks. State Keeping requires every Action
Entity to be itself responsible for keeping track of
its requests to other Action Entities. If results are
not returned as expected, the calling action entity
must not block indefinitely; rather, it shall handle the
exceptional situation in an appropriate way.

V. MIGRATION AND REWRITES

Already decades ago, Doug McIlroy called for software
building blocks which can be safely regarded as black
boxes [25]. Such blocks should not contain any undesired,
hidden dependencies. A truly Normalized System fulfils this
requirement. However, such a system must comply with the
Normalized Systems theorems from the ground up, down to
the smallest building blocks or modules. Since each Action
Entity may only contain one task, this leads to very fine-
grained structure with an enormous amount of very small
modules.
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Figure 3. Reduction of cumulative effort by way of a rewrite

Restructuring a legacy (‘Lehman’) system into a Nor-
malized System is, of course, a formidable task. A good
start could be just separating the system into larger modules
or subsystems with normalized interfaces. Each subsystem
could then be considered to be a Normalized System, al-
though it will likely still contain non-normalized subsystems
(larger modules; see Figure 4). Such a subsystem module
will not be a McIlroy-type safe black box due to its Lehman-
type subsystems containing hidden dependencies. However,
the combinatorial effects originating from its Lehman-type
subsystems are stopped by the module interface, which
complies with the Normalized Systems theorems.

In the case of automation components, web services
(possibly making use of OPC UA) could be a very help-
ful mechanism to separate PLCs to transform them into
subsystems with normalized interfaces. However, this is not
enough. The internal modules of the subsystem, that is, all
IEC 61131-3 code, must eventually be structured following
the principles of Normalized Systems to make the subsystem
a truly stable system.

When discussing the web as a design guide earlier in
this paper, we observed that objects on the web, i.e., web
sites, still can ‘crash’. The same is true for a PLC which
uses code that does not follow the principles of Normalized
Systems. Both the web site and the PLC are still complex
subsystems that, eventually, need to be rewritten, probably
by again splitting them into different subsystems.

In general, the first step in a migration scenario to let a
non-normalized system evolve into a normalized one would
therefore be to identify parts that can be readily isolated from
the remaining parts. After adding a normalized interface,
each of the isolated parts can be replaced by a normalized
software re-write. Such a well-performed maintenance activ-
ity or ‘re-write’ will reduce the combinatorial effects within
the system or subsystem (visible in Figure 3 as discontinu-
ities along the y-axis). If full normalization is reached with
the re-write, combinatorial effects will be removed entirely

Figure 4. Migration from Lehman to Normalized subsystems

and permanently. Since the original part was already isolated
via a normalized interface, the ‘version change’ brought
about by the re-write will not cause combinatorial effects.
Thus, once the parts of the overall integrated system have
been isolated from each other (e.g., by way of web services),
every Lehman-type subsystem can be transparently replaced
by a Normalized one.

VI. CONCLUSION AND OUTLOOK

The timeline proves that the designers of the technologies
behind the Internet applications we know today could not
be aware of the Normalized Systems theory. However, the
Internet as a system complies with the principles of this
theory surprisingly well. Of course, the Normalized Systems
theorems are not completely new, but have been available
for a long time, albeit in the form of tacit knowledge. Those
designers did a remarkable job following their intuition,
and realised a world wide system that is stable even if the
application objects within this system are not – thanks to
loose coupling and excellent separation of concerns.

We are convinced that the Normalized Systems theory aids
in achieving loosely coupled systems. It promotes the devel-
opment of extremely fine-grained subsystems. As a first step
on this way, isolating combinatorial effects in automation
systems can be achieved by introducing web services based
interfaces. These interfaces separate technologies, platforms,
and vendor-dependent products; more generally spoken, they
apply the Separation of Concerns principle to automation
systems. OPC UA has a promising role in this regard thanks
to the widespread adoption of OPC in industry.

Web-based or Web-enabled automation components can
be regarded as a black box or isolated subsystem through
an OPC UA interface [19]. If we manage to find concepts
to restructure IEC 61131-3 code into very many small
components, the IEC 61131-3 information model OPC UA
companion standard could be applied to make this structure
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transparent. We do not see a reason why the amount of
such subsystems, interconnected via web services, would
be limited, except for limited hardware resources. Having
a large region system, comparable with the Internet, that
interconnects automation control subsystems, might become
very valuable in the future smart grid. Indeed, the Inter-
net, which is mainly used for interconnecting information
sources, might be extended with OPC UA based capabilities
for interconnecting production control resources.

Certainly, it will be essential to further investigate which
mechanisms the web and web services are built on that are
responsible for the desirable system properties mentioned
and translate them into the industrial automation domain.
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