
Enforcing Data Availability in Structured
Peer-to-Peer Storage Systems With Zero Replica

Migration
Mesaac Makpangou

REGAL Team
INRIA/LIP6 (UPMC)

Paris, France
Email: mesaac.makpangou@lip6.fr

Abstract—This paper presents a structured peer-to-peer stor-
age substrate that exploits notifications issued by the underlying
network maintenance layer to enforce data availability, while
avoiding both application-level replica tracking and unneeded
replica migrations. This system enforces a multiple keys repli-
cation approach. Each peer advertises its stored contents to a
set of watchers picked from the set of peers within this peer’s
neighborhood. When a peer departs from the overlay network,
its watchers initiate repairs of losses due to this departure.
Thanks to the location of watchers within each watched peer’s
neighborhood, on peer departure, one can reduce the overall
loss repair delay, and hence the probability of loosing for ever a
stored content. The analytical evaluation shows that the proposed
replica maintenance substrate generates far less overhead than
a leaf set based replica maintenance system. Furthermore, on
node arrivals, the overhead incurred by this proposal does not
depend on the size of stored contents. This makes this substrate
an interesting building block for peer-to-peer storage systems
destined to store large-size objects.

Index Terms—Peer-to-peer storage system, replica mainte-
nance, flexible replication, distributed algorithms.

I. INTRODUCTION

One challenge for a structured peer-to-peer storage system
is to efficiently enforce stored contents availability in the face
of node churn. One well known technique to address this
issue is data replication. Number of existing structured storage
systems enforce the leaf set (or successor) based replication
approach. Each data item is replicated at its replica set (i.e.,
the k closest nodes to its root node, where k is the replication
degree enforced by the system). In practice, upon each node
departure, a replica maintenance procedure is run to create
replicas that are lost due to this departure. Also when a node
joins the overlay, it cooperates with its peers to determine
replicas to migrate at the new coming node. While this solution
to maintain data availability is simple, the overhead due to
replica migrations increases with the number and the total
size of stored contents [1]. This could jeopardize the overall
performance of the system, especially if we consider the
replication of large-size objects.

To enforce replica availability while avoiding unneeded
replica migrations, one approach is to use multiple publication
keys and to let the storage system computes the suitable

number of storage keys, then uses them to place object replicas
within the storage overlay network. This approach requires
a means to efficiently track the availability of individual
replicas. One solution is to check periodically the availability
of each replica and to recreate a replica only when a replica
is really lost. Such an active tracking of replicas has two
drawbacks. Firstly, the loss repair delay is likely too high:
to limit the tracking cost (i.e, number of messages and
consumed bandwidth), one tends to enforce a large probe
period; unfortunately, the larger the probe period, the higher
the replica loss repair time and consequently the higher the
risk to lose forever a stored data [2], [3]. Secondly, the active
tracking doesn’t scale: as the number of replicas augments,
the tracking cost augments too; at some point, there will be
not enough resource left for useful work.

This paper presents a Peer-to-peer Watching System (Pws),
a replica maintenance substrate for structured storage utilities.
Pws relies on a distributed hash table (DHT) abstraction;
existing implementation of this abstraction as proposed in
[4]–[7]. Pws enforces the multiple publication key replication
approach. It associates with each storing node a watch set,
a subset of nodes located within this node’s neighborhood.
Each storing node advertises to its watchers (i.e., members
of its watch set) each object (i.e., replica or manager) that it
stores, together with the identifier of the group of managers
capable to handle this object’s loss. Whenever a watcher
detects that the node that it is watching departed (voluntarily
or involuntarily) from the storage overlay network, it notifies
manager groups of objects stored at that node to repair their
losses. Pws is layered on top of an underlying network overlay
that provides the common application programming interface
specified in [8]. In particular, Pws assumes that the underlying
network management system notifies each node whenever an
event (i.e., node departure or arrival) that impacts this node’s
neighborhood occurs. Pws exploits these already existing
notifications to track replica availability and to ensure that each
node’s watch set members are within this node neighborhood.
Thanks to both the location of watchers within each node’s
neighborhood and notifications of changes in the neighborhood
by the underlying network management layer, Pws detects

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

node departure (and hence stored contents loss) with (almost)
none delay. This contributes to reduce the replica repair time
which is a key metric that impacts the data availability in
peer-to-peer storage systems [2].

The contribution of this paper is twofold. Firstly, a replica
maintenance substrate that permits to build structured peer-
to-peer storage systems that enforce data availability without
incurring the cost of unneeded creations of replicas and of a
periodic replica tracking mechanism, while enabling the detec-
tion of replica loss with almost no delay. Secondly, a flexible
replication model that separates replication concerns: number
of replicas, replica loss repair strategy, replica placement,
replica watching. Applications control the replication scheme
and the replica repair strategy, while the system is responsible
of locating and watching alive replicas. This model permits
providers to adapt the replica maintenance strategy, and hence
the quality of service offered to end-users, on a per object
basis. A detailed description of the main algorithms, together
with the evaluation of the system overhead are provided.

The rest of the document is organized as follows. Section II
presents related work, while Section III gives an overview of
the Pws system. Then Section IV details the main algorithms
and protocols of Pws. Section V evaluates Pws cost and
compares it to a basic leaf set-based replica maintenance.
Finally, Section VI draws some concluding remarks.

II. RELATED WORK

Several neighborhood-based replication algorithms have
been proposed to ensure data availability in structured peer-
to-peer storage systems. For these systems, each data is stored
at its root node and at a subset of neighbors. For instance, in
PAST [9], a large-scale persistent storage utility using Pastry
[6], the replicas of a file are stored in the k nodes that
are numerically closest to the file identifier, where k is the
replication degree to enforce [10]. One main advantage of the
neighborhood-based replication is its capacity to efficiently
tolerate node failure. When a node fails, a node in the
neighborhood of the failed node is automatically promoted the
responsible of data that were stored at that node and will be
the target of lookup requests. While this solution to maintain
data availability is simple and transparent to applications,
the overhead incurred to create new replicas on replica set
changes is unacceptable for storage systems that experience
high churn. RelaxDHT [11] proposes to relax the replica
placement constraint such as to avoid creating replicas when
this is not mandatory to preserve data availability. For each
stored object, replicas can be anywhere in the leaf-set (i.e, not
necessary at the k closest nodes to the root node); however, the
root node maintains meta-data describing its replica set. The
root node periodically, sends messages to the replica set peers
so that they keep storing their replicas. While this relaxation
constitutes a real improvement, it still incurs unneeded replica
creations when a member of a replica-set is put out of the
root node’s neighborhood, following node joins. Pws extends
this relaxation and enforces a complete separation of a number
of concerns that are often tightly coupled: replica placement,

replica location, and replica maintenance. Thanks to this
separation, Pws proposes a scalable way to track replicas of
each object scattered over the network, together with a flexible
replication management that permits to adapt the replication
strategy (number of replicas, placements) according to the
quality of service required by the object provider.

A. Ghdsi et al. [12] propose a replication scheme called
symmetric replication. Each identifier is associated with k
equivalent identifiers, where k is the suitable replication de-
gree. That is, if N is the set of identifiers, N is partitioned
into N/k classes. Each object is replicated at the nodes whose
identifiers are equivalent to the root node’s identifier. To
preserve this invariant, when a new node joins the system,
it cooperates with members of its class to obtain the list of
objects to replicate. To access an object, one addresses the
lookup request to any peer that stores the object replica, that
is any node that belongs to the same class as the object root
node.

Total Recall [2] is a peer-to-peer storage system that im-
plements data availability as a first class storage property.
It provides a means to characterize host availability. Total
Recall proposes an architecture that permits to adapt the
redundancy mechanism in function of the host availability
characteristics. In practice, the system continuously monitors
its constituent hosts, then derives the average host availability.
Given a host availability level and a specified availability
target, Total Recall provides insights on how to determine
the redundancy degree that ensures with high probability that
the data remains available. Total Recall permits to adapt the
redundancy mechanism to the specifics of data and/or of the
hosting infrastructure. Unlike Recall, Pws focuses only on
ensuring replica availability.

III. SYSTEM OVERVIEW

From the user point of view, Pws is a DHT-based storage
system. Each replicated object is associated with a key that
designates the group of replicas of that object. From the
system point of view, Pws implements a flexible replicated
object model, a multiple publication key replication approach
and a neighborhood-based tracking of replica availability. It
can serve as a replica maintenance substrate for peer-to-peer
storage utilities destined to serve large size objects. An effort
to develop such a system is presented in [13].

A. Flexible Replicated Object Model

Each object is associated with a replication contract that
controls mainly the number of replicas to create and the replica
loss repair strategy. A replication contract is enforced thanks to
the cooperation of a group of managers. There is one manager
group per replicated object.

Overall, within Pws, a replicated object is represented by
two sets: R, the set of object replicas; and M , the set of
replication managers that cooperate to enforce the replication
contract associated with this object. Both object replicas and
their associated replication managers are stored within the
underlying storage overlay network.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

The group of managers controlling a replicated object, as a
whole, has the responsibility to maintain the suitable number
of object replicas and of replication managers. These numbers
may vary from one replicated object to another. It is worth
noting that, for a given replicated object, its managers repair
both object replica and manager loss.

B. Replica Placement

To replicate an object, Pws proceeds in three steps. Firstly,
it determines the number of replicas to create and the number
of managers that will be in charge of managing this replicated
object, then attaches one distinguished local identifier to each
replica and to each manager. Note that these decisions are
guided by the replication contract associated with the object
provider. A basic replication contract simply indicates the
minimum number of replicas and of managers that the system
has to maintain alive.

Secondly, Pws computes a distinguished key for each man-
ager, then uses the computed key to place the corresponding
manager. Upon the completion of each manager’s installation,
Pws notifies its identifier and its current location to the group
of managers controlling the same replicated object.

Thirdly, once all managers of an object are placed, Pws
places the object replicas. Again, for each replica, Pws com-
putes a distinguished key, then uses it to place this replica.
Once a replica is stored, Pws notifies its current location to
managers controlling this replicated object.

Overall, upon the completion of the replication procedure,
the suitable number of replicas and of managers are stored
within the storage overlay network. Each manager of the new
replicated object is aware of the current locations of all object
replicas and of all managers.

Pws enforces final replica placements. That is, once a replica
or a manger is placed at one node at the replication time, it
will remain stored there as long as that node remains alive,
regardless arrivals or departures of other storing nodes.

C. Neighborhood-based Peer’s Availability Monitoring

To maintain the availability of a replicated object, Pws has
to ensure that at anytime at least one replication manager and
one replica remain available. Pws relies on watchers within
each storing node’s neighborhood to track the availability of
both replicas and mangers stored at each storing node.

In practice, Pws associates with each storing node a set
of nodes located within this node’s neighborhood, called its
watch set. Pws guarantees that, at each time, members of a
node’s watch set are all within this node neighborhood. This
guarantees that when a node fails, its watchers are promptly
informed by the network maintenance layer.

Each storing node advertises its contents to its watchers. An
replica advertisement carries in particular the replica identifier
together with the manager group identifier of the concerned
replicated object. Thanks to these advertisements, a watcher
can determine the contents lost when it is informed that a
node that it monitors departed from the overlay network and

can subsequently notify each loss to managers in charge of
repairing this loss.

Overall, the neighborhood-based peer’s availability moni-
toring permits to detect replica loss and to request its repair
with no delay. This contributes to reduce the replica repair
time which is a key metric that impacts data availability in a
peer-to-peer storage system [2].

IV. PEER WATCHING SYSTEM

The primary role of the peer watching system (Pws) is
to maintain replica availability in presence of node churn.
The key idea is to avoid replica migrations while enabling
to detect replicas’ loss with no delay and without paying for
active replica tracking. For that, each storing node is associated
with a set of nodes located within its neighborhood, called
its watch set. Whenever a storing node leaves (voluntarily or
involuntarily) the overlay network, its watchers repair its loss
by notifying its departure to managers that control its stored
contents.

A. Watch Set Initialization

A Pws node creates and initializes its watch set whenever
a replica is first stored at this node since the last re-start. This
is done in three steps.

Firstly, at the storing node, Pws requests the list of the
node’s replica set, thanks to an invocation to the primitive
replicaSet() provided by the underlying KBR layer [8]. Once
the replica set is retrieved, Pws selects at most maxW
elements to act as watchers of this storing node, where
maxW is a system configuration parameter, then sends a
watch request message to each selected neighbor (see Function
createWatchSet() of Figure 1). This message carries the
identifier of the node to watch (i.e., the requester), the current
value of the requester’s localTime, and the set of selected
watchers.

Secondly, at each selected watcher’s node, upon the recep-
tion of a request to watch, Pws checks whether the local node
has been watching this requester in the past (see Function
onReceiveRequestToWatch() of Figure 1). If the re-
ceiver holds none information, it creates a new watched node
descriptor, passing to the constructor the information contained
in the watch request message. If however the receiver node
does have a descriptor representing the requester within its
watchedNodes structure, it updates that descriptor. Note
that, this could happen if the receiver was a member of
the requester’s watch set, then at some point was pushed
out the requester’s neighborhood. Upon the completion of
the treatment of the request to watch a server, the receiver
acknowledged the highest timestamps received so far.

Finally, at the requester storing node, upon the reception
of a response from each candidate watcher, Pws updates
the structure that describes the corresponding watcher. In
particular, for each watcher which is aware of replicas stored
by this replica server, it registers the timestamps of the most
recent received advertisement.

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

B. Watch Set Maintenance Protocol

The objective of the watch set maintenance protocol is to
make sure that for each storing node, there always exists at
least one watcher within this storing node’s neighborhood.
Though initially each watcher is peaked from the neighbor-
hood of the storing node that it is watching, arrivals of new
nodes can push it out this neighborhood. Also, watchers can
leave (voluntarily or involuntarily) the overlay network.

Function onJoinOrLeave() of Figure 1 sketches the
watch set maintenance procedure. The watch set maintenance
procedure exploits update upcalls from the underlying overlay
network maintenance facility. Precisely, when a change occurs
in the local node neighborhood, an update upcall is issued to
this node, passing it the identifier of the node that departed
or joined [8]. The Pws provided update() then invokes the
watch set maintenance procedure which behaves as follows.
Firstly, Pws retrieves the list of neighbors of the local node
then computes, w, the number of alive watchers that are still
in the local node’s neighborhood. If w ≤ wThreshold, Pws
selects maxW −w neighbors that are not currently watching
the local node and adds them to the local node’s watch set.
Secondly, Pws notifies the current watch set membership to
watch set members.

C. Advertisement Protocol

The objective of this protocol is to make sure that, whenever
a storing node leaves the storage overlay network, its watchers
are aware of replicas stored there and of managers that can
repair their losses. The problem arises from the fact that the
contents of each storing node change over time: new replicas
can be added and old replica can be deleted. The challenge is
to conciliate conflicting requirements: maintaining the network
bandwidth consumption as low as possible while ensuring that
in case of the departure of a storing node, that node’s watchers
have an accurate list of replicas that are lost.

Periodically and after each reconfiguration of the watch set
of a node, Pws requests the watching service to advertise the
local node’s contents to its watch set, thanks to the execution
of Function onRequestToAdvertise()of Figure 2 that
permits to advertise recently stored contents to members of
the local node’s watch set. An advertisement message contains
mainly : the node identifier, the current local time, and the
descriptors of replicas stored since the most recent advertise-
ment that has been already acknowledged by all watchers.
Each advertised replica descriptor comprises this replica local
identifier, the group identifier of its managers, and its storage
time.

Function onAdvertisementDelivery() of Figure 2
sketches actions performed by each watcher upon the reception
of an advertisement. Firstly, it updates accordingly its view of
the watched node. In particular, each watcher registers the de-
scriptors of replicas that it was not yet aware of; it also updates
the most recent timestamps received from the current sender.
Then, upon the completion of its treatment, it acknowledges
the reception and the treatment of the advertisement.

// Data structures maintained by each PWS node
thisNode; // Reference to the local node
watchSet; // Set of watchers of this node
wThreshold; // Minimum number of watchers per node
maxW; // Maximum number of watchers per node.
cts; // Current timestamps of the local storing node.
watchedNodes; // PWS nodes watched by this node

function createWatchSet()
Node[] replicaSet = thisNode.replicaSet();
if replicaSet.isEmpty() then

return 0;
end if
for i = 1 to i = maxW do

watcher = new Watcher(replicaSet[i]);
watchSet.add(watcher);

end for
cts = initTimestamp();
notifyWatchers();
return watchSet.size();
end function

function notifyWatchers()
watchers = watchSet.getWatchers();
req = new RequestToWatch(thisNode.id, watchers , cts);
for all w ∈ watchers do

route(w.getNodeId(), req, null);
end for
nbResponses = 0;
while nbResponses < watchers.size() do

waitNextResponse2RequestToWatch();
r = getNextResponse2RequestToWatch();
watchSet.updateLastRcvTS(r.watcher, r.lastRcvTS);
nbResponses++;

end while
end function

function onReceiveRequestToWatch(req)
n = req.requester;
if (watchedNodes == ∅)||(n /∈ watchedNodes) then

watchedNode = new WatchedNodeDesc(n)
watchedNodes.add(watchedNode);

end if
watchedNodes.updateInfo(n, req);
lastRcvTS = watchedNodes.getLastRcvTS(n);
r = new Response2RequestToWatch(thiNode.id, lastRcvTS);
send(n, r);
end function

function onNeighborJoinLeaveNotification()
Node[] neighbors = thisNode.neighborSet();
currentWatchers = watchSet.getWatchers();
for all w ∈ currentWatchers do

if w /∈ neighbors then
watchSet.remove(w);
sz = watchSet.size();

end if
end for
if (sz > wThreshold) then

return
end if
replicaSet = thisNode.replicaSet();
while ((0 < i < maxW) && (sz < maxW)) do

if (replicaSet[i] /∈ watchSet) then
watchSet.add(replicaSet[i]);
sz++;

end if
i++;

end while
notifyWatchers();
end function

Fig. 1. WatchSet membership maintenance

At the storing node side, upon the reception of a response
from a watcher, Pws updates the corresponding state maintains
within the watchSet data structure.

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

D. Replica Loss Detection and Notification

Given the set of watchers of a node, we define the primary
watcher for this node to be the watcher with the smallest node
identifier, bigger or equal to this node’s identifier. When a node
detects the departure of a storing node that it is watching,
it first determines whether it is the primary or a secondary
watcher of this storing node. As watch sets change over time
and since changes are not notified atomically to watch sets’
members, the watch set membership view can differ from
one member to another. Hence, two distinct watchers can
decide different primary watchers. This will result in more
notifications than necessary.

If a watcher decides to be the primary watcher, it notifies
the loss of each advertised replica to the advertised managers.
Otherwise, it sends a request to participate to notifications to
the watcher that it considers to be the primary. Such a request
contains in particular the identifier of the node that has failed.

Upon the reception of a request to participate to notifi-
cations, the (presumably primary) watcher checks if it has
already detected the notified departure and if it has decided
to be a primary watcher of the failed node. If both conditions
are not satisfied, it promotes itself a primary watcher for the
departed node, then acts accordingly. Once notifications have
been sent to suitable managers, it sends back a response to
the requesting secondary watcher. This response contains the
timestamps of the most recent replica advertised to it by the
failed storing node.

Upon the reception of a response from a primary watcher,
a secondary watcher checks it it were advertised replicas that
its primary is missing. If any, it notifies their loss to their
advertised managers. If however a secondary watcher receives
none response to its request to participate to notifications, after
some delay, it promotes itself a primary and acts accordingly.

Regardless which watcher (primary or secondary) does it,
a replica loss notification contains the lost replica’s identifier,
its location, and its creation timestamps.

E. Replica Maintenance Protocols

Pws ensures data replica availability thanks to the cooper-
ation between watchers in the neighborhood of storing nodes
and managers of replicated objects, also replicated towards
the overlay network. Watchers are informed with no delay
of replica or manager losses, thanks to update upcalls issued
by the overlay network maintenance layer. Once informed,
watchers cooperate with one another to notify appropriate
managers. Managers, in turn, guarantee that at anytime, at
least one data replica and one manager remain available.

Pws balances the handling of replica losses among managers
controlling each replicated data. In practice, the loss of a
replica (or manager) is handled by the manager with the
smallest local identifier among managers that remain alive,
equal to or greater than the lost replica’s local identifier. Each
manager maintains the list of its peers that are still alive, and
the list of outstanding repair requests.

Pws enforces two separate replica maintenance protocols:
one for replication managers and one for object replicas.

// Additional structure maintained by each PWS node
storedReplicas; // Set of descriptors of replicas stored locally

function onRequestToAdvertise()
Timestamps lbackts = watchSet.computeLowerBoundAcknowledgedTS();
if lbackts < cts then

adv = new Advertisement(thisNode.id, cts);
for all r ∈ storedReplicas do

if (r.storatgeT ime > lbackts) then
adv.addReplica(r.id, r.manager, r.storageTime);

end if
end for
for all w ∈ watchSet do

route(w.getNodeId(), adv, null);
end for

end if
end function

function onAdvertisementDelivery(adv)
TimeStamp lastRcvTs = watchedNodes[adv.notifier].lastRcvTs;
if (adv.cts < lastRcvTs) then

return lastRcvTs
end if
for all replica ∈ adv do

if (replica.storageT ime > lastRcvTs) then
watchedNodes[adv.notifier].registerReplica(replica);

end if
end for

Fig. 2. Replica advertisement related procedures

1) Manager Maintenance Protocol: When a manager is
notified the loss of another manager controlling the same repli-
cated data, firstly, it determines the identifier of the primary
manager that will lead the reparation. This is a symmetric
election process that exploits the list of alive peers maintained
by each manager.

Secondly, it marks the lost manager as unavailable and adds
the corresponding manager repair request descriptor within the
local list of outstanding repair requests.

Thirdly, the manager that leads this reparation, allocates a
local identifier for a new manager, computes the key knew that
identifies this new manager, then routes a request to deploy a
manager with key knew towards the overlay network of storage
nodes. This request contains the list of existing replicas and
managers. Upon its installation, the new manager notifies its
arrival to existing managers controlling the same replicated
object.

Upon the notification of the arrival of the new manager
in replacement of a failed one, each manager removes the
corresponding repair request from the list of outstanding
requests to repair, then adds the new manager within the list
of alive managers.

Finally, once the reparation is terminated, one re-examines
the list of outstanding requests and re-processes any outstand-
ing request for which the lost manager was the leader.

2) Data Replica Maintenance Protocol: When a manager is
notified the loss of a data replica, it first adds the corresponding
replica repair request within the list of outstanding repair
requests. Then, this manager checks whether it is the leader
for this replica loss?

The manager responsible of the lost replica allocates a
new local replica identifier, computes a new replica key, then
routes the request to create a replica corresponding to this
key towards the overlay network of storage. To create a new

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

replica a node, one can simply get a copy of an existing replica.
Once the new replica is created, Pws notifies its location to
each manager in charge of that replicated data.

Upon the reception of the new replica location, each man-
ager updates its list of replica locations, then removes the
corresponding request to repair.

V. ANALYTICAL EVALUATION

The objective is to compare the cost incurred by Pws with
the one incurred by a basic leaf set-based replica maintenance
system (BLS) to enforce replica availability in presence of
node churn. We consider two metrics: the number of mes-
sages exchanged over the network and the network bandwidth
consumed to enforce data availability. We consider a storage
overlay that has already reached its equilibrium. We restrict
the problem to the one of enforcing the availability of a set of
already replicated objects. That is, none request to replicate a
new object is issued any more.

The number of watchers enforced by Pws for each storing
node is equal to the replication degree for both Pws and the
leaf-set based replica maintenance system. Consequently, Pws
maintains as many object replicas as replication managers per
replicated object. Furthermore, we assume that Pws spreads
out replicas and managers of each replicated object over
distinct storing nodes.

Let consider the following notations: ω, the replication
degree; γ the average total number of replicas (and hence of
managers) stored at each node; µ, the average size of each
object replica; and η the size of meta data maintained by a
manager. Finally, let λ = max(η, τ1, τ2, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5),
where: τ1 is the size of the descriptor of a watcher; τ2, the
size of the descriptor of a replica as perceived by a watcher;
ϕ1, the size of the response returned by a watcher on the
reception of new membership list; ϕ2, the size of the response
returned by a watcher on the reception of an advertisement; ϕ3,
the size of the request to participate to notifications of replica
losses; ϕ4, the size of the response to a request to participate
to notifications; ϕ5, the size of each replica loss notification.
Note that these parameters are implementation-dependent.

A. Overhead on New Node Arrival

a) Pws Cost: When a new node joins the overlay net-
work, this arrival impacts the watch set membership of the
ω closest neighbors of the new node. Hence, in the worse
case Pws runs a watch set maintenance procedure on each of
the ω closest neighbors of the new node. For each concerned
neighbor, Pws constitutes a watch set membership, then this
new watch set to its members. This amounts to ω update
requests (each request carries the new watch set membership),
plus the same number of responses. In addition, on each watch
set update, the watched node advertises its stored contents to
its new watchers. With our assumption, at worse, there is one
new watcher for each of the ω closest neighbors.

If t4joinpws (resp. bc4joinpws) denotes the number of
network messages (resp. number of bytes) transmitted over

the network by Pws on each node arrival to enforce data
availability, the following equations hold.

t4joinpws ≤ 2ω(ω + 1) (1)

bc4joinpws ≤ λ(ω3 + ω2 + ω + γ) (2)

b) BLS Cost: With a basic leaf set-based replica main-
tenance, whenever a new node joins the overlay, it cooperates
with its ω closest neighbors to determine the objects to
replicate. Firstly, each of the ω closest neighbors of the
new node computes the list of object identifiers that the
new node should replicate, then sends this list to the new
node. Each list contains in average γ/ω object identifiers.
Later on, the new node will request each of its neighbors
to send it each object that it should replicate. Once the new
node has complete replica migrations, it informs each of its
neighbors. If t4joinbls (resp. bc4joinbls) denotes the traffic
(resp. bandwidth consumed) on a node arrival by a leaf set-
based replica maintenance system, the following equations
hold:

t4joinbls ≥ ω + γ (3)

bc4joinbls ≥ γµ (4)

c) Comparison: From [1] and [3], we observe that on
node arrival, Pws will generate less traffic BLS provided that
γ > 2ω2+ω. With respect to network bandwidth consumption,
let rj denote the ratio bc4joinpws/bc4joinbls; from [2] and
[4], we derive rj ≤ λµ−1[1 + (ω3 + ω2 + ω)γ−1]. This
ratio indicates that the larger µ compared to λ, the better
Pws compared to BLS. To illustrate, consider a prototype
implementation that enforces λ ≤ 103 and let ω = 4 and
γ = 50. If µ is equal to 106, then on network arrival BLS
consumes 373 times more network bandwidth than Pws. It is
worth noting that in [4] we consider only the bandwidth due
to replica migrations.

B. Overhead on Node Departure

d) Pws Cost: When a node departs from the underlying
network overlay, the underlying network management layer
notifies this departure to nodes in its neighborhood, and hence
to each member of its watch set. Upon a departure, in addition
of the overhead (equivalent to the one incurred in case of a
new node arrival) due to the watch set maintenance procedure,
Pws incurs the following additional costs:

• Inter watchers cooperation. Watch set members cooperate
with one another to determine which one is responsible
to notify object losses to their suitable managers. This
consists on ω− 1 requests issued by secondary watchers
and as much responses from the primary watcher (for
more detail on inter watchers cooperation protocol, refer
to Section IV-D).

• Loss notifications. For each entity stored at the departed
node, one loss notification is sent to its manager. In
average, there are 2γ loss notifications sent over the
network.

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

• Loss repairs. To repair a replica (resp. replication man-
ager) loss, its manager issues a request to create a new
replica (resp. replication manager) at a random storing
node. In average, on each node departure, there are γ
requests to recreate replicas and γ requests to recreate
replication managers. Note that each request to create a
replica contains a means to help locate existing replicas,
while a manager creation request carries the whole man-
agement state.

• Replica and manager recreations. To recreate a new
replica, Pws requires 2 messages: one request to an exist-
ing replica to retrieve its state and a response containing
the replicated state. Note that, to create a new manager,
there is no need of network communication. Also, each
newly created replica or manager is notified to the group
of managers of its replicated object.

Overall, if t4departpws (resp. bc4departpws) denotes the
number of messages (resp. bytes) transmitted over the network
by Pws on each node departure to enforce data availability, the
following equations hold.

t4departpws ≤ 2ω2 + 4ω + 8γ (5)

bc4departpws ≤ λ[ω3 + ω2 + 2ω + 8γ] + µγ (6)

e) BLS Cost: With a basic leaf set-based replica main-
tenance system, whenever a node departs from the overlay
network, a replica maintenance procedure is run by its ω
closest neighbors in order to recreate replicas that are lost
due to this departure. Let m designate one of the ω closest
neighbors of the departed node. Firstly, the system computes
the list of objects stored by the departed node for which m is
(currently) the root. Secondly, for each such object, the system
peaks one of the ω closest neighbors of m that doesn’t yet
replicates this object and sends it a request to create a replica.

On average, each m requests the recreation of γ/ω) replicas
that were stored at the departed node. To recreate each replica,
at least one request of the object state and one response con-
taining the requested state are requires. Hence, if t4departbls
(resp. bc4departbls) denotes the number of messages (resp.
bytes) transmitted over the network by a leaf set-based replica
maintenance system, the following equations hold:

t4departbls ≥ ω + 2γ (7)

bc4departbls ≥ γµ (8)

f) Comparison: On node departure, Pws incurs more
traffic and consumes more network bandwidth to recreate
managers and data replicas that are lost. From [6] and [8]
it comes that if we consider large size objects (e.g., µ ≥ 108)
both systems incurs comparable overhead on node departure.
To see why, one could observe that as the average size of stored
contents, the number of objects per node tends to diminish and
so is the replication degree. We anticipate that, for large size
objects both λγ and to λω3 are negligible compared to µ.

VI. CONCLUSION

We presented Pws, a peer-to-pee watching system that
constitutes a replica maintenance substrate for DHT-based
storage network. Pws that enforces a multiple publication
keys replication approach, while avoiding an active tracking
of storing nodes availability. We introduced the notion of
node’s watch set and detailed how to guarantee that watch
set members remain in the neighborhood of the watched node
in presence of node churn. We also presented the cooperation
between storing nodes and watchers on the one hand, and
between watchers and mangers on the other hand. The ana-
lytical evaluation of Pws overhead confirms that this system
is an interesting alternative to maintain data availability for
peer-to-peer storage utilities that destined to serve large-size
objects.

REFERENCES

[1] K. Kyungbaek and P. Daeyeon, “Reducing data replication overhead in
dht based peer-to-peer system,” in Proceedings of the 2006 International
Conference on High Performance Computing and Communications, vol.
4208. LNCS, 2006, pp. 915 – 924.

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker,
“Total recall: system support for automated availability management,” in
Proceedings of the 1st conference on Symposium on Networked Systems
Design and Implementation - Volume 1. Berkeley, CA, USA: USENIX
Association, 2004, pp. 337–350.

[3] K. Tati and G. M. Voelker, “On object maintenance in peer-to-peer
systems,” in Proceedings of the 5th International Workshop on Peer-
to-Peer Systems, 2006.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, ser. SIG-
COMM ’01. New York, NY, USA: ACM, 2001, pp. 149–160.

[5] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, pp. 41–53, 2004.

[6] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, ser. Middleware ’01. London, UK, UK:
Springer-Verlag, 2001, pp. 329–350.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” SIGCOMM Comput. Commun.
Rev., vol. 31, no. 4, pp. 161–172, Aug. 2001.

[8] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards
a common api for structured peer-to-peer overlays,” IPTPS03 Interna-
tional workshop on PeerToPeer Systems, pp. 33–44, 2003.

[9] P. Druschel and A. Rowstron, “Past: A large-scale, persistent peer-
to-peer storage utility,” in Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on. IEEE, 2001, pp. 75–80.

[10] A. Rowstron and P. Druschel, “Storage management and caching in past,
a large-scale, persistent peer-to-peer storage utility,” in Proceedings of
the 18th ACM Symposium on Operating Systems Principles, 2001, pp.
188–201.

[11] S. Legtchenko, S. Monnet, P. Sens, and G. Muller, “Churn-resilient
replication strategy for peer-to-peer distributed hash-tables,” in Proceed-
ings of the 11th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, ser. SSS ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 485–499.

[12] A. Ghodsi, L. O. Alima, and S. Haridi, “Symmetric replication for
structured peer-to-peer systems,” in Proceedings of The 3rd Interna-
tional Workshop on Databases, Information Systems and Peer-to-Peer
Computing, Trondheim, Norway, 2005, p. 12.

[13] M. Makpangou, “P2p based hosting system for scalable replicated
databases,” in Proceedings of the 2009 EDBT/ICDT Workshops, ser.
EDBT/ICDT ’09. New York, NY, USA: ACM, 2009, pp. 47–54.

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

