
A Model-Driven Approach for Service Oriented Web 2.0 Mashup Development

José Luis Herrero, Pablo Carmona, Fabiola Lucio

Department of Computer and Telematics Systems Engineering

University of Extremadura

Avda. de Elvas s/n, 06006, Badajoz, Spain

{jherrero,pablo,flucio}@unex.es

Abstract— Mashup applications are composed by data or

functionality extracted from different sources. With the

evolution of web 2.0 and the appearance of AJAX technology

and the service-oriented architecture, a new breed of mashup

applications for the web has emerged. However, software

engineers have to deal with the heterogeneous composition of

mashup sources, which increases software development cost

and complexity. Therefore, it becomes essential to boost a

software development approach that can attenuate these

problems. This is the reason why we propose in this paper a

model-driven and service-oriented architecture for developing

mashup applications. Towards this end, the following tasks

have been developed: first a new mashup profile extends UML

and introduces mashup concepts at design level, and second, a

set of transformation rules has been defined with the aim of

generating code semi-automatically. These rules have been

classified according to the type of the element (web application,

mashup or web service). Finally, a transformation tool parses a

UML model, identifies mashup elements, and according to the

specified set of rules, generates code.

Keyword: Mashup, Model-driven architecture, web services,

web applications.

I. INTRODUCTION

With the appearance Web 2.0 paradigm and the
introduction of new technologies such as Asynchronous
JavaScript and XML (AJAX) [1] and web services, new
types of applications for the web have emerged. Under the
umbrella of this new trend, Rich Internet Applications (RIA)
[2] has evolved, and a high degree of interactivity and
complexity is achieved by this type of applications. One of
the most interesting type of applications that have gained
much attention in the Web 2.0 community, is mashups.
During the last few years, different types of mashups have
been defined: on the one hand, data mashups have the ability
to produce new information combining data from different
sources, and on the other hand, functional mashups are
composed by mashup components that can be assembled and
combined in order to build the final application.

The service-oriented architecture (SOA) is defined as „„a
set of components, which can be invoked, and whose
interface descriptions can be published and discovered‟‟ [3].
One implementation of SOA applications is made possible
through the realization of Web Services, which are
implemented in eXtended Markup Language (XML), and
described through the Web Services Description Language

(WSDL), while the simple object access protocol (SOAP) is
the main communication protocol adopted.

A mashup is a program that manipulates and composes
existing data sources or functionality to create a new piece of
data or service that can be plugged into a web application
[4]. SOA provides a solid foundation for mashup
development. However we argue that the underneath
technology that supports mashup applications requires
software engineers to locate and combine mashup sources,
which implies an increase in the complexity degree, and in
particular in the development costs of this type of
applications.

In order to solve these problems, we propose in this paper
a Model Driven Architecture (MDA) [5]. It simplifies
modeling, design, implementation, and integration of
applications by defining software mainly at the model level.
The primary goals of MDA are portability, interoperability,
and reusability through architectural separation of concerns
[6], making product development more cost efficient by
increasing automation in software development [7].

The objective of this paper is to propose a model-driven
architecture to develop mashup applications, and this task
has been achieved at the following levels: first, a new profile
that includes specialized concepts from the mashup domain
has been defined, and then, a transformation model generates
mashup applications from the UML profile. This paper is
organized as follows: first, Section II explains the motivation
and the background of this work. Then, a UML mashup
profile is proposed in Section III, and also an example is
presented. Next, Section IV describes the transformation
model to generate mashup applications from a UML design,
and finally, conclusions are clarified in Section V.

II. MOTIVATION AND RELATED WORKS

Two different taxonomies can be mentioned when
classifying mashups applications; the first one is focused on
the place the composition mechanism takes place [8], and the
other one studies the type of the combined elements [9].

 This classification brings us the motivation to propose a
novel architecture that captures the essence of both
alternatives. On the one hand, mashups can be composed at
server or client side, while on the other hand, the
composition can be focused on data or functional
components. As far as we know, this is a novel approach to
deal with mashup applications development.

246Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

A. Mashup background

Different tools have been proposed to build mashup
applications for the web. Dapper [10] is a drag and drop tool
that allows users to select contents in several web pages that
will be composed in order to generate a new representation.
Yahoo Pipes [11] is a composition tool to aggregate and
manipulate mashup content from the web. This tool provides
a visual editor to create pipes from different sources and
provides rules to compose the content. DERI [12] is inspired
by Yahoo's Pipes, and proposes an engine and graphical
environment for general web data transformations and
mashup. Serena Business Manager [13] contains a visual
workflow editor to define mashups and presents an online
marketplace where mashups can be exchanged. And finally,
IBM Mashups Center [14] is a mashup platform that
supports rapid assembly of dynamic web applications,
enabling the creation, sharing, and discovery of reusable
application building blocks that can be easily assembled into
new applications.

 Trends in the mashup community are currently working
in different areas, Meditskos et al. [15] proposes an approach
for developing mashups with semantic mashup discovery
capabilities has been proposed, and an extension of OWL-S
advertisements has been defined. A novel service oriented
architecture is presented in [16] which addresses reusability
and integration needs for building mashup applications,
identifying the essential architecture patterns for designing
mashups. A different work [17] approaches to represent
domain concepts at the mashup composition, and defines an
architecture to assist experts in the process of introducing
domain concepts in the composition mashup level. Another
interesting area [18] studies the privacy problem, which
deals with the dynamic data integration from different
mashup sources in the presence of privacy concerns, and
proposes a service-oriented architecture for privacy-
preserving data mashup.

B. MDA background

In the field of MDA, there is a consensus about the
benefits that this technology offers for software
development: a reduction of sensitivity to the inevitable
changes that affect a software system [19], a reduction of
cost and complexity [20], and an increase of abstraction [21].
An interesting analysis about the existing problems in the
field of web engineering and how they can be solved by
model-driven development approaches is presented in [22],
which identifies the problems encountered in the
development process of web applications such as their
dependence on the HTTP protocol, compatibility issues due
to the heterogeneity of web browsers, and the lack of
performance because of the increase in the latency degree

Different proposals extend web engineering methods for
developing web applications. Fraternali et al. [23] present a
survey of existing web engineering methods to develop this
type of applications. The Object-Oriented Hypermedia
Design Model (OOHDM) [24] uses abstraction and
composition mechanisms in an object-oriented framework to,
on one hand, allow a concise description of complex

information items, and on the other hand, allow the
specification of complex navigation patterns and interface
transformations. The RUX-Model [25] is a representational
model that offers a method for engineering the adaptation of
legacy model-based Web 1.0 applications to Web 2.0 UI
expectations. An extension of this model is proposed in [26]
where a model-driven approach to web application
development by combining the UML based Web
Engineering (UWE) with the RUX-Method is defined.

The combination of these two trends has been studied in
[27]. The article proposes a model-driven mashup
development (MDMD) as an approach to develop mashups
according to flexible framework (PLEF-Ext) for end-user. A
Service-Oriented Model Driven Architecture (ODSOMDA)
approach has also been proposed in [28], which involves
adding service oriented architecture (SOA) elements into a
model-driven architecture to facilitate the construction of
mashup applications.

III. BUILDING MASHUPS WITH A MDA APPROACH

MDA comprises of three main layers: a) the Computation
Independent Model (CIM) is the top layer and represents an
abstract model of the system, abstracting from technical
details, b) the Platform Independent Model (PIM) defines the
conceptual model based on visual diagrams, use-case
diagrams and metadata, and c) the Platform Specific Model
(PSM) that represents the system from a specific
implementation platform viewpoint. In order to achieve an
implementation of the system, the PIM must be transformed
into PSM, and with this aim, an automatic code generator
must guide this process. The most important advantage of
this approach is that PSMs can be automatic generated from
a PIM model according to a set of transformation rules.

This paper proposes a MDA approach to develop mashup
applications for the web. With this aim, a new UML profile
is proposed (Figure 2), and a set of a transformation rules has
been developed in order to generate mashup applications
according to the WCF framework [29].

A. Mashup profile

The main element of this profile is the <<Mashup
Application>> stereotype that represents a mashup
application, which includes the name and composition type
(client or server). A mashup application can be attached to a
web application, represented by the <<Web Application>>
stereotype. A mashup resource (<<Mashup resource>>)
specifies a data or software element that can be combined in
order to create new information or add new functionality.
Mashup resources are classified as an enterprise mashup
(<<Enterprise mashup>>) or data mashup (<<Data
Mashup>>). <<Mashup component>>, <<web API>> and
<<Widget>> stereotypes represent the different types of
enterprise mashups.

Data mashups can be categorized according to data
integration patterns: the <<Mashup Pipe>> stereotype
defines a set of pipes or filters that must be applied to the
information in order to obtain the final output.

247Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

Figure 1. UML mashup profile

The <<Mashup DataFederation>> stereotype specifies
different views of the same data, while the <<Mashup
Controller>> stereotype describes how the data is rendered.
The mapping between a mashup application and its sources
is specified by the <<Mapping>> stereotype.

Finally, services are referenced by the <<Web Service>>,
<<WSPort>> and <<WSOperation>> stereotypes according
to a previous proposal [30], but avoiding unnecessary
stereotypes in order to provide a more compact profile.

B. An illustrative scenario

In order to test the proposed profile, the following
scenario is suggested: an ecommerce web portal (Figure 3)
allows clients to buy products that can be offered by different
providers. Additionally, a set of tools are supported in order
to provide useful utilities (currency conversions, a calendar
tool and a shopping cart). A payment system is defined and
connections with bank payment services are also supplied.
Clients, providers and banks are connected with the
ecommerce portal using web services technology.

IV. MODEL TRANSFORMATIONS

One of the keys of MDA is the capacity of defining
transformations from higher-level models to platform
specific models guided by a set of transformation rules. With
this aim, a generation tool is proposed in this section. This
tool is based on Eclipse platform (Eclipse Juno version), and
different plugins have been used in order to support UML
development (Papyrus Project) and code generation (Acceleo
Project). A library has also been developed with the aim of
requesting elements from a UML design, and extract
information about the model.

The transformation process parses a UML model, next
identifies all the elements tagged with the new stereotypes
defined in the mashup profile, then extracts all the
information about them, and finally generates the specific
code according to the Web Component Framework (WCF).

248Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

Figure 2. Ecommerce web portal.

In order to perform the transformation, the following
definitions have been assumed.

TABLE I. DEFINITIONS

Definition 1
Let M be the model designed according to
the mashup profile

Definition 2
Let Cm be an element extracted from the
model.

Definition 3
Let As be an Association between two Cm
elements,.

Definition 4
Let End be a target element of an
Association As.

Definition 5
Let Ma be a model element tagged as a
<<Mashup Application>>.

Definition 6
Let WSP be a model element tagged as a
<<WSPort>>.

The set of rules proposed are classified according to the
type of element generated: web application, mashup and web
service.

1) Web Application rule
This rule searches each Cm in the model M, tagged as a

“Web Application”, looks for its associations and checks if a
Mashup application is attached. In this case a mashup
application is created.

Input: a UML model (M)
Output: generates the definition of a Web application as a

collection of mashup applications

1 for each Cm є Elements(M) do
2 if (getStereotype(Cm)=”Web Application”)
3 for each As є Associations(Cm) do
4 if (typeof(As)=”Aggregation”)
5 for each End є AssociationEnds(As) do
6 if (getStereotype(End)=”Mashup Application”)

249Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

7 out (“createMashupApplication”)
8 out (“ (“+End.getAttribute(“name”)+”,”)
9 out (End.getAttribute(“type”)+”)”)
10 generateMashupResources(End)
11 end if
12 end for
13 end for
14 end if
15 end for

2) Mashup rule
First, the rule checks every mashup resource attached to a

mashup application Ma. Next, according to the type a
specific mashup resource is generated (data or enterprise).

Name: generateMashupResources
Input: mashup Application (Ma)
Output: generates the definition of mashups resources.

1 for each As є Associations(Ma) do
2 if (typeof(As)=”Aggregation”)
3 for each End є AssociationEnds(As) do
4 if (End .isSubtypeof(”Mashup Resource”)
5 if (End .isSubtypeof(”Enterprise Mashup”)
6 out(CreateEnterpriseMashup+”(”)
7 else
8 if (End .isSubtypeof(”Data Mashup”)
9 out(CreateDataMashup+”(”)
10 end if
11 end if
12 out(End.getAttribute(“name”)+”,”)
13 out(End.getAttribute(“Composition Type”)+”,”)
14 out(End.getAttribute(“source”)+”)”)
15 out (“addsource(„“+Ma.getAttribute(“name”)+”‟,‟”+
 End.getAttribute(“name”)+”‟)”)
16 end if
17 end for
18 end if
19 end for

3) Web Services
The last elements considered in this transformation are

web services, which are represented using different
stereotypes (Web services, WSPort and WSOperation). The
transformation from these elements to the Web Services
Description Languag is guided by the following rules:

a) Header and definitions rule

The header and the definition part of the web service are
generated by this rule. With this aim, each element tagged
with the Web Service stereotype is located and every WSPort
element attached is extracted.

Input: UML model (M)
Output: generates the web service header and definition

1 for each Cm є Elements(M) do
2 if (getStereotype(Cm)=”Web Service”)
3 out(“<?xml version=‟1.0‟ encoding=‟UTF-8‟?>”)
4 out(“ <definitions name=‟”+Cm.getAttribute(“name”)
 +”Service‟>”)
5 for each As є Associations(Cm) do
6 if (typeof(As)=”Aggregation”)
7 for each End є AssociationEnds(As) do
8 if (getStereotype(End)=”WSPort”)
9 generateMessages(End)
10 out(“</definitions>”)

11 end if
12 end for
13 end if
14 end for
15 end if
16 end for

b) Messages rule

The set of request and response messages are extracted
from each WSOperation attached to a WSPort and the
WDSL message part is generated.

Name: generateMessages
Input: WSP is a “WsPort” element
Output: generates web service messages

1 for each As є Associations(WSP) do
3 if (typeof(As)=”Aggregation”)
4 for each End є AssociationEnds(As) do
5 if (getStereotype(End)= ”WSOperation”)
6 out(“<message name=”+End.getAttribute(“name”)+
 ”Request>”
7 for each Op є Operation do
8 out(Op.getAttribute(“name”)+”Request”)
9 for each P є Params(Op) do
10 if (P.direction=”in”)
11 out(“<part name=”+P.getAttibute(“name”)+
 ”type=xs:”+P.getAttribute.type+”'/>”
12 end if
13 end for
14 out(“</message>”)
12 out(Op.getAttribute(“name”)+”Response”)
13 for each P є Params(Op) do
14 if (P.direction=”out”)
15 out(“<part name=”+P.getAttibute(“name”)+
 ”type=xs:”+P.getAttribute.type+”'/>”
16 end if
17 end for
18 end for
19 end if
20 end for
21 end if
22 end for

c) Binding rule

This rule generates the binding part of the web service
and describes how the service is bound to a SOAP message
protocol.

Name: generateBinding
Input: Ws is a “WsPort” element
Output: generates web service binding

1 out(“<binding name=‟+Ws.getAttribute(“name”)+”Bind‟
 type =‟tns:”+Ws.getAttribute(“name”)+”Port‟>)
2 out “(<soap:binding style='document' transport='http://schemas.
 xmlsoap.org/soap/http'/>”)
2 for each As є Associations(End) do
3 if (typeof(As)=”Aggregation”)
4 for each End є AssociationEnds(As) do
5 if (getStereotype(End)= ”WSOperation”)
6 for each Op є Operation do
8 out <operation name=‟”+Op.name/]+”'>”
9 out(“<input><soap:body use=‟literal‟/></input>”)
10 out(“<output><soap:body use=‟literal‟/></input>”)
12 end for

250Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

13 end if
14 end for
15 end if
16 end for
17 out(“</binding”)
18 out(“<service name=”+Ws.getAttribute(“name”) +”Service‟>”)
19 out(“<port binding=‟tns:”+ Ws.getAttribute(“name”) +”Bind”)
20 out(“name=”+Ws.getAttribute(“name”) +”Port”)
21 out(</port></service>”)

V. CONCLUSIONS AND FUTURE WORKS

Mashup applications provide the capacity of creating new
elements by composing existing resources, and this is the
reason why they are being widely adopted in the web 2.0
community.

The presented work tries to enrich mashups with the
definition of a model-driven approach that provides new
advantages in the development process of this type of
applications. The main purpose of this proposal is making
mashup development more cost efficient by increasing
automation in software development. With this aim, the
following task has been performed: a new profile extends
UML in order to specify new concepts involved in a mashup
application, and a set of transformation rules have been
propose with the aim of guiding the transformation process.

Future works will try to study how to increase the
performance degree of our approach. With this aim, we will
try to incorporate prefetching techniques to download web
contents in advance.

REFERENCES

[1] J. Garrett. “Ajax: A new approach to web applications”,
http://www.adaptivepath.com/publications/essays/archives/000385.ph
p. [retrieved:December, 2012.

[2] L.D.Paulson, “Building rich web applications with Ajax”, Computer,
vol.38, no.10, 2005, pp. 14-17], doi: 10.1109/MC.2005.330.

[3] W3C, World Wide Web Consortium. http://www.w3c.org.
[retrieved:November, 2012]

[4] K. Stolee and S. Elbaum, “Refactoring pipe-like mashups for end-
user programmers”, 33rd International Conference on Software
Engineering (ICSE '11), 2011, pp. 81-90, doi:10.1145/1985793.
1985805.

[5] OMG. Model Driven Architecture, http://www.omg.org/mda
[retrieved:November, 2012]

[6] J Estefan, “Survey of Model-Based Systems Engineering (MBSE)
methodologies”,http://www.incose.org/productspubs/pdf/techdata/mtt
c/mbsemethodogy_survey_2008-0610_revb-jae2.pdf, [retrieved:
January, 2013]

[7] S. Teppola, P. Parviainen, and J.Takal, “Challenges in Deployment of
Model Driven Development”, Fourth International Conference on
Software Engineering Advances (ICSEA '09), 2009, pp.15-20, doi:
10.1109/ICSEA.2009.11.

[8] S. Aghaee and C Pautasso, “Mashup development with HTML5”, 3rd
and 4th International Workshop on Web APIs and Services Mashups.
article No. 10, 2010, doi:10.1145/1944999.1945009

[9] P Vrieze, L. Xu, A. Bouguettaya, J. Yang, and J. Chen, “Building
enterprise mashups”, Future Generation Computer Systems, vol. 27,
issue 5,2011, pp.637-642.

[10] Dapper: The Data Mapper. http://www.dapper.net/.
[retrieved:January, 2013]

[11] Yahoo Pipes. http://pipes.yahoo.com/pipes/. [retrieved:January, 2013]

[12] DERI Pipes. http://pipes.deri.org/. [retrieved:January, 2013]

[13] Serena Business Manager. http://www.serena.com/index.php/en/
products/sbm. [retrieved:January, 2013]

[14] IBM Mashup Center. http://www.ibm.com/developerworks/lotus/
products/mashups/. [retrieved:January, 2013]

[15] G. Meditskos and N. Bassiliades, “A combinatory framework of Web
2.0 mashup tools, OWL-S and UDDI”, Journal Expert Systems with
Applications, volume 38 Issue 6, 2011, pp. 6657-6668,
doi:10.1016/j.eswa.2010.11.072

[16] Y. Liu, X. Liang, L. Xu, M. Staples, and L.Zhu, “Composing
enterprise mashup components and services using architecture
integration patterns”. Journal of Systems and Software archive,
volume 84, issue 9, 2011, pp. 1436-1446,
doi:10.1016/j.jss.2011.01.030

[17] S. Soi and M. Baez, “Domain-specific Mashups: From All to All You
Need”, Proceedings of the 10th international conference on Current
trends in web engineering (ICWE'10), 2010, pp. 384-395.

[18] B.C.M. Fung, T. Trojer, P.C.K. Hung, L. Xiong, and K.Al-Hussaeni,
“Service-Oriented Architecture for High-Dimensional Private Data
Mashup”, IEEE Transactions on Services Computing, 2012, vol. 5,
no. 3, pp. 373-386, doi: 10.1109/TSC.2011.13.

[19] C. Atkinson and T. Kühne, “The role of metamodeling in MDA”.
International Workshop in Software Model Engineering, 2002.

[20] J. Mukerji and J. Miller. MDA Guide version 1.0.1,
http://www.omg.org/cgi-bin/doc?omg/2003-06-01, [retrieved:
December, 2012]

[21] G. Booch, A.W. Brown, S. Iyengar, J. Rumbaugh, and B Selic, “An
MDA manifesto”, MDA Journal., 2004. http://www.bptrends.com/
publicationfiles/05-04 COL IBM Manifest 20 -Frankel- 3.pdf.
[retrieved:January, 2013]

[22] R. Gitzel, A. Korthaus, and M. Schader, “Using established Web
Engineering knowledge in model-driven approaches”, Science of
Computer Programming, 2007, vol. 66, issue 2, pp. 105-124,
doi:10.1016/j.scico.2006.09.001.

[23] P. Fraternali, S. Comai, A. Bozzon, and G.T. Carughi, “Engineering
rich internet applications with a model-driven approach”, Journal
ACM Transactions on the Web (TWEB), 2010, vol. 4, issue 2,
doi:10.1145/1734200.1734204

[24] D. Schwabe, G. Rossi, and S.D.J. Barbosa, “Developing Hypermedia
Applications using OOHDM”, Seventh ACM conference on
Hypertext, 1996, pp. 116-128.

[25] M. Linaje, J.C. Preciado, and F. Sanchez, “Engineering Rich Internet
Application User Interfaces over Legacy Web Models”, Journal IEEE
Internet Computing archive, volume 11, issue 6, 2007, pp. 53-59.

[26] J.C. Preciado, M. Linaje, R. Morales, F.Sanchez, G. Zhang, C. Kroiβ,
and N. Koch, “Designing Rich Internet Applications Combining
UWE and RUX-Method”, Eighth International Conference on Web
Engineering, 2008, pp. 148-154, doi:10.1109/ICWE.2008.26.

[27] M.A. Chatti, M. Jarke, M. Specht, U. Schroeder, and D. Dahl,
“Model-Driven Mashup Personal Learning Environments”,
International Journal of Technology Enhanced Learning, volume 3,
issue 1, 2011, pp. 21-39, doi:10.1504/IJTEL.2011.039062.

[28] K .He, Wang, J. Wang, J.Liu, C. Wang, and H. Lu, “On-Demand
Service-Oriented MDA Approach for SaaS and Enterprise Mashup
Application Development”, International Conference on Cloud and
Service Computing (CSC), 2012, pp. 96–103.

[29] J.L Herrero, P. Carmona, and F. Lucio, ”Web services and web
components”. Seventh International Conference on Next Generation
Web Services Practices, 2011, pp. 164-170.

[30] D.Skogan, R. Groenmo, and I. Solheim, “Web Service Composition
in UML”, Eighth IEEE International of the Enterprise Distributed
Object Computing Conference, 2004, pp. 47-57.

251Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

