
Agile Model-Driven Modernization to the Service Cloud 
 

Iva Krasteva 
Rila Solutions EAD 

Acad. G. Bonchev str., bl. 27 
Sofia, Bulgaria 
ivak@rila.bg 

Stavros Stavru 
Faculty of Mathematics and 
Informatics, Sofia University 

5, James Boucher Blvd 
Sofia, Bulgaria 

stavross@fmi.uni-sofia.bg 

Sylvia Ilieva 
IICT-BAS 

Acad. G. Bonchev str., bl. 25A 
Sofia, Bulgaria 
Sylvia@acad.bg 

 
 
 

Abstract— Migration of legacy systems to more advanced 
technologies and platforms is a current issue for many 
software organizations. Model-Driven Modernization 
combined with Software as a Service delivery model is a very 
promising approach, which possesses a lot of advantages, 
including reduced costs, automation of migration activities and 
reuse of system functionality. However, a drawback of such an 
innovative modernization approach is that it lacks mature 
software process models to guide its adoption. Thus, a 
methodology for seamless execution of different migration and 
deployment activities is quite needed. On the other hand, agile 
development methods have been successfully adopted in 
various projects, which partly or thoroughly use the 
engineering and delivery models exploited in the 
modernization process. This paper presents how a particular 
methodology for Model-Driven Modernization with 
deployment to the Cloud is enriched with agile techniques to 
address different challenging issues. The extended agile 
methodology could be used by organizations which have 
already applied agile software development as well as by 
organizations that plan to introduce it in their work. 

Keywords- Cloud computing; Agile Methodology; Model-
driven Modernization; Software as a service 

I.  INTRODUCTION 

Cloud computing and Service-Oriented Architecture 
(SOA) have recently been recognized as very promising 
approaches which provide cost-efficient and reliable 
services. Migration to the Service Cloud paradigm implies 
transformation of legacy software systems to SOA with 
deployment in the Cloud. Nowadays, the popularity of the 
Software as a Service (SaaS) cloud model is growing fast. 
The SaaS model reduces the infrastructure costs for 
customers and offers flexible license payment schemas. 
Despite its numerous advantages, building a SaaS system 
from scratch to replace the outdated software of an 
organization might not be a reasonable investment. A 
modernization approach based on reusing and integrating the 
company’s legacy applications is a better solution.  

Model Driven Modernization is a recent approach, whose 
aim is to provide automation of most of the migration 
activities and reuse of legacy functionality. OMG’s 
Architecture Driven Modernization (ADM) provides support 
for MDM but is in its earliest stage. They envision a set of 
automated tools that can disassemble a legacy software 

system, transform the components in high-level models, 
reconfigure these models using the best-practices from 
Model Driven Architecture (MDA), and finally regenerate a 
modern system.  

REMICS (REuse and Migration of legacy systems to 
Interoperable Cloud Services) is an EU FP7 research project 
with the objective of supporting the modernization of legacy 
systems to service cloud by providing a model-driven 
methodology and tools. REMICS proposes to improve 
existing approaches and extend them when needed to 
provide a holistic view of software migration that covers the 
whole process with a methodology, tools, languages and 
transformations. The methodology developed in the 
REMICS project covers the whole life cycle of the migration 
process. It proposes a traditional sequential approach to 
software engineering.  

Agile methodologies, on the other hand, have been su 
ccessfully applied in various contexts, including the ones 

related to the REMICS project. Thus, the question of 
whether agile software development can benefit the 
modernization process is quite adequate and particularly 
interesting. The aim of the study presented in the paper is to 
propose and describe a particular agile extension of the 
general REMICS methodology. A 5-step approach is used to 
specify how the traditional methodology can be enriched 
with appropriate agile techniques. The new agile 
methodology could be used by organizations, which have 
already applied agile software development as well as by 
organizations that wish to introduce agile methods in their 
work.  

The rest of the paper is organized as follows. Section 2 
presents in more details the REMICS project and related 
technologies, and thus describes the context of the 
modernization methodology. A current state-of-the-art of 
agile adoption in areas related to REMICS is also included. 
Information on the general REMICS methodology is 
provided in Section 3. Section 4 describes the approach 
followed in the creation of the agile extension. In section 5, 
the scrum types that are defined in the new agile 
modernization methodology are presented.  Section 6 briefly 
describes how the applicability of the proposed agile 
REMICS methodology was studied. Finally, Section 7 
concludes the paper. 

1Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



II. BACKGROUND 

The present section covers the background on which the 
agile extension for a migration methodology is created. On 
one hand, it is the REMICS project, which outlines the 
specific context of the modernization approach. On the other 
hand, it is the available research on agile adoption in areas 
related to this particular modernization approach. 

A. The REMICS Project 

The REMICS project promotes a new development 
paradigm for migration of legacy systems to the service 
cloud platforms through innovative model-driven 
technologies. The model-driven approach followed in the 
project is taking advantage of OMG’s ADM (Architecture-
Driven Modernization [1]), KDM (Knowledge Discovery 
Metamodel [2]), SoaML (Service-oriented architecture 
Modeling Language [3]) and UML profiles. The baseline 
concept is the ADM by OMG. In this concept the 
modernization starts with the extraction of the architecture of 
the legacy application. Having this architectural model 
facilitates the analysis of the source system, the identification 
of the best ways for its modernization and the incorporation 
of MDE technologies for generating the target system. The 
project intends to significantly enhance this generic process 
by proposing a set of advanced technologies for architecture 
recovery and migration, including innovative technologies 
such as Model-Driven Interoperability and 
Models@Runtime. Model-Driven Interoperability is a rather 
new domain, which builds on top of long history on data and 
service interoperability. Semi-automated methods that assist 
users to handle interoperability issues between services are 
also addressed in REMICS.  

The REMICS project includes extending KDM and 
SoaML to cover concepts related to the migration to SOA 
and Cloud computing paradigms. Software as a Service 
(SaaS) is one of the delivery models of Cloud computing 
whose popularity and usage is growing rapidly in the recent 
years. The SaaS cloud model provides advantages for both 
software providers and users. The SaaS delivery model uses 
a multitenant architecture where a single application is 
delivered to millions of users through Internet browsers. The 
advantages offered for the SaaS end user is that installing 
software is avoided and complex software and hardware 
requirements can be rapidly fulfilled. In addition, end users 
do not require upfront licensing and can choose among 
different payment schemas. Organizations that offer software 
minimize their support costs and initial investments by 
outsourcing hardware and software provision and 
maintenance to the SaaS provider. The provider of SaaS 
software takes care of the security, availability and 
performance of the software because they are in charge of 
the deployment of the system. 

A drawback of such a Modernization approach that uses 
so many innovative technologies is that it lacks mature 
software process models to guide their adoption. Thus, a 
methodology for seamless integration and execution of 
different migration and deployment activities is quite needed. 
A report on the state of the art on Service Cloud migration 
methodologies [4] showed that while there are several 

methodologies for developing service-oriented systems, they 
are mostly based on developing systems from scratch and not 
using a legacy system as basis for identifying and 
implementing services. On the other side, in the context of 
REMICS project, migration tools and methods need to be 
integrated with model-based development methods. The 
migration to interoperable cloud infrastructure introduces 
some challenges that are not addressed in the current 
methodologies in a complete way. The state of the art report 
showed that for the existing cloud computing platforms and 
cloud deployment model there is no methodology that guides 
developers through the process of selecting technology and 
migration to cloud. Additionally, while state of the art in 
SOA is quite established and covered in literature, the cloud 
design patterns are more an ad-hoc knowledge that still has 
to be studied. Existing approaches and methods for 
transforming a legacy system into a cloud compatible system 
have some shortcomings in the way they treat 
interoperability, reliability, scalability, configurability or 
multi-tenancy. Therefore, a comprehensive process model is 
needed, which helps organizations improve their technical 
know-how required for successful migration of their 
software. 

B. Agile Adoption 

Agile development has been on the cutting edge of both 
software industry and research for a decade. By shortening 
time-to-market and responding to the changing requirements 
of the business, agile approaches are reasonable alternative 
to the traditional waterfall development methods. The two 
most popular and widely adopted agile methods through the 
development community are Scrum [7] and Extreme 
Programming (XP) [8]. While Scrum provides a framework 
for managing and organizing agile projects, XP includes 
practices that are more technologically oriented and supports 
different development activities such as programming, code 
integration and testing. The two methods, as well as a hybrid 
between them, are used in more than two thirds of the agile 
projects surveyed by VersionOne in 2011 [9]. 

Nowadays, agile methods and techniques are being 
widely adapted and successfully applied in many business 
and application domains, where they are combined with a 
variety of technologies and platforms, including Model-
Driven Development (MDD), Model-Driven Modernization 
(MDM), SOA and Cloud computing. The combination of 
MDD and agile software development (known as Agile 
Model-Driven Development (AMDD)), is the most broadly 
researched and used among the four technologies mentioned 
above. A review of existing AMDD methodologies is 
available by Matinnejad [10], Picek [11] and Mahé et al. 
[12]. Although there are many existing SOA methodologies, 
only few methodologies were found to be specifically 
concerned with incorporating agile software development. 
Some to mention here are: 

• the Agile Service-Oriented Process (ASOP) 
presented in [13]; 

• the Xplus framework process model proposed 
by Shin and Kim [14]; 

2Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



• the combination of Rational Unified Process 
(RUP) to exploit SOA and a detailed 
development life cycle based on Agile Unified 
Process (AUP) [15];  

• and the Continuous SCRUM [16]. 
The later uses a triple-sprint-overlap pattern and some 

additional best engineering practices in order to sustain a 
weekly release cycle of a SaaS and PaaS based software 
system. There are few methodologies, which combine agile 
software development with both MDD and SOA. The 
mScrum4SOSR is one such methodology, proposed by 
Chung et al [17]. The methodology extends Scrum with 
UML modeling and XP techniques in order to provide 
comprehensive service-oriented software reengineering 
process model. Another similar approach is the Model-
driven Rapid Development Architecture (SMRDA) - an 
iterative development approach which unifies SOA and 
MDD in order to enhance the efficiency of the development 
efforts and the reusability of the developed services [18]. 

Based on the conducted review we could claim that there 
is no agile methodology in the literature which is specifically 
concerned with model-driven modernization with 
deployment on the service cloud. However, agile methods as 
Scrum and XP have been examined, combined and 
successfully applied in areas, closely related to the REMICS 
project. 

III.  GENERAL REMICS M IGRATION METHODOLOGY 

The migration of software systems to cloud 
infrastructures can be viewed from two different perspectives 
- business and technology. The business dimension is 
focussed on the migration of the system to support the cloud 
business models and usually involves additional functional 
requirements in order to provide implementation of cloud 
related support activities such as billing and legalisation. The 
technology dimension is focussed on the migration of the 
system so it is able to run in the new cloud environment, 
taking advantage of the new technologies without adding too 
much additional functionality. It usually involves new non-
functional requirements over the legacy system, as well as 
few functional requirements. 

In general, REMICS migration methodology is focused 
mainly in the evolution of the technology model. There are 7 
activity areas defined in the REMICS methodology, which 
cover the full life cycle of a legacy system Modernization to 
the Cloud. Fig. 1 depicts the main activity areas. Tools and 
techniques in REMICS project support all but the one of the 
activity areas. Only the withdrawal does not receive special 
support. For the purpose of the study presented in this paper, 
a brief description of the activity areas with the composing 
activities is presented in the sections below. They are the 
basis on which agile extension will be specified. More 
detailed information of the methodology is available in [19]. 

 
Figure 1.  REMICS activity areas 

A. Requirements and Feasibility Activity Area 

In the requirements and feasibility activity area the 
migration requirements for the system are gathered and the 
main components of the solution and their implementation 
strategy are identified. The purpose is not an exhaustive 
description of all requirements of the source system, but the 
description of the requirements that will require development 
effort and will be used as a basis for the validation of the 
system. Feasibility analysis is needed since in a migrated 
system not all the parts are equally reusable. In some cases 
the best way to reuse a component may be to wrap it, in other 
cases to reengineer, or to replace it with an external one, or 
to implement it from scratch, etc.  

The main activities that are included in the requirements 
and feasibility activity area are the following: 

• Describe the system; 
• Apply techniques to evaluate feasibility; 
• Identify actors; 
• Identify additional requirements and specify new 

requirements in UML diagrams; 
• Establish validation criteria; and 
• Elaborate glossary. 

B. Recover Activity Area 

The purpose of the recover activity area is the recovery 
of the knowledge from those legacy components that during 
the feasibility analysis has been pointed as candidates to be 
reengineered. The use of recover methods and tools will 
provide the application model of the legacy system as well as 
information on the requirements and the testing procedures 
for the migrated code. The system knowledge is recovered in 
KDM format from which UML system models and 
requirements specification in Requirement Specification 
Language (RSL) are generated. The following activities are 
part of the recover activity area: 

• Collect the code; 
• Recover system knowledge; 
• Refine system knowledge; 
• Generate system model; 
• Generate system requirement; and 
• Recover application testing. 

C. Migrate Activity Area 

In the migrate activity area the target system is defined 
and implemented using the elements identified during the 
requirement and recover phases. This includes also the 
design and implementation of the components necessary for 
the SaaS application and the development of the service-
oriented architecture. The component SOA model is used to 
define the deployment model of the system. The deployment 
model contains the identification of the location of the 
different components distributed in the cloud. When defining 
this deployment model, it is also necessary to take into 
account possible constrains (organizational, legal, etc). 

The activities that are included in the migrate activity 
area are: 

• Complete definition of system requirement; 
• Definition of service architecture; 

 

 

3Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



• Definition of cloud architecture; 
• Implementation design; 
• Generate code stubs of the system; and 
• Complete the code. 

D. Validation Activity Area 

The purpose of the validation activity area is to define 
testing strategy to verify that the migrated system 
implements the requirements identified and that the 
components (including those not reengineered) and services 
work properly. This validation phase includes not only 
functional validation but what is more important, non-
functional validation, especially performance, reliability and 
security. In the case of cloud computing applications these 
three aspects must be stressed on. Testing procedures are 
defined depending on the specifics of the application and 
particular system requirements. 

The following activities are part of the validation activity 
area: 

• Define testing infrastructure; 
• Identify and refine requirements to be tested; 
• Generate acceptance testing; 
• Import models elements to be tested; 
• Define testing procedures; and 
• Implement testing strategy. 

E. Supervise Activity Area 

The supervise activity area provides elements to monitor 
and control the performance of the system when deployed in 
the Cloud and to modify that performance. A company can 
monitor constantly the performance of the application once it 
has been provisioned as a service, so it can be improved in 
performance, reliability and resources used. As well, the 
system can be supervised of possible degradations. 

Activities included in the supervision process are: 
• Identify monitoring procedures; 
• Implement monitoring procedures; 
• Monitor the performance of the system in the cloud; 
• Detect deviations; 
• Perform corrective actions; and 
• Monitor corrective actions. 

F. Interoperability Activity Area 

The interoperability activity area provides tools that 
solve interoperability problems with 3rd part providers or 
any external components and services. Interoperability is a 
crosscutting activity to the general methodology that deals 
with the interoperability issues that affect SaaS along the 
other activity areas. 

Activities for performing interoperability are the 
following:  

• Identify interoperability problems/scenarios; 
• Define interoperability related requirements; 
• Perform interoperability analysis; 
• Implement interoperability components ; and 
• Interoperability monitoring. 

IV.  AGILE EXTENSION TO THE MIGRATION 

METHODOLOGY 

The extension of the general REMICS migration 
methodology with agile techniques follows a 7-steps 
approach – identify, analyze, select, define, formalize, 
evaluate and adapt. The first 5 steps, in which an initial agile 
methodology is defined, are described in details in the 
following subsections. The applicability of the initial 
methodology is studied in the evaluation step and is 
presented in the following section. As a last step of the 
approach, further enhancements of the initial methodology 
are suggested based on the output of the evaluation step. The 
adaptation step is subject to future research.  

A. Identify and Analyze 

The identification and analysis of agile methods and 
techniques in the context of our study was conducted in two 
consecutive phases. During the first phase, the challenges of 
all related fields, incl. MDD, SOA, Cloud computing and 
Software modernization, were extracted, analyzed and 
synthesized through a systematic literature review [20]. In 
the second phase various agile techniques were evaluated 
through the Delphi method in terms of their potential to 
overcome the extracted challenges. 

The systematic review covered total of 84 articles, which 
were either describing the current state of research and 
practice in any of the above mentioned four related fields or 
were identifying and discussing the challenges these areas 
possess to both academia and industry. The full texts of these 
articles were thoroughly examined in order to extract all 
relevant challenges. The extracted challenges were further 
consolidated into total of 52 challenges and sorted into two 
categories – organizational and technical challenges. 
Organizational challenges included process-oriented and 
people-oriented challenges from all levels of the organization 
(e.g. competence acquisition, process reengineering, 
addressing external dependencies, etc.), while technical 
challenges included design, implementation, verification and 
deployment challenges, and thus were mostly product and 
technology-oriented. Among the most cited organizational 
challenges in the MDD field are the lack of mature tools, 
integrated development environments and off-the-shelf 
infrastructure, competence acquisition and reliance on high 
level models. Popular technical challenges for SOA 
applications are service design, addressing security, 
interoperability and other quality aspects and testing 
services. In the Cloud computing field, among the most cited 
challenges are trust, security and privacy, external 
dependencies and vendor lock-ins. Common technical 
challenges faced during software modernization are ensuring 
behavioral equivalence and extracting business and technical 
knowledge from legacy systems. A thorough analysis of the 
extracted challenges and their implication to agile software 
development could be found in our previous works [21-22]. 

During the second phase, various agile techniques were 
evaluated for their potential to address the challenges, 
extracted by the review process. These agile techniques were 
taken from Scrum and XP agile development methods. The 

4Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



methodology used to evaluate these techniques was the 
Delphi method. More specifically, the Pfeiffer’s three step 
process was followed [23]. During the recommendation step, 
a panel of experts (with an average of 9 years of both 
academic and industrial experience in agile software 
development) was asked to review the list of extracted 
challenges and recommend agile techniques based on the 
challenges they could address. In the evaluation step, a 
consolidated list of recommended agile techniques was sent 
to each expert to further evaluate the relevance (on a five-
point rating scale) of all techniques in regard to all extracted 
challenges. Finally, during the consensus phase, the 
consolidated list, together with the experts’ ratings was sent 
once again in order to discuss big differences in ratings and 
gain consensus. In result, a sorted list of recommended agile 
techniques was created based on the number of challenges 
they could address. This list is shown in Table 1. 

As seen from Table 1, the agile techniques with the 
highest rating were Small releases, Planning game and 
Whole team from XP, and Sprints, Cross-functional teams 
and Sprint planning meeting from Scrum. Among the 
arguments for this were receiving feedback quickly, 
increasing responsiveness to change, building trust and 
confidence, enhanced collaboration, clarification of team 
responsibilities and service ownership, early escalation of 
quality concerns, effective acquisition of competencies and 
expertise, early delivery of customer value, and many more 
[21-22]. Other agile techniques, which were also highly 
recommended by the experts, were Pair programming and 
Continuous integration from XP, and Product and Sprint 
backlogs. 

TABLE I.  EVALUATION OF AGILE TECHNIQUES BASED ON THE 
CHALLENGES THEY ARE EXPECTED TO ADDRESS 

Agile technique Number of  
addressed challenges 

Extreme programming (XP) 
Small releases 38 
Planning game 29 
Whole team 29 
Pair programming 26 
Continuous integration 23 
Test-driven development 21 
System metaphor 14 
Collective code ownership 14 
Refactoring 9 
Simple design 7 
Coding standards 6 

Scrum 
Sprint 38 
Cross-functional teams 35 
Sprint planning meeting 33 
Product backlog 26 
Sprint backlog 26 
Product owner 17 
Daily scrum 16 
Scrum master 13 
Scrum of scrums 11 
Sprint review meeting 11 
Sprint retrospective 7 
Sprint burn down chart 4 

B. Select 

During the selection step, a set of techniques to be 
included in the initial methodology is identified. As well, 
techniques that are a subject to modification are chosen. The 
selection of the initial set of techniques is guided by the 
principle of incremental methodology design [24], according 
to which easy to apply techniques are included in the 
beginning while more challenging techniques are added 
iteratively. The other two criteria, which are used to select 
agile techniques for the initial methodology, are taken from 
the context of the study. The first one is the rating of the 
agile technique from the sorted list created in the previous 
step. Some techniques were selected because they were 
suggested to improve the general REMICS methodology by 
the industry partners who have been involved in different 
project case studies. As a result, fourteen techniques out of 
twenty three are included in the initial agile methodology. 

C. Define 

During the define step, the new agile methodology is 
specified. As well, the techniques which are modified to suit 
the requirements of the migration process and the new ones 
are described. The agile REMICS methodology proposes a 
particular implementation of Scrum methodology for large 
projects. It is based on the so-called Type-C SCRUM [25] in 
which a number of integrated overlapping scrums are 
executed. The methodology has been adjusted for the 
characteristics of the REMICS project by defining a number 
of Modernization Scrum types. For each of these types, the 
main Scrum techniques have been modified in the following 
way: 

• Modernization sprints – a number of Sprint types 
with particular activities depending on REMICS 
activity areas; 

• Modernization product backlogs – each sprint type 
has a corresponding product backlog. The Product 
owner manages different Product backlog types; and 

• Modernization teams - different Scrum team types 
are associated with each Sprint type depending on 
the required skills for particular sprint type. Teams 
are self-organizing but with a certain degree of 
specialization (which is in contrast to general scrum 
teams) due to the diverse and not so common skills 
needed for activities in the Sprint types. The Scrum 
team types integrate the Whole team technique of XP 
as well. Teams are (preferably) collocated and a 
business expert or a customer is part of the team. 

In addition to the Scrum types, there are a couple of agile 
development techniques that have been adjusted for the 
extensively used model-driven engineering activities in the 
REMICS project: 

• Modeling by two - based on the pair programming 
technique of XP the modeling by two is done by two 
people with different roles who work simultaneously 
on one model in order to exchange, analyze and 
synthesize knowledge in models better, faster and 
more easily 

5Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



• Pair modeling - two analysts work together on a 
model; 

• Collective model ownership - created models are 
continuously integrated in a common code base; and 

• Continuous modeling - models are collectively 
owned by the whole team. 

To make the agile REMICS methodology more effective, 
a new technique called Shifting team member has been 
added to the set of agile techniques. A team member moves 
among teams in different sprint types. When a new sprint 
begins, (s)he shifts to another team where the team member 
plays the same or similar role. 

D. Formalize 

The methodology is formally specified using the Eclipse 
Process Framework (EPF). EPF [26] is an open source 
solution that implements the SPEM modelling language. 
SPEM (Software process engineering meta-model) [27] is a 
specification from the OMG that addresses the standardised 
definition of software development methodologies. Other 
tools can latterly automatically process such specifications 
for different purposes. The agile methodology is based on the 
general REMICS methodology so they are specified in 
different packages in which activities refer to each other. 

In addition to EPF, the agile REMICS methodology will 
be implemented in the language proposed in the OMG 
FACESEM RFP by the SEMAT working group [28]. Both 
options for specification of REMICS methodology will be 
compared and the end of the project will give the 
recommendations for using each one. 

V. SCRUM TYPES 

The section describes the five scrum types of the 
proposed initial agile REMICS methodology. To a great 
extend they conform to the activity areas of the general 
REMICS methodology. The interoperability activities are 
added to the related scrum types. Fig. 2 presents the basic 
components of the scrum types. The activities from the 
activity areas of the initial REMICS methodology are present 
in each scrum type. They are modified appropriately to 
introduce different agile techniques e.g. modelling by two 
technique is applied in refine system knowledge activity 
during the recovery scrum. A set of new activities to support 
agile techniques, such as sprint backlogs and sprint 
retrospective, are added in each scrum type. Activities that 
don’t support iterative execution in sprints and serve as 
preconditions for execution of other activities are gathered in 
the so called initiation or initialization activity. The initiation 
activity is executed just ones in the beginning of particular 
scrum, while the initialization activity might be performed 
several times in a scrum e.g. each time a new component is 
to be recovered or migrated.  

The presentation here outlines only the major activities of 
the respective sprint types and how the identified agile 
techniques are applied. A detailed information of the 
methodology with activity inputs and outputs, modernization 
team roles and support materials is available in a final 
REMICS project report [29]. The last subsection discusses 

possible life cycles of a Modernization project in which the 
five scrum types are executed. 

Figure 2.  Scrum type 

Each project scrum starts with Initiation project activity, 
which consists of four activities that are performed as 
sessions and meetings with the whole project team: 

• Goals of migration; 
• Describe the system; 
• Apply techniques to evaluate feasibility; 
• Identify actors and initial scrum teams; and 
• Prepare the project product backlog and prioritise 

components for implementation; 
The output of the activity is the project product backlog 

with prioritized components and implementation strategies. 

A. Requirements scrum 

The requirements scrum contains activities for new 
requirements identification and specification. As well, the 
scrum handles requirements that address interoperability 
issues. There are two main activities in the requirements 
scrum: 

• Requirements scrum initiation; and 
• Requirements sprints. 

The requirements scrum initiation activity is held in the 
beginning of the scrum and has two activities which are new 
with regard to the general REMICS methodology: 

• Prepare and demo product backlog for requirements 
scrum; and 

• Define general deployment model. 
Requirements sprints are one or more sprints executed 

after the initiation activity. Each requirements sprint starts 
with a planning meeting and ends with a retrospective. As 
well, it contains related activities from the general 
Requirements and Feasibility activity area and 
interoperability requirements identification and specification. 
The Modelling by two technique is applied for requirements 
identification and specification when an analyst and a 
business expert work together on new requirements 
specification using UML. 

B. Recovery scrum 

The recovery scrum contains activities for recovering of 
the system requirements from the existing code of the legacy 
application. There are two main activities in the recovery 
scrum: 

• Recovery initialization; and 
• Recovery sprints. 

 

6Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



The recovery initialization activity is held every time 
when the recovery of a particular component starts. The 
initialization contains three activities: 

• Collect the code; 
• Recover system knowledge; and 
• Prepare and demo product backlog for the 

component which is to be recovered. 
There are a number of recovery sprints that are carried 

after the recovery initialization. The sprints start with a sprint 
planning meeting. At the end of the sprints, a retrospective 
meeting and a demo are performed. The activities in the 
recovery sprints are executed iteratively and contain 
refinement of system knowledge, generation of system 
models and requirements in RSL and recovery of application 
testing. To support the iterative execution, the technique of 
continuous modelling and collective model ownership are 
applied. The system knowledge refinement and system 
modeling are performed together with a business expert and 
a developer.  

C. Migration scrum 

The migration scrum contains activities for development 
of all the system components depending on their 
implementation strategies – wrapped, recovered and new 
components. Migration starts when a specification of a 
component is ready- either of a new component or a 
recovered one.  

There are two main activities in the migration scrum: 
• Migration initialization; and 
• Migration sprints. 

The migration initialization activity is executed in the 
beginning of each new component that is to be migrated. 
Migration initialization contains three activities: 

• Prepare and demo product backlog for migration 
scrum; 

• Componentization of UML or RSL models; 
• Definition of overall cloud architecture. 

One or more migration sprints are executed after the 
initialization activity. Migration sprints contain the activities 
of the general REMICS migration activity area, 
interoperability analysis and interoperability components 
implementation. As during the migration there are a couple 
of activities, involving knowledge from various innovative 
and complex areas (e.g. definition of service and cloud 
architectures), a pairing with a team member technique is 
suggested. The common for all sprints planning and 
retrospective activities are also included in the migration 
sprints. Testing activities of an isolated part of the system is 
added in the migration sprint so that the demonstrated 
increment of the system is verified. 

D. Integration and Validation Scrum 

During the integration and validation scrum, the migrated 
parts of the system are integrated and validation activities of 
the new functionality are performed. Regression testing is 
also part of the validation activities. There are two main 
activities in the integration and validation scrum: 

• Integration and validation scrum initialization; and 

• Integration and validation sprints. 
The initialization activity is performed in the beginning 

of the integration and validation scrum and each time a part 
of a new component is migrated. Integration and validation 
scrum initialization contains three activities: 

• Define testing infrastructure; 
• Identify and refine requirements to be tested; and 
• Create and demo product backlog for the scrum. 

After the initialization activity, a number of integration 
and validation sprints for a particular component are 
executed. The activities from the general validation activity 
area are included in the integration and validation sprints. A 
new integration activity is added since the validation is 
performed incrementally.  

E. Control and Supervise Scrum 

The control and supervise scrum contains activities for 
monitoring of the deployed system. It starts when the first 
release of the system is deployed in the Cloud. There are two 
main activities in the control and supervise scrum: 

• Control and supervise initialization; and 
• Control and supervise sprint. 

The initialization activity is performed every time a new 
release is deployed since the monitoring procedures may 
vary from one release to another. Control and supervise 
initialization contains two activities: 

• Identify monitoring procedures; and 
• Prepare the control and supervise product backlog. 

After the initialization, there might be one or more sprints 
to monitor the running system, detect deviations and correct 
them. When a deviation is identified, it is added to the 
product backlog to be corrected in some of the following 
sprints. The control and supervise sprints contain the 
activities from the corresponding activity area in the general 
REMICS methodology as well as monitoring of 
interoperability. 

F. Life Cycle 

A possible life cycle of a modernization project in which 
the five scrum types are executed is shown on Figure 7. The 
scrums are overlapping and executed in parallel when 
possible. The main point is to have releases as soon as 
possible and to provide continuous and early feedback by a 
number of sprints. The figure shows one particular lifecycle, 
however, depending on the project size and staffing 
possibilities there might be different arrangements of the 
scrums and sprints. For example, the scrums might be 
executed successively instead of simultaneously as shown in 
the figure. As well, the sprints inside each scrum can be 
executed in parallel, if there are more than one teams of 
particular type dedicated to the project. 

There are forward relations between the scrums as well 
as backward relations e.g. if during a migration sprint new 
requirements emerge they will be part of some of the 
subsequent requirements sprints; problems found during the 
integration and validation sprint will be handled during the 
new migration sprints, etc. The project ends with a sprint of 
the control and supervise scrum. 

7Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



 
Figure 3.  Project life cycle with Modernization scrums 

VI. APPLICATION 

As part of the evaluation step, the applicability of the 
proposed agile REMICS methodology was studied in two 
ways. First, a questionnaire was sent to all of the four case 
study providers participating in the project. The four case 
studies differ in business domains and technologies used in 
their legacy systems. A representative of each case study was 
asked to answer questions on whether particular agile 
technique is applicable to his/her case study and to what 
extent. In addition, for each technique it was studied why it 
is not applicable and what problems it could address if 
applied. The information gathered in the questionnaire is 
supposed to give insight on characteristics of each project as 
well as specifics of the general modernization process that 
affect application of the agile REMICS methodology. All the 
responders has stated moderately or very familiar with both 
Scrum and XP methods so their judgment could be 
considered adequate. The overall results showed that most of 
the suggested agile techniques are applicable in the four case 
study projects. There were no major issues, considered by 
the case study providers, which could prevent the proposed 
agile techniques from applying in their projects.  

As a second way for evaluation of the methodology, it 
was applied in one of the case study projects. Based on the 
responses of the questionnaire of agile practices applicability 
and further interviews with the providers of the case study, a 
customized agile methodology was specified and deployed in 
the project. Since a pilot functionality of the legacy system 
was chosen for migration, there was only one team who 
executed all of the scrums. The agile REMICS methodology 
was applied for three months with two-week-long sprints. 
Currently, the results of the application are studied. 
Satisfaction of the applied techniques is surveyed and 
suggestions for improvements are gathered. Preliminary 
results showed that most of the agile techniques were 
successfully applied, but some adjustments were needed. 
Based on the feedback provided by case study provider the 
proposed agile methodology will be further improved.  

VII.  CONCLUSION 

Some of the benefits of using agile methods in software 
development projects are decreased time-to-market, 
minimized risk of project failure and growing confidence 
and satisfaction of project stakeholders. In the present years, 

the industry is facing urgent need for modernization of 
outdated software system. Along with that, the popularity of 
SaaS application is growing fast. The SaaS cloud model 
provides advantages for both software providers and users. 
By introducing agile approaches to the development of SaaS 
applications their numerous advantages could be beneficial 
for software organizations.   

In the current paper, an approach for extension of a 
particular methodology for model-driven migration of legacy 
systems to the Service Cloud is proposed. The steps of the 
suggested approach describe how agile practices and 
techniques have been identified, analyzed, selected, defined 
and evaluated to enrich the REMICS project methodology 
with appropriate techniques. The agile extension of the 
methodology further addresses challenges of the 
modernization process and provides support for 
organizations to move their legacy systems to SaaS 
applications following the agile development principles. The 
new methodology is evaluated in industry case studies in two 
ways. Firstly, a questionnaire of the applicability of agile 
practices was conducted with the providers of four case 
studies. Their expert opinion was considered to evaluate 
applicability of the methodology in different migration 
project settings. Secondly, the agile REMICS methodology 
was applied in one case study for three months. Currently, 
the results of the application are analyzed. Preliminary 
results showed that most of the agile techniques were 
successfully applied, but some adjustments need to be done. 
As a last step of the proposed approach for extension of 
REMICS modernisation methodology, the proposed agile 
methodology will be further improved based on the feedback 
provided by case study provider.  

ACKNOWLEDGMENT 

The research leading to these results has been developed 
in the context of the REMICS project (www.remics.eu) 
partly founded from the European Community's Seventh 
Framework Programme under grant agreement n° 257793. 
The authors wish to acknowledge the Commission for their 
support. We also wish to acknowledge our gratitude and 
appreciation to all the REMICS Project partners for their 
contribution during the development of various ideas and 
concepts presented in this paper. 

REFERENCES 

 
[1] ADM. OMG Architecture-Driven Modernization. Available: 

http://www.omgwiki.org/admtf/doku.php, [retrieved: 05, 
2013]  

[2] KDM. OMG ADM Knowledge Discovery Metamodel. 
Available: http://www.omg.org/spec/KDM/, [retrieved: 05, 
2013]  

[3] SoaML. OMG  Service-Oriented Architecture Modeling 
Language. Available: http://www.omg.org/spec/SoaML/ 
1.0.1/PDF/, [retrieved: 05, 2013]  

[4] REMICS Project deliverable: State of the art on 
modernization methodologies, methods and tools. Available: 
http://www.remics.eu/system/files/REMICS_D2.1_V1.0_Low
Resolution.pdf, [retrieved: 05, 2013]  

 

8Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



[5] S. Ambler, “Agile Software Development at Scale Balancing 
Agility and Formalism in Software Engineering.” vol. 5082, 
B. Meyer, et al., Eds., ed: Springer Berlin / Heidelberg, 2008, 
pp. 1-12. 

[6] S. W. Ambler, The Object Primer: Agile Model-Driven 
Development with UML 2.0: Cambridge University Press, 
2004. 

[7] K. Beck, Extreme Programming Explained: Embrace Change, 
Addison_Wesley Professional, 1999 

[8] K. Schwaber and M. Beedle, Agile Software Development 
with Scrum, Prentice Hall, 2002 

[9] VersionOne. (2011, State of Agile Development Survey 
Results. Available: http://www.versionone.com/ 
state_of_agile_development_survey/11/, [retrieved: 05, 2013]  

[10] R. Matinnejad, “Agile Model Driven Development: An 
Intelligent Compromise,” in Software Engineering Research, 
Management and Applications (SERA), 2011 9th 
International Conference on, 2011, pp. 197-202. 

[11] R. Picek, “Suitability of Modern Software Development 
Methodologies for Model Driven Development,” Journal of 
Information and Organizational Sciences, vol. 33, pp. 285-
295, 2009. 

[12] V. Mahé, B. Combemale, and J. Cadavid, “Crossing Model 
Driven Engineering and Agility: Preliminary Thought on 
Benefits and Challenges,” in 3rd Workshop on Model-Driven 
Tool & Process Integration, in conjunction with Sxth 
European Conference on Modelling Foundations and 
Applications, 2010, pp. 97-108. 

[13] A. Qumer and B. Henderson-Sellers, “ASOP: An Agile 
Service-Oriented Process,” Proc. Software Methodologies, 
Tools and Techniques 07, 2007, pp. 83-92. 

[14] S. W. Shin and Haeng Kon Kim, “A Framework for SOA-
Based Application on Agile of Small and Medium 
Enterprise,” in Computer and Information Science , Roger 
Lee and H. Kim. Eds., Springer Berlin Heidelberg, 2008, pp. 
107-120  

[15] I. Christou, S. Ponis and E. Palaiologou, “Using the Agile 
Unified Process in Banking,” IEEE Softw., vol. 27, 2010, pp. 
72-79. 

[16] P. Agarwal, “Continuous SCRUM: agile management of 
SAAS products,” Proc. of the 4th India Software Engineering 
Conference, Thiruvananthapuram, Kerala, India, 2011, pp. 
51-60 

[17] S. Chung, D. Won, S. Baeg and S. Park, “A Model-Driven 
Scrum Process for Service-Oriented Software Reengineering: 
mScrum4SOSR,” in The 2nd International Conference on 
Computer Science and its Applications (CSA 2009), Jeju 
Island, Korea, 2009, pp. 1-8. 

[18] B. Wang, C. Wen and J. Sheng, “A SOA based Model driven 
Rapid Development Architecture - SMRDA,” Proc. of the 2nd 
International Conference on Education Technology and 
Computer (ICETC 2010), Shanghai, China, 2010, pp. 421-425 

[19] REMICS. (2011, Project deliverable: REMICS Methodology. 
Available: 
http://www.remics.eu/system/files/REMICS_D2.2_V1.0.pdf, 
[retrieved: 05, 2013]  

[20] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and 
M. Khalil, “Lessons from applying the systematic literature 
review process within the software engineering domain,” J. 
Syst. Softw., vol. 80, 2007, pp. 571-583. 

[21] S. Stavru, I. Krasteva and S. Ilieva, “Challenges for Migrating 
to the Service Cloud Paradigm: An Agile Perspective,” Web 
Information Systems Engineering – WISE 2011 and 2012 
Workshops, Springer Berlin Heidelberg, 2012, pp 77-91. 

[22] S. Stavru, I. Krasteva and S. Ilieva., “Challenges of Model-
Driven Software Modernization: An Agile Perspective,” Proc.  
The 1st  International Conference on Model-Driven 
Engineering and Software Development (MODELSWARD 
2013), Barcelona, Spain, 2013. 

[23] J. Pfeiffer, New look at education: systems analysis in our 
schools and colleges: Odyssey Press, 1968. 

[24] K. Beck and C. Andres, Extreme Programming Explained: 
Embrace Change (2nd Edition): Addison-Wesley 
Professional, 2004. 

[25] J. Sutherland, “Future of Scrum: Parallel Pipelining of Sprints 
in Complex Projects,” presented at the Proceedings of the 
Agile Development Conference, 2005. 

[26] EPF. Eclipse Process Framework Project (EPF). Available: 
http://www.eclipse.org/epf/, [retrieved: 05, 2013]  

[27] SPEM. OMG Software Process Engineering Meta-model 2.0. 
Available: http://www.omg.org/spec/SPEM/2.0/PDF/, 
[retrieved: 05, 2013]  

[28] SEMAT working group, Available: http://semat.org/, 
[retrieved: 05, 2013]  

[29] REMICS. Project deliverable: REMICS Methodology with 
Agile Extension. Available: http://www.remics.eu/ 

publicdeliverables [retrieved: 05, 2013]  

 

9Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services


