
A New Unsupervised Web Services Classification based on Conceptual Graphs 

Eiman Boujarwah 
CS Department, Kuwait University 

POB 5969 Safat, Kuwait, 13060 
ebujarwa@sci.kuniv.edu.kw 

Hamdi Yahyaoui 
CS Department, Kuwait University 

POB 5969 Safat, Kuwait, 13060 
hamdi@sci.kuniv.edu.kw 

 

Mohammed A. Almulla 
CS Department, Kuwait University 

POB 5969 Safat, Kuwait, 13060 
almulla@sci.kuniv.edu.kw 

Abstract— With the drastic growth in number of deployed 
Web services, the discovery of a desired Web service is 
becoming a challenging research problem. In this paper, we 
develop a new unsupervised classification technique of Web 
services using conceptual graphs. A conceptual graph helps in 
building functional domains and classifying Web services into 
these domains. Such classification would speed up the 
discovery of a Web service and save the time of searching the 
whole Web service registry.  The proposed algorithm is shown 
to have better performance than the Inductive Reasoning (IR) 
technique based on OWLS-TC benchmark. 

Keywords-Web services; classification; Conceptual graphs 

 

I.  INTRODUCTION  
Web services are a predominant information technology 

for the development of loosely-coupled and cross-enterprise 
business applications. Hence, Web Services are now 
considered as a trendy research topic. Several research 
initiatives investigated Web Services classification for 
discovery purpose.  A Web Service interface is specified 
using Web Service Description language (WSDL) [13], 
which is a XML-based description language that describes 
the functionality of a service. It also provides the parameters 
that a Web service expects to be input to it along with the 
output parameters it returns. 

 
The objective of this work is to develop an intelligent 

technique that leverages conceptual graphs in order to build 
functional domains and to classify Web services into these 
domains. Conceptual graphs are considered as a system for 
knowledge representation based on semantic networks. 
Conceptual graphs include concepts and relations. This 
structure should help to bootstrap and speed up the discovery 
of Web services. 

 
The remaining part of the paper is organized as follows: 

Section II shows the related work, exploring different 
methods to classify Web services. Parsing and Stemming the 
WSDL file is introduced in Section III. Next, Section IV 
presents the proposed classification of Web Services method 
using conceptual graphs with the experimental results. 
Finally, the conclusion and future work are discussed in 
Section V. 

 

II. RELATED WORK 
Classifying Web services is currently an important issue 

for the Web services community. Several research initiatives 
tackled this issue from different perspectives. Some of them 
mainly deal with the description of the Web Service, 
whereas others focus on the semantic perspective of the 
interface of a Web service, which is described using WSDL. 

 
Wang et al. [1] proposed a method to manage service 

classification within a medium or big category. They used 
Support Vector Machine (SVM) text classification algorithm 
to classify Web services and they used United Nations 
Standard Products and Service Code (UNSPSC) as the 
classification criteria for these Web services. 

 
Meditskos et al. [2] applied several machine learning 

algorithms to automatically classify Web services into their 
functional domains based on OWL-S advertisements. They 
combined the textural description of the Web service and its 
semantic description. Finally, they compared the accuracy of 
their algorithm with respect to other algorithms and they 
found that the semantic signature algorithm achieved better 
accuracy than the other algorithms. 

 
Segev and Toch [3] provided an analysis of two methods 

for context-based matching and ranking of Web services for 
composition purposes. First, they analyzed two common 
methods for text processing: TF/IDF and context analysis, 
and two methods of service description namely free text and 
WSDL. Second, they presented a method for evaluating the 
proximity of services for possible compositions. Each Web 
service WSDL context descriptor is evaluated according to 
its proximity to other services’ free text context descriptors. 
The proposed methods were tested on a large repository of 
real-world Web services. The experimental results concluded 
that context analysis is more useful than TF/IDF. 
Furthermore, the method of evaluating the proximity of the 
WSDL description to the textual description of other services 
provides high recall and precision results. 

 
Elgazzar et al. [4] attempted to cluster Web services based 

on functional similarities. Their proposed technique 
leveraged the quality threshold of clustering algorithms to 
cluster similar Web services based on five elements found in 
the WSDL file namely: WSDL contents, types, messages, 
ports and service name. 

 

90Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



Lately, Kiefer and Briensten [11] came up with a 
collection of inductive methods to perform classification.  
Their collection includes Rational Probability Trees (RPT) 
and Rational Bayes Classifier (RBC). The main idea was to 
explore links between objects to improve the classification 
process. Their proposed approach outperformed the kernel 
methods used in SVM. 

Most of the related research initiatives adopt supervised 
classification methods to classify web services into 
functional domains. Contrarily, we propose a new 
unsupervised classification technique based on conceptual 
graphs. We advocate the use of conceptual graphs to achieve 
a high level of classification accuracy. 

III. WSDL PARSING AND STEMMING 
As mentioned in the introduction, the WSDL is a XML-

based language, which describes the functionality of the Web 
service and how to access a particular Web service. A 
WSDL document consists of four major elements beside the 
name of the Web service, these elements are: port type, 
messages, binding and types. 

 
Port type is the most important element in a WSDL 

document; it describes the operations performed by the Web 
service. The messages element defines the data elements of 
an operation. Binding defines the data format and protocol 
for each operation. Finally, the types element is used as a 
container for data type definitions in the Web service. Figure 
1 shows an example of a WSDL file. 

 
 

Figure 1.  An example of a WSDL file 
 

A Web service interface is described in a WSDL 
document. Our process of parsing a WSDL file [5] starts 
with extracting the service name, port type, operation names 
and input/output parameter names from the WSDL file. 

 
After completing the aforementioned parsing, we 

perform a tokenization step to produce the set of terms for 
the Web service by filtering the giving names into terms 
according to several rules such as case changing, use of 
underscore and hyphenation, and use of numbers. Table I 
shows a list of examples of the tokenization rules and how it 
is applied. 

 
 

TABLE I: TOKENIZATION RULES EXAMPLES 
Rule Original Tokenized 

Case changing SendEmail Send, Email 
Case changing getListOfServices Get, List, of, Services  

Underscore Computer_science Computer, science  
Numbers Exchange1 Exchange 
 
After that, terms are stemmed into their stemmed version. 

The stemming process is a well-known process and we use 
Porter stemmer algorithm [6] to deal with it. Table II shows a 
list of examples of the stemming process. 

 
TABLE II: STEMMING EXAMPLES 

Original  Stemmed 
Sending Send 
Cleaned Clean 
Taken Take 

Swimming Swim 
Easier Easy 

 
 

 
 

Figure 2. WSDL file parsing process 
 
Finally, we remove the stop-words; these are the words 

that are most commonly used in any English paragraph, short 
function words, such as: the, is, at, which and on. These 
words may cause a problem, so we removed them. The result 
of this process is a set of terms for each Web service. Figure 
2 illustrates the process that we have just described above. 

<wsdl:portType name="CarPricequalitySoap"> 
<wsdl:operation name="get_PRICE_QUALITY"> 
<wsdl:input 
message="tns:get_PRICE_QUALITYRequest"> 
 </wsdl:input> 
<wsdl:output 
message="tns:get_PRICE_QUALITYResponse"> 
</wsdl:output> 
</wsdl:operation> 
</wsdl:portType> 

91Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



IV. WEB SERVICES CLASSIFICATION 
In this research, we consider the problem of how to 

classify various Web Services into domains according to 
their functionalities. Domains that will be used in this work 
are: communication, education, food, travel and weapon. We 
used the WordNet [7, 8, 9] as a lexical English database, 
which consists of nouns and verbs; these are grouped into 
sets of synsets. WordNet is the main conceptual graph and 
we build the conceptual graph for each domain from it. 

 
We generate a conceptual graph for each functional 

domain as follows: the terms inside the WSDL are 
considered as the concepts nodes and the relations are 
considered as the same semantic relations as the one in 
WordNet; which are: is-a relations and kind-of relations. A 
conceptual graph is represented as a hypergraph. A 
hypergraph is a graph such as each edge can connect to any 
number of vertices. It is a powerful knowledge 
representation with higher order relationships between the 
graph nodes. Figure 3 shows an example of a hypergraph, 
where V is the set of vertices and E is the set of edges. 

 
 

 
 

Figure 3. An example of a hypergraph, with V={v1,v2,v3,v4,v5,v6,v7,v8}  

E={e1,e2,e3,e4}= {{v1,v2,v3},{v2,v3},{v3,v5,v6,v7},{v4}} 

 
WordNet has a hypergraph that covers all the nouns and 

verbs (called terms) in the English language along with the 
semantic relations that connect these terms using the IS-A 
relation and the KIND-OF relation. We use this hypergraph 
to be the main conceptual graph from which we generate the 
hypergraph for each functional domain. 

A. HGCA  
To start the classification process, we first create a 

hypergraph for each domain by extracting its contents from 
the WordNet hypergraph, which are related to a specific 
domain. We take the name of the domain and start a Breadth 
First Search in the WordNet hypergraph to create the domain 
hypergraph. This extraction process will take care of all the 
connected semantic relations in the new domain’s 
hypergraph. Algorithm 1 shows the steps of generating a 

domain hypergraph. The implementation was done in the 
Java programming language and we used the hypergraph 
API to create, query and search through hypergraphs [10]. 

 
After having each domain hypergraph ready, we start the 

classification process. The hypergraph classification 
algorithm (HGCA) starts with the file name of the WSDL 
file for the Web service. First, we open the WSDL file and 
we perform parsing and stemming on the content of the 
WSDL file. Then, we compute the classification score for the 
Web service for each domain. We take the terms of the result 
from the parsing and stemming step and try to find if this 
term is matching any of the terms in the domain’s 
hypergraph then we increase the score by one. We repeat 
these steps for the all terms of a Web Service. After we 
complete finding the classification score for each domain we 
compare them all together. The higher the score, the more 
this Web service belongs to the domain. 
 
Algorithm 1. Generating Domain Hypergraph Algorithm 

 
Our classification algorithm is based on number of nodes 
matched. We take the Web service and check the number of 
nodes matched in the domain hypergraph for each domain. 
For now, we will consider this number as the score for each 
domain and we will classify the Web service based on the 
maximum score. Algorithm 2 explains the procedure of the 
algorithm. 
 
 Algorithm 2. HGCA- Hypergraph Classification Algorithm 

 
 
B. Experimental Results 

 
To explore the practicality of the proposed technique, a 

dataset is needed for testing. There are several benchmarks 
available online among which we chose the (OWLS-TC3)  

Algorithm 1: Generating Domain Hypergraph Algorithm 
Input: WordNet Hypergraph, Domain Name and K-Level  
Output: Domain Hypergraph 
begin 
     Find domain name in WordNet Hypergraph 
     Start Breadth-First-Search from the domain name until we reach 
     the end of this graph or the K-level. 
end 
Return 
Domain Hypergraph 

Algorithm 2:HGCA- Hypergraph Classification Algorithm 
Input: WSDL document  
Output: Score of the classified functional domain 
begin 
     Filter the WSDL document by parsing and stemming method. 
     For each Domain 
 Find matching terms inside the domain hypergraph. 
 Compute classification score for this domain. 
end 
Return 
The highest score and consider it as the classified domain 

92Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



benchmark [12]. This data set consists of more than 700 Web 
services, covering seven domains namely: communication, 
economy, education, food, medicine, travel and weapon. 
Figure 4 shows the domain norm statistics of the benchmark 
dataset. 

 

 
 

Figure 4. Norm Statistics of OWLS-TC3 benchmark 
 

      In our experiments, we randomly selected 200 Web 
services from the benchmark. It turned out that these Web 
services belong to five functional domains: communication, 
education, food, travel and weapon. We got 140 Web 
services that were correctly classified, 44 Web services not 
correctly classified and 16 Web services classified not to 
their functional domains but to other possible domains. For 
example, a Web service with the name FoodPrice.wsdl 
should be classified to the economy domain but it appeared 
in the food domain, which makes sense. 

 
 
To evaluate the effectiveness of our algorithm, we had to 

compute the accuracy of the algorithm along with precision 
and recall. Precision measures the correctness of a classifier 
and recall measures the completeness of a classifier. When 
the precision is high, this means that the algorithm has 
returned more relevant results and when the recall is high it 
means that the algorithm returned most of the relevant 
results. 

 
The accuracy of HGCA is almost 80% when we 

combine the correctly classified Web Service with the Web 
services that are classified to other possible domains. The 
precision and recall values for each domain are listed in 
Table III.  

 
TABLE III: HGCA EFFECTIVNESS 

Domain	
  	
   Comm.	
   Edu.	
   Food	
   Travel	
   Weapon	
   Avg.	
  
Precision	
   0.35	
   0.61	
   1	
   0.95	
   0.33	
   0.65	
  
Recall	
   0.92	
   0.63	
   0.94	
   0.69	
   0.33	
   0.70	
  
 

 
 
      Finally, we compared our work with the IR method [11]. 
Table IV shows the average of the precision and recall for 

our algorithm compared to IR-based algorithm for five 
functional domains: communication, education, food, travel 
and weapon. 

 
 
 

TABLE IV: PRECISION AND RECALL COMPARISONS 
Method	
   Avg.	
  Precision	
   Avg.	
  Recall	
  
HGCA	
   0.65	
   0.70	
  
IR	
   0.61	
   0.42	
  

 
As can be seen from the table above, the HGCA method 

outperforms the Inductive Reasoning method in the recall, 
which means that HGCA returned most of the relevant 
results and it is more complete. On average, the precision is 
almost the same with slightly difference between the two 
methods.  
For the same experiment, we computed the average 
execution time in milliseconds of HGCA; figure 5 shows 
the scalability of the average execution time in milliseconds 
of HGCA. 

 
 
 

 
Figure 5. Avarge execution time of  HGCA 

 
When the number of services is small it takes longer 

time because of loading the domain hypergraphs for the first 
time into the memory. 

Figure 6 shows the execution time per domain, we 
computed the execution time considering only one domain 
at a time to see the impact of each domain on HGCA. 

 

58	
  

359	
  
285	
  

34	
   73	
  
165	
  

40	
  

co
m
m
un
ic
at

ec
on
om

y	
  

ed
uc
at
io
n	
  

fo
od
	
  

m
ed
ic
al
	
  

tr
av
el
	
  

w
ea
po
n	
  

No.	
  of	
  Services	
  

0	
  

500	
  

1000	
  

1500	
  

1	
   3	
   5	
   7	
   9	
   11	
   13	
   15	
   17	
   19	
  

93Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



 
Figure 6. Avarge execution time of  HGCA on each domain 

 
The food domain takes longer time than the other 

domains because of the size of the domain itself to be 
loaded in the memory. The average execution time of all the 
domains is 64.4. 

 

V. CONCLUSION AND FUTURE WORK 
In this research, we presented a new unsupervised 

technique for classifying Web services into functional 
domains based on conceptual graphs. A conceptual graph 
helps in identifying functional domains and classifying Web 
services into these domains. Such classification would 
reduce the search time of specific Web services. In our future 
work, we are planning to improve our classification method 
by trying different semantic similarity equations to compute 
the score of each classified domain; this would give us more 
accurate results. Furthermore, we are planning to leverage 
this technique to find the similarity between Web services 
based on their interfaces that are described in WSDL. The 
similarity issue between two Web services is equivalent to a 
matching problem between two conceptual graphs. 

 
 

REFERENCES 
 

[1] H. Wang, Y. Shi, X. Zhou, Q. Zhou, Sh. Shao, and A. Bouguettaya, 
"Web Service Classfication using Support Vectore Machine", IEEE 
International Conference on Tools with Artificial Intelligence, vol. 1, 
pp. 3-6, 2010.  

[2] I. Katakis, G. Meditskos, G. Tsoumakas, N. Bassiliades, and I.P. 
Vlahavas, "On the Combination of textual and semantic descriptions 
for automated semantic Web service classification", In AIAI, vol. 296 
of IFIP, Springer, pp. 95-104, 2009. 

[3] A. Segev, and E. Toch, "Context-Based Matching and Ranking of 
Web Service for Composition", IEEE Transactions of Services 
Computing, 2(3): 201-222, 2009.  

[4] K. Elgazzar, A. Hassan, and P. Martin, "Clustering WSDL 
Documents to Bootstrap the Discovery of Web Services", IEEE 
International Conference on Web Services, Florida, Miami, pp. 147-
154, 2010. 

[5] E. Boujarwah, "A New Approach to Measuring Similarity Between 
Web Services", Third Kuwait e-Services and e-Systems Conference 
(KCESS-2012), Kuwait, 18-20th December, 2012. 

[6] K. Sparck Jones, and P. Willet, Readings in Information Retrieval, 
San Francisco: Morgan Kaufmann, ISBN 1-55860-454-4, 1997. 

[7] G.A. Miller, "WordNet: A Lexical Database for English", 
Communications of the ACM,  vol. 38(11): 39-41, 1995. 

[8] Ch. Fellbaum, "WordNet: An Electronic Lexical Database", 
Cambridge, MA: MIT Press, 1998. 

[9] Princeton University, "About WordNet", Princeton University, 
http://wordnet.princeton.edu, 2010. 

[10] I. Borislav, K. Vandev, C. Costa, M. Marinov, M. de Queiroz, I. 
Holsman, A. Picard, and I. Bogdahn, "HypergraphDB 2010", 
www.hypergraphdb.org, Last visit: 13th October, 2012.  

[11] Ch. Kiefer, and A. Bernstein, "Application and Evaluation of 
Inductive Reasoning Methods for the Semantic Web and Software 
Analysis", Reasoning Web 2011, LNCS 6848, pp. 460-503, 2011. 

[12] M. Klusch and P. Kapahnke, "SemWebCentral OWL-S", 
http://projects.semwebcentral.org/projects/owls-tc/, Last visit: 21st  
September, 2010. 

[13] E. Christensen,F. Curbera,G. Meredith, and S. Weerawarana, "Web 
Services Description Language (WSDL)", www.w3.org/TR/wsdl, 
Last visit: 15th March, 2010. 
 

 
 
 

0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
140	
  

94Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services


