
An Approach to Dynamic Discovery of Context-Sensitive Web Services

Victor G. da Silva, Carlos E. Cirilo, Antonio F. do Prado,
Wanderley L. de Souza

Computer Science Department
Federal University of São Carlos (UFSCar)

São Carlos, Brazil
Email:{victor.silva, carlos cirilo, prado, desouza}@dc.ufscar.br

Vinı́cius Pereira
Institute of Mathematical Sciences and Computing

University of São Paulo (USP)
São Paulo, Brazil

Email: vpereira@icmc.usp.br

Abstract— With the Internet becoming increasingly present
in people’s lives and the growing availability of Web Services
(WS), new challenges have emerged for Software Engineering
regarding application development based on composition of
highly reusable services within the so-called Service-Oriented
Architecture (SOA). One such challenge refers to how to
automatically accomplish WS discovery at runtime in order to
compose personalized application features that meet particular
user’s requirements as his/her context of interaction changes.
To tackle this issue, we propose in this paper an integrated ap-
proach that addresses dynamic WS discovery by combining the
traditional WS technology stack with conceptions of Semantic
Web on top of the UbiCon, a framework that supports context-
sensitive behavior and supplies application with contextual
information at runtime. The proposed approach counts on two
main elements: (i) an algorithm that performs the dynamic
discovery of context-sensitive WS; and (ii) a reusable software
architecture that provides a skeleton which enables applying
(i). The intention of this approach is to reduce development
efforts and increase productivity as it encourages reusing pre-
fabricated WS, as well as to improve software quality whereas
applications are assembled as a set of services extensively tested
and validated.

Keywords-Web Services Discovery; Semantic UDDI; Context-
Sensitivity; SOAP; RESTful

I. INTRODUCTION

The Web has become one of the biggest media in the
world, transforming the way in which people communicate
and share content. Since its beginning, the Web has gone
through some phases to fit it to recent technological pos-
sibilities and to attend new users’ requirements. One can
mention, for instance, the evolution from the traditional Web
to Web 2.0 that is marked by greater interactivity, collab-
oration and communication among users [1]. This reality
has driven to the need for applications that support large
amounts of information to different users and devices across
multiple contexts of use. This issue has attracted the interest
of many researchers over the years. The academic commu-
nity has proposed different solutions. Some of them, for
instance, address frameworks (e.g., [2], [3], [4]) that support
development of context-sensitive applications. Meanwhile,
the software industry attempts to solve the problem of wide
variety of access devices putting into practice the Service

Oriented Architecture (SOA) [5] by means of the Web
Services (WS) technology, so as to enable integration of
heterogeneous systems, fostering greater interoperability.

SOA is widely used in the industry and has the WS
as the main way for its realization. The model introduced
by the WS technology has a well-defined and structured
architecture. In spite of that, some issues still remain for
SOA-based software development: One of the main chal-
lenges is to perform WS discovery to properly satisfy
users’ needs, especially at runtime when the context of
interaction constantly changes. Semantic Web [6] arises to
help out filling this gap, enabling integration among WS and
Semantic languages. The Semantic Web is an extension of
the Web, which allows computers and humans to work in
cooperation, resulting in a better user experience.

It is noticeable that many systems technologies are in-
tegrated to provide users with better interactions. On this
basis, we present in this paper an integrated approach to
enable semantic annotation of WS for context-sensitive Web
Services discovery. The approach combines the traditional
WS-* stack [7] with Semantic Web technologies to provide
developers with an architecture which enables application
performing, at runtime, the dynamic discovery of WS in
order to foster adaptable behavior based on the users’ context
of interaction. The framework UbiCon [4] has been applied
on our proposal to furnish the contextual information needed
to reach context-sensitivity.

The technologies used in the research are presented in
the following sections. Section II presents the main concepts
regarding the WS technology. Section III presents descrip-
tion languages of Web Services. Section IV broaches con-
cerns about Universal Description, Discovery and Integration
(UDDI) and WS discovery. Section V presents conceptions
regarding Context and Context-Sensitive Systems. Section
VI details our proposal. Finally, Section VIII presents final
remarks and further work.

II. WEB SERVICES

WS have emerged as a technology that enables the real-
ization of the Service Oriented Architecture (SOA), whose
main purpose involves integrating heterogeneous systems

83Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

and delivering applications and features as loosely-coupled
services by means of open standards of the Internet (e.g.,
HyperText Markup Language – HTTP; eXtensible Markup
Language – XML; etc). The World Wide Web Consortium
(W3C) [8] defines a Web Service as a software designed
to support interaction machine-to-machine over a network.
WS are independent of the implementation language, which
favors interoperability among disparate systems. WS use
standard protocols for message exchange. They are identified
by a Uniform Resource Identifier (URI), available in a
standardized service descriptor, along with the signatures of
its features and functions.

There is a well-known architectural model for WS that is
based on the interaction of three main components: Registry,
Provider and Client. Registry is a repository of WS in which
service Providers can post descriptions of their services;
Clients, in turn, can query the Registry in order to find
out the descriptions of the services they are looking for.
The Providers are the ones who furnish the services, which
are materialized as Web Services and achievable by some
Provider software agent. Clients perform requests to the WS,
which involves getting a description of a service from the
Registry and then invoking the Web Service functionalities
by means of a client software agent for messaging and
communication with the Provider agent.

The interaction between these components occurs through
some operations: Publish, Find and Bind. When the Provider
offers WS, providing a description that is published in the
Registry, a Publish operation is performed. Find operation
occurs when a Registry is used by the Client to discover
and to retrieve information about services of interest stored
in published service descriptors. Finally, the Bind operation
happens when the Client uses the service description to bind
with the Provider and interact with the implementation of
the Web Service. WS can be based on SOAP or REST, as
explained in the following subsections.

A. Web Services SOAP

The Simple Object Access Protocol (SOAP) [9] is a set of
conventions defined by the W3C for exchanging messages
that are transmitted and negotiated over a network on the
top of the HTTP protocol. Information exchange between
the client and the service provider is based on XML format
and happens over decentralized and distributed environments
in Remote Call Procedures (RPC) style. The SOAP pack-
ages the messages to be exchanged in a standard envelope
structure, presenting itself as a simplified and lightweight
mechanism for exchanging structured information.

By using SOAP, both the application server and the
client must be able to interpret the messages structure. This
requires the developer to implement appropriate software
agents that communicate and understand the protocol’s
details, resulting in greater efforts to evolve the system.
For this reason, using SOAP as a standard technology for

WS development has become a deprecated practice. On the
other hand, even with recent technology achievements on the
WS development, SOAP still has its usage and contribution
in software industry and shall be considered in service
discovery.

B. Web Services RESTful

RESTful WS are based on the Representational State
Transfer (REST) architecture, defined by Roy Fielding [10].
This kind of Web Service has similar characteristics to the
SOAP WS, but RESTful ones are lighter and easier to
access [11], [12]. A RESTFul Web Service focuses on the
service’s resources, rather than on its functionalities, and
are naturally transferred by the HTTP through its methods
GET, PUT, POST, and DELETE. RESTFul WS are gaining
momentum, both from the research community and compa-
nies [13], which are adopting REST because of its easiness
and simplicity of publication, invocation and maintenance
[14], [15], [16]. Deploying RESTful WS is quite similar to
deploying a dynamic website [11].

Despite of its widespread architectural model, the tradi-
tional Client-Provider-Registry architecture for WS is falling
into disuse. Client businesses are making off-line agreements
and no longer need to query the service Registry, because
they know in advance the WS’ location and how to access
them. There are, still, on-line documentation, as well as
websites of developers that publish how to access their
services, which avoids the use of descriptors and mitigates
the need of conventional service registries – which does not
adhere to the traditional WS architectural model [11], [12],
[17]. This new “model” hinders the dynamic discovery of
WS. Since this article deals with service discovery, both
SOAP as RESTful must be able to be understood and
processed computationally, enabling dynamic discovery. For
this end, semantic annotations are used, allowing contextual
processing of WS.

III. DESCRIPTION LANGUAGES SYNTACTIC AND
SEMANTIC

The Web Services architectural model provides a means
of communication between their organizations, exchanging
information through messages and descriptors Web Services.
The descriptors describe, syntactically, how to access the
service and what the service provides. The W3C has stan-
dardized the format descriptor, naming the Web Service
Description Language (WSDL) to describe web services in
a structured way. According to the W3C [18] WSDL defines
an XML grammar and a model for describing network
services as collections of communication endpoints capable
of exchanging messages. A description of Web Service
is a document by which the provider communicates the
specifications for the client to invoke the Web Service,
thereby defining how the interaction between them should

84Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

be, how and where to access, and what the input data and
output are.

Still thinking of the architectural model of Web services,
service discovery happens through a search for keywords in
the Registry, preventing the discovery of content. Faced with
this problem, the proposal is to use semantics to represent
the content of Web Services, enabling the dynamic discovery
of services.

The following are the subsections that address the tech-
nologies used for syntactic and semantic description.

A. WADL and WSDL Descriptors

The first version of WSDL emerged in mid-2001 and
allowed to only describe SOAP-based Web Services. Soon
after came the REST-based Web services, RESTful Web
Services appointed, using much of the characteristics of the
HTTP protocol for messaging between Provider and Client,
which provided an updated version of WSDL to also support
the description of Web RESTful Services, called WSDL 2.0.

In addition to the WSDL, which is the descriptor of Web
Services standard, there is the WADL proposed by Hadley,
to provide a description that is can be processed by machine,
and RESTFul resources that is based on HTTP [13]. A large
number of web-based companies (Google, Yahoo, Amazon
and others) have used RESTful [13] to provide access to
its internal data, but use documentation with web sites,
instead of using the WADL. WADL is different because it
provides an interface in XML, describing an application and
not a service, mapping the concepts that form the RESTful
paradigm [1].

Even though WADL describes easier and more efficient
RESTful Web Services, WSDL describes both SOAP-based
Web Services as RESTful, which facilitates the discovery
and invocation of both service types, justifying the use
of standard WSDL. Finally, it is worth mentioning that a
drawback in dynamic discovery of Web Services is that only
descriptors include syntactic description of their services,
thus needing a semantic description.

B. Ontologies and OWL-S

Ontologies have a very important role in automated dis-
covery and composition of Web Services. They are the ones
that describe and give knowledge to the computer that can
process and understand the content of Web Services, thus
being able to discover, compose and invoke the available
services automatically. The most used definition of ontology
in the literature on services semantic web is: Ontology is a
collection of Web Services that share the same domain of
interest and describe how Web Services can be described
and accessed [19].

The semantic description is essential for efficient dis-
covery of Web Services, and occurs through ontologies,
which are built from a markup language. Research has
shown that the ontology OWL-S [20], which extended the

Web Ontology Language (OWL) adding semantics, is more
efficient in the context of semantic description to Web
Services. OWL-S is an ontology for Web Services that lets
you discover, compose, monitor and invoke services with
self-degree of automation. It is composed of 3 elements:
Service Profile - announces and discovers services, Service
Model - describes service operations, Service Grounding -
provides details of communication protocols and message
format.

Joining Web Services with semantic language have Se-
mantic Web Services. The semantic services deal the lim-
itations in current Web Services through the improvement
of the description of services, defining a semantic layer, in
order to achieve automatic processes of discovery, composi-
tion, execution and monitoring [21]. To solve this problem
scientists have used four attributes described by the semantic
class Service Profile of OWL-S: Inputs, Outputs, Precon-
ditions and Effect (IOPE) [22], [23], [24], [25]. Certainly
there are functions that are unique to OWL-S, and the
main one is the mapping between OWL-S specifications
and syntactic specifications of WSDL, which allows the
integration of ontologies with Web Services. This mapping
is one descriptor to one ontology. Furthermore, the Service
Profile settings matter are defined in other Semantic Service
Profiles and other ontologies, thereby facilitating reuse and
avoiding ambiguities [22].

Finally, we have Semantic Web Services that can be
searched by content and not just keywords, increasing the
power of discovery Web Services in Registry.

IV. UDDI

Web Services should stay available in order to be ac-
cessed by any client application present on the Web, using
a static or dynamic way. The static mode to access a
Web Service is characterized when the service address is
provided to the client application to locate and access the
service, i.e., the client application needs to know the Web
Service address to access and invoke it. The service can
also be discovered, characterizing the dynamic mode of
discovery a Web Service. Universal Description Discovery
and Integration (UDDI) is a platform-independent structure
built for dynamically describe and find published services,
which are contained in the architectural model of Web
Services. According to OASIS [26], UDDI specifications,
define a Service Registry for Web Services. An UDDI
Registry manages information related to service providers,
service implementations and their data. Providers can use
UDDI to advertise their services and Clients can use it to
find services, which meet their requirements. In this way,
UDDI refers to a repository of Web Services provided by
companies and their descriptors.

Dustdar et al. [19] asserts that although UDDI Registry
and other UDDI based-models have been implemented, they
are not widely used, and for the service dynamic discovery

85Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

they do not meet the requirements yet. The UDDI-based
discovery is performed using keywords. This search includes
Web Services with low relevance and ambiguity. To solve
this problem there are researches related to dynamic discov-
ery through semantics based on ontologies. The discovery
provides semantic search through content and not only by
keywords, facilitating the understanding by the computer
[20]. The web service discovery depends on the service
descriptor, in this case the WSDL. WSDL complements
the UDDI standard by providing an uniform way for de-
scribing the interface and the connection between Provider
and Client. Since the UDDI specifications do not define
a semantic processing for Web Services, UDDI should be
extended in order to understand the service semantic context,
allowing the dynamic discovery of semantic services within
the UDDI.

V. SENSITIVITY TO CONTEXT

With the explicit presence of the Internet in daily life,
the use of applications that contain a large amount of
information is growing rapidly, as well as the need of users
to do complex tasks and to process information in a short
time, thus creating a challenge to computational systems.
The challenge aims to reduce the need of explicit interaction
of the user with the system to get what it want [27]. Faced
with this problem, researchers have created new systems
approach, which aims to understand the context in which the
user is in order to assist in the needed actions. These systems
are called Context-Sensitive Systems [27] or Context Aware
Systems [2]. This article refers to the term Context-Sensitive
Systems because it reflects better the semantic of a system
which detects context changes, adapts itself and reacts to
these changes [3].

A. Context

The context is the key to filter the available information
and turn them into relevant information. In the literature
there are several definitions of context. According to Vieira
[27], Context is everything that involves a situation at a given
moment, allowing in the identification of what is and is not
relevant to interpret and understand the situation. Santos [3]
also makes a distinction between: context and contextual
elements, arguing that Contextual Element (CE) is any
data, information or knowledge that allows to characterize
an entity into domain. As defined in [2], context is any
information that can be used to characterize the situation
of an entity (e.g., person, place, object, user application).
Context involves information that refer to various aspects
associated with the operation of the application, such as user,
device access, environment, network, among others [28].

Using these ideas, in computer systems Context is an
instrument to support communication between systems and
their users. From understanding the context the system can,
in many circumstances, change its sequence of actions, style

of interactions and type of information provided to users in
order to adapt to the current needs. Systems using the context
to guide actions and behaviors are called Context-Sensitive
Systems or Context-Aware Systems [3].

B. Context-Sensitive Systems

Context-Sensitive Systems (SSC) or Context-Aware Sys-
tems are computer systems that use context to provide more
relevant services or information supporting user tasks, where
these tasks are context dependent [2], [29]. There is a
big difference between traditional applications and context-
sensitive applications. Traditional applications act consid-
ering only requests and information provided explicitly by
users. Regard to the context-sensitive applications, they
mainly differ in the amount of input and output data. The
input data can be the explicit information provided by the
user, the information stored in knowledge bases contextual,
inferred through reasoning, and also those perceived from
environment monitoring [3].

To better illustrate the functioning of context-sensitive
applications, it is considered, for instance, the case of an
application to help medical appointments, which takes into
account the patient preferences and context. The patient
registers its data with preferences in a database shared by
hospitals and clinics. When the patient searches for a doctor
to schedule an appointment, the application acts helping
him in his actions. The patient can inform their illness or
medical specialty required to filter the search for clinics
and centers. The system is located next to the appropriate
clinical patient, considering its location and preferences, and
search for doctors with the specialties required, considering
the doctor’s schedule to make an appointment. The system
sends alert messages for both the patient and the specialist
if the query is scheduled successfully, or in the occurrence
of a fault.

C. UbiCon

There are many challenges to develop a context-sensitive
system. Researches have been developed for the purpose
of generating specific tools and methods to support the
treatment of these challenges, such as toolkits [2] and
frameworks [3], [4]. These approaches aim to meet basic
functionality for the management of contextual information
so that applications can make use of services, simplifying the
development of such systems. The basic features are listed
by Vieira [3], setting them into 3 categories:

• Specification Context: handles the context of require-
ments gathering and modeling the contextual informa-
tion needed for the application.

• Management Context: indicates how the context will be
handled by the system, in terms of the following tasks:
acquisition, storage, processing and dissemination of
contextual elements.

86Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

• Use Context: defines how context influences the behav-
ior of the system and how it will be used effectively.

Considering that any information can be considered con-
text, the information obtained should be relevant. Santos [3]
defines a framework called Contextual Elements Manage-
ment Through Incremental Modeling and Knowledge Ac-
quisition (CEManTIKA) to capture, manage and disseminate
computational context, which is used as the base architecture
for context extraction in computational work. Faced with the
challenges and motivations for building a context-sensitive
application, we developed a framework in the same context
of research, called Ubiquitous Context Framework (UbiCon)
[4]. The UbiCon encapsulates the manipulation tasks context
and provides functionalities divided into 4 modules: acqui-
sition, processing, dissemination and adaptation of content,
based on context architecture proposed by Santos [3]. Thus
arises a motivation to continue this line of research, reusing
the results.

VI. PROPOSAL

This proposal can be best viewed considering his major
contributions to computing. They are divided into steps,
explained below.

A. Architecture

The proposed architecture is shown in Figure 1. This
architectural approach proposes the reuse and extension of
the architectural model of Web Services, adding knowledge
and context sensitivity, obtained by UbiCon framework,
and Web Services search for content using ontologies that
are constructed from the interpretation and validation of
descriptors service. Thus, the architectural model of Web
services is extended for the context, compared with the
contents of Web services described using semantic, and they
can be interpreted automatically by the computer, achieving
the object of discovering dynamic context sensitive.

Figure 1. Architectural Model for Dynamic Discovery of Context-Sensitive
Web Services.

B. Extending the framework UbiCon

Considering that the service discovery task is dynamic
and it varies according to various relevant factors to obtain
the contextual information required to be performed, the
service discovery must be an adequate automated task.
In this way, the UbiCon framework will be extended to
retrieve contextual information that will guide the discovery
process of services, getting a higher volume of contextual
information about the entities associated with the operations
of the discovery process of services. Therefore the discovery
mechanism may consume contextual information obtained
by the modules Acquisition, Processing and Dissemination
UbiCon, and perform the discovery of services which meet
the contextual variations observed. To allow the automation
in discovery tasks, the contextual information involved in
the execution of the application (e.g., user profiles, device
profiles, network access and SLA) should be available to
facilitate reasoning and inference about the same runtime.

One of the biggest challenges in Ubiquitous Computing,
cited by Gimson et al. [30], is a description of the delivery
context, which is defined as a set of attributes that character-
ize the capabilities of the access device, the user preferences
and other aspects related to the delivery of Web content. To
address these problems and in order to achieve the proposed
goal, this paper proposes the use of ontologies for describing
the characteristics of the delivery context, focusing on the
discovery of services. Ontologies allows to express concepts
and relationships of domain and turn them computable. This
work will build ontologies to represent knowledge about the
different profiles and services.

The specification of the ontologies that characterize the
Profiles and Services have bases on previous work in
building the Extend Internet Content Adaptation Framework
(EICAF) [22]. The EICAF is a content adaptation framework
for Web applications based on Web services and ontologies.
In EICAF, the contextual information about the domain en-
tities considered (e.g., device, user, SLA, network, content)
are available through profiles specified in OWL, being easily
reused in OWL-S. These ontologies will be refined and
extended in this work to meet the requirements of dynamic
discovery of services and the context of the application.

C. Discovery of Context-Sensitive Web Services

The Discovery of Context-Sensitive Web Services is the
main purpose of the proposed work. It happens when the
client wishes to invoke some kind of service that meets
their situation or context in which it appears. The Lis-
tener Client, which is waiting and watching if there have
been changes in the context, searches the service through
the Semantic Registry, passing as a parameter the Context
obtained through of the framework UbiCon. The search
occurs through the Service Profile class, which extends the
Service class of ontology OWL-S, that has a high degree of
specification [22]. In the Service Profile there are features

87Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

(in the form of representation of functions that provides
the service) that allows the service discovery, which are:
Inputs, Outputs, Preconditions and Effects (IOPE). Through
these representations, the context information and services
are compared, returning the descriptions of services that
corresponds the sent context, realizing the discovery of
services dynamically.

D. Method and Evaluation

The work is being carried out iteratively and incremen-
tally applying an evolutionary process model [31] for the
implementation of the activities identified in the previous
subsections. In this sense, it follows that for each iteration
of the activities, an increase of work is produced. Each
increment is made up of parts of the artifacts resulting
from each activity iterated until all activities are carried
out completely. The first activity was developed and iterated
according to the architecture proposed in this paper. In the
following iterations, new artifacts are created, tested, refined
and evolved until a full version of the project, in order to
validate the proposal.

The validation and monitoring will be done using case
studies and experiments developed at the end of each in-
teraction, advocating the hypothesis of the work aimed at
discovering dynamic context-sensitive services.

VII. RELATED WORKS

Tegegne et al. [32] present an architecture/framework for
health systems in countries with poor infrastructure. The
article covers health systems that manage patient registra-
tion, claiming that these systems are the biggest problem
in the health area. The article presents a solution, still
immature, with SOA, SOC and Web Services technologies
to solve these problems. The authors do not specify what
type of technology it is used, but they present an approach
very similar to the one proposed in this paper. The part of
the context that manages patient information and services,
makes a junction between these informations, thus, it is
discovering services. Presents a specific service repository
that can not be reused.

John et al. [33] define in his work a standard RDF with
Microformats aiding semantics for RESTful WS. It describes
services using annotations in HTML and work in specific
cases, but in generic cases it does not work.

Ferreira Filho et al. [34] create an ontology to aggregate
with RESTful WS. Their approach uses an extension of
OWL-S Grounding and WADL descriptors. The work does
not address SOAP services and does not use the standard
WSDL.

In this work, RESTFul and SOAP services are discovered
based on the descriptions WSDL2 and OWL-S. The UbiCon
framework is used for context management. The repository
present in this article can be inserted legacy services, this
enables the reuse.

VIII. FINAL REMARKS AND FUTURE WORKS

This paper proposes a new approach to discover Web ser-
vices, using technologies that enable the use of context and
semantics which support searching by content and context-
sensitive. This proposal allows the reuse of other sources
of finding web services, taking as an input the descriptions
of the services, which will be converted to OWL-S, adding
semantics and allowing the search for content within the
registry. The article discusses problems and challenges of
the area, approaching a solution and contributing to the state
of the art.

Future work aims to improve the semantics of Web
services with the addition of WordNet [35], improving the
effectiveness of search by content. Also creating a validator
and converter WSDL to OWL-S, so that the service provider
can publish their services without the need to publish its
ontology.

At the time of publication happens converting the WSDL
to standard OWL-S proposed by Martin et al. [20]. Another
possible work is to get the context of social networks,
increasing the sensitivity of context.

REFERENCES

[1] O. F. Ferreira Filho and M. A. G. V. Ferreira, “Semantic
web wervices: a restful approach,” Proceedings of the IADIS
International Conference on WWW/Internet, pp. 169–180,
2009.

[2] A. K. Dey, “Providing architectural support for building
context-aware applications,” Ph.D. dissertation, Georgia In-
stitute of Technology, 2000.

[3] V. V. Dos Santos, “Cemantika: A domain-independent frame-
work for designing context-sensitive systems,” Ph.D. disser-
tation, Universidade Federal de Pernambuco, 2008.

[4] C. E. Cirilo, A. F. Do Prado, W. L. De Souza, and L. A. M.
Zaina, “A hybrid approach for adapting web graphical user
interfaces to multiple devices using information retrieved
from context,” in DMS 2010 - Proceedings of the 16th
International Conference on Distributed Multimedia Systems,
2010, pp. 168–173.

[5] T. Erl, Soa: principles of service design. Prentice Hall Upper
Saddle River, 2008, vol. 1.

[6] T. Berners-Lee, J. Hendler, O. Lassila et al., “The semantic
web,” Scientific american, vol. 284, no. 5, pp. 28–37, 2001.

[7] F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weer-
awarana, Web services platform architecture: SOAP, WSDL,
WS-policy, WS-addressing, WS-BPEL, WS-reliable messaging
and more. Prentice Hall PTR Englewood Cliffs, 2005.

[8] H. Haas and A. Brown. (2004) Web services glossary.
[Online]. Available: http://www.w3.org/TR/2004/NOTE-ws-
gloss-20040211/

[9] Y. L. Nilo Mitra. (2007) Soap version 1.2
part 0: Primer (second edition). [Online]. Available:
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

88Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

[10] R. T. Fielding and R. N. Taylor, “Principled design of the
modern web architecture,” in Proceedings - International
Conference on Software Engineering, 2000, pp. 407–416.

[11] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web
services vs. ”big” web services: Making the right architectural
decision,” in Proceeding of the 17th International Conference
on World Wide Web 2008, WWW’08, 2008, pp. 805–814.

[12] W. Jiang, D. Lee, and S. Hu, “Large-scale longitudinal anal-
ysis of soap-based and restful web services,” in Proceedings
- 2012 IEEE 19th International Conference on Web Services,
ICWS 2012, 2012, pp. 218–225.

[13] M. Hadley. (2009) Web application description language.
[Online]. Available: http://www.w3.org/Submission/wadl

[14] S. Vinoski, “Serendipitous reuse,” IEEE Internet Computing,
vol. 12, no. 1, pp. 84–87, 2008.

[15] F. Belqasmi, J. Singh, S. Y. Bani Melhem, and R. H.
Glitho, “Soap-based vs. restful web services: A case study for
multimedia conferencing,” IEEE Internet Computing, vol. 16,
no. 4, pp. 54–63, 2012.

[16] A. Rodriguez. (2008) Restful web
services: The basics. [Online]. Available:
http://www.ibm.com/developerworks/webservices/library/ws-
restful

[17] F. Belqasmi, R. Glitho, and C. Fu, “Restful web services for
service provisioning in next-generation networks: A survey,”
IEEE Communications Magazine, vol. 49, no. 12, pp. 66–73,
2011.

[18] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana
et al., “Web services description language (wsdl) 1.1,” 2001.

[19] S. Dustdar and W. Schreiner, “A survey on web services com-
position,” International Journal of Web and Grid Services,
vol. 1, no. 1, pp. 1–30, 2005.

[20] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne
et al., “Owl-s: Semantic markup for web services,” W3C
member submission, vol. 22, pp. 2007–04, 2004.

[21] G. Antoniou and F. Van Harmelen, A semantic web primer.
MIT press, 2004.

[22] M. Forte, W. L. de Souza, and A. F. do Prado, “Using on-
tologies and web services for content adaptation in ubiquitous
computing,” Journal of Systems and Software, vol. 81, no. 3,
pp. 368–381, 2008.

[23] U. Bellur and H. Vadodaria, “Web service ranking using
semantic profile information,” in Web Services, 2009. ICWS
2009. IEEE International Conference on, 2009, pp. 872–879.

[24] P. R. Reddy and A. Damodaram, “Web services discovery
based on semantic similarity clustering,” in 2012 CSI 6th
International Conference on Software Engineering, CONSEG
2012, 2012.

[25] P. B. Santos, L. K. Wives, and J. P. M. De Oliveira, “An
improved approach for measuring similarity among semantic
web services,” in WEBIST 2012 - Proceedings of the 8th
International Conference on Web Information Systems and
Technologies, 2012, pp. 83–88.

[26] OASIS. (2002) Oasis uddi specificaion tc. [Online]. Available:
https://www.oasis-open.org/committees/uddi-spec/faq.php

[27] V. Vieira, P. Tedesco, and A. C. Salgado, “Designing context-
sensitive systems: An integrated approach,” Expert Systems
with Applications, vol. 38, no. 2, pp. 1119–1138, 2011.

[28] A. K. Dey, “Understanding and using context,” Personal and
ubiquitous computing, vol. 5, no. 1, pp. 4–7, 2001.

[29] V. Vieira, L. R. Caldas, and A. C. Salgado, “Towards an ubiq-
uitous and context sensitive public transportation system,” in
Proceedings - 4th International Conference on Ubi-Media
Computing, U-Media 2011, 2011, pp. 174–179.

[30] R. Gimson, R. Lewis, and S. Sathish, “Delivery context
overview for device independence,” W3C Working Group
Note, vol. 20, 2006.

[31] R. S. Pressman, Engenharia de software, 6th ed. São Paulo:
McGraw-Hill, 2006.

[32] T. Tegegne, B. Kanagwa, and T. van der Weide, “ehealth
service discovery framework for a low infrastructure context,”
in Computer Technology and Development (ICCTD), 2010
2nd International Conference on. IEEE, 2010, pp. 606–610.

[33] D. John and M. Rajasree, “A framework for the description,
discovery and composition of restful semantic web services,”
in Proceedings of the Second International Conference on
Computational Science, Engineering and Information Tech-
nology. ACM, 2012, pp. 88–93.

[34] O. F. Ferreira Filho and M. A. G. V. Ferreira, “Semantic web
services: a restful approach,” in Proceedings of the IADIS
International Conference on WWW/Internet, 2009, pp. 169–
180.

[35] G. A. Miller. (2013) About wordnet - wordnet. [Online].
Available: http://wordnet.princeton.edu

89Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

