
A Complexity Analysis of an XML Update Framework

Mohammed Al-Badawi and Abdallah Al-Hamadani

The Department of Computer Science

Sultan Qaboos University

Muscat, Oman

mbadawi@squ.edu.om, abd@squ.edu.om

Abstract—XML update is problematic for many XML

database techniques. The main issue tackled by these

techniques is the cost reduction of updating the XML’s

hierarchal structure inside the underlying storage. PACD

technique, introduced earlier, is an attempt in this direction.

This paper mainly provides a complexity analysis of the

PACD’s updates primitives. The analysis, along with the

comparative experimental results presented here, have shown

that the cost of eight update primitives (out of nine discussed)

leys under acceptable range of a constant ‘c’ where ‘c’ is an

extremely small number comparing to the number of nodes ‘n’

in the underlying database. Such good performance is lacked

in the compared techniques.

Keywords-XML Databases;XML Update; Mapping

I. INTRODUCTION

Data stored in the extensible markup language (XML)
containers (database) is subject to updates when
circumstances change. Unfortunately, handling XML
updates is a common problem in the existing XML storage
models and optimization techniques. Relational approaches
using node labeling techniques [6][12][13][14][16][22]
require a large number of renumbering operations in order to
keep the node labels updated whenever a node is inserted,
deleted or moved from one location to another in the XML
tree. For those approaches which use path summaries to
encode the XML hierarchical structure, e.g., [3][4][7], an
additional cost results from updating these summaries. In
native XML approaches such as sequence based [10][15][17]
and feature based techniques [19][23], the update problem is
even worse. In the first case, the consequences of a single
update operation, for example deleting a node, can affect
hundreds or even thousands locations in the corresponding
sequence depending on the node‟s location in the XML tree.
A similar problem occurs in the case of feature based
techniques, which rely on encoding the relationship between
the nodes and the different ePaths of the XML tree into what
is called feature-based matrices [19].

PACD, an acronym for Parent-Ancestor-Child-
Descendant, as an XML processing technique introduced in
[2], brings the cost of updating the XML‟s hierarchal
structure to the data representation level by encoding these
structures into a set of structure-based matrices, which allow
direct access to the information of the nodes affected by such
update operations. This paper mainly introduces the PACD‟s
Updates Query Handler (UQH) and provides a complexity
analysis of its update primitives. The paper starts by

revisiting the PACD‟s framework in Section II; then, it
introduces the UQH framework in Section III. Section IV
discusses the complexity of the different update primitives
while Sections V and VI, respectively, summarize the
complexity discussion and provides a supportive
comparative experimental result. The paper is concluded in
Section VII.

II. PACD‟S XML PROCESSING MODEL

PACD, introduced in [1][2], is a bitmap XML processing
technique consisting of two main components: the Index
Builder (IB) and the Query Processor (QP). The IB (see
Figure 1) shreds the XML‟s hierarchal structure (derived by
the XPath‟s thirteen axes and their extension; the Next and
Previous axes [1]) into a set of binary relations each of which
is physically stored as an n×n bitmap matrix. An entry in any
matrix is either „1‟ if the corresponding relationship is exists
between the coupled nodes or „0‟ otherwise [8][23].

Figure 1. PACD‟s Index Builder (IB)

The IB component is also responsible to handle the XML
updates. Once an update query is issued, the attached UQH
determines the nodes affected by the update query and the
type of the update operation itself. The following section
introduces the PACD‟s UQH and its update primitives, while
the primitives‟ complexity is discussed in Section IV.

106Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

III. THE UPDATE HANDLER

PACD‟s Update Query Handler (UQH), represented by
operation I.5 of Figure 1, is responsible for all update tasks
targeted by any ML update operation. These tasks include
the translation of the update query, and the determination and
the execution of necessary update primitive.

The execution of the update query starts by identifying
the node(s) that are affected by the update command/query.
The handler navigates through a finite-state-machine (FSM)
version of the update-query [2] in order to locate the affected
node-set. Once the target node-set is identified, the handler
calls the appropriate update primitive (see Table I). PACD
supports update primitives for single node insertion and
deletion, twig insertion and deletion, and textual and
structural-based changes.

The update primitives act on all PACD‟s components
including the NodeSet container [2] and the structure based
matrices. Each update primitive has to execute certain
instructions over each component such as adding new
columns and rows (over the bitmapped matrices). The cost of
the update-query is the sum-cost of executing all generated
update primitives over the all PACD‟s components, i.e.,
matrices and NodeSet container. For example, the „insert‟
primitive can involve adding one or more rows and columns
to the bitmapped matrices, as well as adding one or more
entries to the NodeSet container. So, the cost of the insert
operation will be the cost of inserting the node information
inside the NodeSet container plus the cost of inserting one
row and column inside the „child‟, „desc‟ and „next‟ matrices
respectively. The general update algorithm is given in Table
II.

TABLE I. XML UPDATE PRIMITIVES

Insertion

insertLeaf adds a leaf node

insertNonLeaf adds an internal node

insertTwig
adds a single-rooted, connected sub-

tree

Deletion

deleteLeaf removes a leaf node

deleteTwig
remove a single-rooted, connected

sub-tree

Updating

changeName rename an element or attribute name

changeValue
edit the value (text) of an attribute

(element)

shiftNode
move a node from one place to

another

shiftTwig
move a single-rooted, connect sub-

tree from one place to another

TABLE II. XML UPDATES EXECUTION ALGORITHM

INPUT: update-query

OUTPUT: none

Construct the FSM execution plan corresponding to query‟s twig

node-set = the returned node-set from the FSM execution

Using the update-query syntax, determine the primitive(s)

Call the update-primitive(s) with the obtained node-set:

 Alter the NodeSet container;

 Alter the childOf matrix;

 Alter the descOf matrix;

 Alter nextOf matrix;

End;

IV. DISCUSSION OF UPDATE PRIMITIVES

This section discusses, through examples, the complexity
of the update primitives. The complexity is counted as the
number of the „change‟ actions performed on the NodeSet,
child matrix, descendant (desc) matrix and next matrix. Due
to space limitation, the paper only presents sample
algorithms for some update primitives and then provides an
example on how the algorithm works based on the XML tree
in Figure 2.

Figure 2. An Example XML Tree (includes an insertion case)

A. Insert Primitives

Table I has shown three insertion primitives that can be
triggered against XML databases. The prototypes of the
methods implementing these primitives are:

 insertLeaf(node_info, parentID [,precedingID]);

 insertNonLeaf(node_info, parentID [,precedingID]);

 insertTwig(twig_info, parentID [,precedingID])

In the above prototypes, the „node_info‟ indicates the

information of the node(s) to be inserted which includes the
nodeID, tag_name and the optional textual contents. The
„parentID‟ refers to the node ID of the parent node under
which the insertion will take place. The „precedingID‟ must
be specified if the document order [6][16] is to be preserved,
and it indicates the node ID of the node that must precede the
new node.

1. Leaf Node Insertion

This method inserts a node at the bottom-most level of
the tree under parentID node and next to precedingID node.
Both parentID and precedingID are identified by the UQH
during the query translation process.

Example: Add the „year‟ information, i.e., 2003, to the book

identified by the key „book/110‟, where the „year‟

information must precede the „author‟ information (Figure

2).

The cost breakdown of the above operation is:

NodeSet child desc next Total

1 3 4 4 12 hits

2. Non-Leaf Node Insertion

This method can insert a node at any level of the tree
except the bottom-most level. ParentID and precedingID are

107Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

identified by the UQH prior calling the primitive. In this
paper, the analysis assumes that the primitive is only creating
an additional level between a parent and its children, making
these children as the children of the inserted node.

TABLE III. INSERTING NON-LEAF NODE ALGORITHM

insertNonLeaf(node_info:nodeType,parentID:nodeIDType,precID:

nodeIDType)

 Get the next nodeID;

 Insert the node information into NodeSet;

 *-- update the child matrix:

 Add a row and column to the „child‟;

 Let: childSet = {node(i), where child[i,parentID] = „1‟}

 For each i  childSet:

 Set: child[i,nodeID] = „1‟;

 Set: child[nodeID,parentID] = „1‟;

 *--update the desc matrix:

 Add a row and column to the „desc‟;

 Let: anceSet = {node(i), where desc[parentID,i] = „1‟} 

 parentID;

 Let: descSet = {node(j), where desc[j,parentID] = „1‟};

 For each i  anceSet:

 Set: desc[nodeID,i] = „1‟;

 For each j  descSet:

 Set: desc[j,nodeID] = „1‟;

 *--update the next matrix:

 Add a row and column to the „next‟;

 If precID  null:

 Let: temp = {node(i), where next[i,precID] = „1‟};

 Set: next[nodeID,precID] = „1‟;

 If temp  null:

 Set: next[temp,precID] = „1‟;

END.

Example: Make the current author of the book titled

„Indexing XML‟ to be the FIRST author of the book so that

other authors can be added. This requires adding a parent

node called „au_det‟ for the „first‟ and „last‟ nodes under

the original „author‟ node (Figure 3).

The cost breakdown of the above operation is:

NodeSet child desc next Total

1 5 6 0 12 hits

 Figure 3. Non-Leaf Node Insertion

3. Twig Insertion

This method inserts a sub-tree of „m‟ nodes under the
parentID and after the precID. Both the parentID and the
precID are determined by the UQH, and the twig is only
inserted at bottom-most nodes. The twig insertion can be
modeled as inserting multiple connected nodes. In other
words, inserting a twig of „m‟ nodes requires „m‟ times the
cost of inserting a single leaf-node and can be performed by
the same algorithm in Table III starting at the twig‟s root
node.

Example: add a second author sub-tree, i.e., including the

„first‟ and „last‟ name, to the book titled „Indexing XML‟

(Figure 4).

The cost breakdown of the above operation is:

NodeSet child desc next Total

3 9 14 8 34 hits

 Figure 4. Twig Insertion

4. Complexity Analyses

Due the space limitation the full complexity analyses of
the operations is omitted. The following table only
summarizes the number of work-units required to conduct
the insertion primitives in general.

TABLE IV. COMPLEXITY ANALYSES SUMMARY OF THE INSERTION

PRIMITIVES

B. Deletion Primitives

Table I has shown two deletion primitives that can be
triggered against XML databases. The prototypes of the
methods implementing these primitives are:

 deleteLeaf(nodeID);

 deleteTwig(twigRootNodeID);

108Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

In the above prototypes, the „nodeID‟ indicates the node
ID of the node that to be deleted while the
„twigRootNodeID‟ indicates the node ID of the root node of
the targeted twig. The discussion in this section assumes that
deleting a non-leaf node results in a cascade deletion of its
children, therefore the „deleteTwig‟ operation will be applied
in the case of deleting a non-leaf node.

1. Leaf Node Deletion

This method deletes a node from the bottom-most level of

the tree labeled with nodeID, which is returned by the UQH

during the query translation process.

Example: Remove the author‟s last-name from the book

identified by the key „book/110‟.

The cost breakdown of the above operation is:

child desc next NodeSet Total

2 2 2 1 7 hits

2. Twig Deletion

This method deletes a connected sub-tree rooted at
„twigRootNodeID‟ from the XML tree. The twig root node
ID is returned by the UQH during the query translation
process.

TABLE V. INSERTING NON-LEAF NODE ALGORITHM

deleteTwig(twigRootNodeID: nodeIDType)

 *-- reconnect the next_of list of the nextOf matrix:

 Let:

 next = {node(i), where nextOf[i,twigRootNodeID] = „1‟};

 prev = {node(j), where nextOf[twigRootNodeID,j] = „1‟};

 If next  null AND prev  null:

 Set: nextOf[next,prev] = „1‟;

 *--identify all the node inside the deleted twig:

 Let: descSet = {node(i), where descOf[i, twigRootNodeID] =

 „1‟}  twigRootNodeID;

 *--remove row and columns from all matrices, and the node_info

 *-- from the NodeSet :

 For each i  descSet:

 Locates the corresponding row and column of the nodeID

 inside the „childOf‟;

 Remove the row and column from the „childOf‟;

 Locates the corresponding row and column of the nodeID

 inside the „descOf‟;

 Remove the row and column from the „descOf‟;

 Locates the corresponding row and column of the nodeID

 inside the „nextOf‟;

 Remove the row and column from the „nextOf‟;

 Locate the corresponding record of the nodeID inside the

 „NodeSet‟;

 Delete the nodeID;

END.

Example: Remove the complete author‟s information from

the book identified by the key „book/110‟ (Figure 5). Note:

this will remove the nodes „&8‟ and „&9‟.

The cost breakdown of the above operation is:

child desc next NodeSet Total

4 4 4 2 14 hits

Figure 5. Twig Deletion

3. Complexity Analyses

The following table only summarizes the number of
work-units required to conduct the deletion primitives in
general.

TABLE VI. COMPLEXITY ANALYSES SUMMARY OF THE DELETION

PRIMITIVES

C. Change Primitives

Table I has shown four change primitives that can be
triggered against XML databases. The prototypes of the
methods implementing these primitives are:

 changeName([nodeID|oldName],newName);

 changeValue([nodeID|oldName],newValue);

 shiftNode(nodeID,newParentID[,leftID]);

 shiftTwig(twigRootID,newParentID[,leftID]);

In the above prototypes, the „nodeID‟ indicates the node

ID of the targeted node targeted. The „oldName‟ and
„newName‟ indicate the tag-name of the targeted node. The
„newValue‟ is the textual content of the node to be altered.
The „parentID‟ and the „leftID‟ are the node ID of the parent
node and left node of the targeted node. Finally, the
„twigRootID‟ is the node ID of the twig to be shifted.

1. Tag-Name Change

This method renames a node (identified by the nodeID)
or a set of nodes (that have the same name identified by
oldName) to the new name newName.

Example: Change the name of the node „thesis‟ to be

„phdthesis‟.

This query changes the tag name of the node &11 from
„thesis‟ to „phdthesis‟ with the cost of one work-unit.

Example: Change the name of all nodes labeled with „key‟ to

be „pub_id‟.

109Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

In this query, the „oldName‟ parameter is the word „title‟
and the „newValue‟ parameter is a function that converts its
argument to the uppercase. The query will perform three
work units in total.

2. Textual-Value Change

This method changes the textual contents of a node
(identified by the nodeID) or a set of nodes (that have the
same name identified by oldName) to the new value
newValue.

Example: Change the publication year for the book labeled

with „Book/101‟ to be „2000‟ instead of „2001‟.

This query changes the value of the node &2 from „2001‟
to „2000‟ with the cost of one work-unit.

Example: Change the „title‟ of all publications to the

uppercase.

In this query, the „oldName‟ parameter is „title‟ and the
„newValue‟ parameter is a function that converts its
argument to the uppercase. The query will perform three
work units in total.

3. Single Node Shifting

This method moves the node labeled with nodeID to be
under the node newParentID. If the exact location is
required, the preceding node at the new location, i.e.,
„leftID‟, must be specified.

Example: Move the publication year of book „book/101‟ to

be the publication year for the book „Book/110‟ (Figure 6).

The cost breakdown of the above operation is:

childOf descOf nextOf Total

2 4 4 10 hits

Figure 6. Single Node Shifting (Parent Change)

4. Twig Shifting

This method moves a sub-tree (twig) rooted at the
twigRootID to be a sub-tree under the node newParentID. If
the exact location is required, the preceding node at the new
location, i.e., leftID, must be specified.

TABLE VII. INSERTING NON-LEAF NODE ALGORITHM

shiftTwig(twigRootID: nodeIDType, newParentID: nodeIDType,

 leftID: nodeIDType)

 *-- update the childOf matrix:

 Let: oldParentID = {node(i), where childOf[twigRootID,i] =

 „1‟};

 Set:

 childOf[twigRootID,newParentID] = „1‟;

 childOf[twigRootID,oldParentID] = „0‟;

 *--update the descOf matrix:

 Let:

 twigNodeSet = {node(1..m), where node(i)  twig};

 oldAnceSet = {node(i), where descOf[twigRootID,i] = „1‟};

 newAnceSet = {node(j), where descOf[newParentID,j] = „1‟}

  newParentID;

 For each node i  newAnceSet:

 For each node j  twigNodeSet:

 Set: descOf[j,i] = „1‟;

 For each node i  oldAnceSet:

 For each node j  twigNodeSet:

 Set: descOf[j,i] = „0‟;

 *--update the nextOf matrix:

 Let:

 next_of_ twigRootID = {node(i), where

 nextOf[i, twigRootID] = „1‟};

 prev_of_ twigRootID = {node(j), where

 nextOf[twigRootID,j] = „1‟};

 next_of_leftID = {node(i), where nextOf[i,leftID] = „1‟};

 prev_of_leftID = {node(j), where nextOf[leftID,j] = „1‟};

 Set (if any combination is not null):

 nextOf[next_of_twigRootID,prev_of_twigRootID] = „1‟;

 nextOf[twigRootID,prev_of_twigRootID] = „0‟;

 nextOf[twigRootID,leftID] = „1‟;

 nextOf[next_of_leftID, twigRootID] = „1‟;

 nextOf[leftID,prev_of_leftID] = „0‟;

 nextOf[next_of_leftID,leftID] = „0‟;

END.

Example: Move the author information of book „book/110‟

to be the author for the book „Book/101‟ (Figure 7).

The cost breakdown of the above operation is:

child desc next Total

2 12 2 16 hits

Figure 7. Twig Shifting (Parent Change)

110Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

5. Complexity Analyses

The following table only summarizes the number of
work-units required to conduct the change primitives in
general.

TABLE VIII. COMPLEXITY ANALYSES SUMMARY OF THE CHANGE

PRIMITIVES

V. OVERALL COMPLEXITY

The analysis provided above has shown that the cost of
all update-primitives over the PACD‟s uncompressed data
representation lies in acceptable limits in general. Of the
update primitives discussed, the highest update complexity is
only a fraction of the number of nodes, i.e., „n‟, and this only
happens during the infrequently accessed operation
„insertNonLeaf‟. The cost of other update operations ranges
between a very small constant „c‟ (where „c‟ is an extremely
small number comparing to the number of nodes „n‟ in the

database) and „mc‟ in the case of manipulating a twig of
size „m‟ nodes.

 From the technical point of view, the bitmapped XML
structure and the introduction of the previous/next axes [2]
has played a major role in such cost reduction. Unlike node-
labeling based techniques, e.g., [11][18][21], the use of the
next matrix -to encode the document order- has narrowed the
spread of label changes to the adjacent nodes (only) of the
targeted node. Also encoding the basic XML structures (the
child/parent and descendant/ancestor relationships) using the
bitmapped node couplings (the child and desc matrices) has
reduced the high cost and complexity that result from using
path-summaries [5][9] [7][20] and sequences [10][15] to
encode such structures. The analysis has shown that the
number of changes in the child structure is bounded by a
small constant „c‟ (where „c‟ is an extremely small number
comparing to the number of nodes „n‟ in the database) in
most cases except the „insertNonLeaf‟ primitive which

requires „‟ number of hits depending on the node‟s breadth
degree.

Another source of cost reduction in PACD‟s update
transactions is the separation between the textual contents
representation and the XML hierarchal structure
representation. Because of that, the content-based primitives
only affect the NodeSet container while the structure-based
update primitives affect the bitmapped matrices. This is not
the case of path-summary and sequence-based techniques
where the underlying path-summary or sequence has to be

changed for either type of updates (content-based or
structure-based). In general, the number of hits over the
NodeSet container is limited by the number of targeted nodes
except when amending a tag/attribute name or a node value
for a set of nodes that share the same tag/attribute name. In
this case, the cost is limited by the number of nodes that
share the same tag/attribute name which is also considered
small comparing to the entire XML tree.

VI. A COMPARATIVE STUDY

A. The Experiment Setup

A comparative experiment between the performance
PACD technique and two representative XML techniques
from the literature is conducted to support the above
complexity analyses. The experiment executes 6 update
queries –as a representation of the above update primitives-
translated over 3 XML databases for the 3 selected XML
techniques. The 6 update queries are listed in Table IX while
the characteristics of the 3 XML databases are given Table
X. Also Table XI shows the XML/RDBMS mapping schema
of the three compared techniques, PACD, XParent and Edge,
while other specifications of these techniques can be found at
the references [2], [9] and [24] respectively.

The experiment counts the number of changes (hits) done
over the technique‟s underlying representation (2

nd
 column

of Table XII) of the XML database, and lists them per query
ID in separate columns (see Table XII) over each XML
database. The number of hits, over all components, is
summed up in the last 3 rows of Table XII which
summarizes the overall experimental results.

TABLE IX. THE EXPERIMENTAL UPDATE QUERIES
Query ID Query Description

U1 Insert an Atomic Value, i.e., leave node

U2 Insert a Non-atomic Value, i.e., non-leave or internal
node

U3 Delete an Atomic Value , i.e., leave node

U4 Delete a Non-atomic Value , i.e., non-leave or internal
node

U5 Change an Atomic Value, i.e., the textual content of a
node

U6 Change a Non-atomic Value, i.e., tag-name

TABLE X. FEATURES OF THE EXPERIMENTAL XML DATABASES

 DBLP [25] XMark [27] Treebank [26]

Size (#of nodes) †† 2,439,294 2,437,669 2,437,667

Depth(#of levels) 6 10 36

Min Breadth† 2 2 2

Max Breadth 222,381 34,041 56,385

Avg Breadth† 11 6 3

#of Elements 2,176,587 1,927,185 2,437,666

#of Attributes 262,707 510,484 1

† Figures exclude leaf nodes

†† Dataset also contains two versions of each database at 50% and 25%
of the size of the base database. Both the depth and the average

breadth of the base databases are maintained in the smaller

databases

111Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

B. Experimental Results Summary

Comparing to other techniques, PACD appeared having
the best performance for most of the queries in all situations.
The experiment has also shown that the performance of
XParent and Edge was delayed by the cost of the document
order persevering mechanism. PACD eliminates this cost by
encoding the previous/next relationship which requires at
most two amendments for any node update operation.

TABLE XI. THE EXPERIMENTAL COMPARABLE XML TECHNIQUES

Technique Components (XML/RDBMS Mapping Schema)

PACD

XMLNodes(nodeID, type, tagID)

XMLSym(tagID, desc)

XMLValues(nodeID, value)
childOf(childID, parentID) OIMatrix(Source, Target,

relType)

descOf(descID, anceID)
nextOf(nextID, prevID)

Edge Edge(source, target, ordinal, label, flag, value)

XParent

labelPath(pathID, length ,PathDesc)

element(pathID, ordinal, nodeID)

data(pathID, ordinal, nodeID, value)
dataPath(nodeID, parented)

ancestors(nodeID, anceID, level)

VII. CONCLUSION

This paper has discussed the PACD‟s updating
framework which is managed by a set of low cost update
primitives. Once an update query is issued, the Update Query
Handler (UQH) process identifies the target node-set and the
necessary update primitive(s). The translation of an update
query may generate one or more update primitives each of
which may alter one or more XML nodes. The UQH
currently can generate nine update primitives divided into
three categories; the insert, delete, and change primitives.

The analysis and the experimental results in this paper
have shown that the computation cost of XML update
queries can be improved using the update primitives, which

specifically act on the PACD data representation. The cost
analysis of all update primitives is provided in Tables IV, VI
and VIII.

REFERENCES

[1] M. Al-Badawi, H. Ramadhan, S. North, and B. Eaglestone,

“A performance evaluation of a new bitmap-based XML

processing approach over RDBMS”, Int. J. of Web

Engineering and Technology, vol. 7, no. 2 , 2012, pp. 143 –

172.

[2] M. Al-Badawi, B. Eaglestone, and S. North, "PACD: A

Bitmap-based Approach for Processing XML Data",

WebIST‟09, Lisbon, Portugal, 2009, pp. 66-71.

[3] Q. Chen, A. Lim, and K. Ong, "D(K)-Index: An adaptive

structural summary for graph-structured data‟, In proceedings

of the 2003 ACM SIGMOD international conference on

Management of data, CA, USA, 2003, pp. 134-144.

[4] C. Chung, J. Min, and K. Shim, "APEX: An adaptive path

index for XML data", In proceedings of the 2002 ACM

SIGMOD international conference on Management of data,

Madison, Wisconsin, 2002, pp. 121-132.

[5] R. Goldman, and J. Widom, "DataGuides: Enabling query

formulation and optimaization in semistructured database", In

proceedings of the 23rd international conference on VLDB,

1997, pp. 436-445.

[6] T. Härder, M. Haustein, C. Mathis, and M. Wagner, "Node

labelling schemes for dynamic XML documents

reconsidered" International Journal of Data Knowledge

Engineering, vol. 60, I. 1, 2007, pp. 126-149.

[7] S. Haw, and C. Lee, "Extending path summary and region

encoding for efficient structural query processing in native

XML databases", Journal of Systems and Software, vol. 82, I.

6, 2009, pp. 1025-1035.

[8] H. He, H. Wang, J. Yang, and P. Yu, "Compact reachability

labeling for graph-structured data", In proceedings of the 14th

ACM international conference on Information and knowledge

management, Bremen, Germany, 2005, pp. 594-601.

TABLE XII. THE EXPERIMENTAL RESULTS

112Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

http://www.inderscience.com/jhome.php?jcode=ijwet
http://www.inderscience.com/jhome.php?jcode=ijwet

[9] H. Jiang, H. Lu, W. Wang, and J. Yu, "XParent: An efficient

RDBMS-based XML database system", International

conference on Data Engineering, CA, USA, 2002, p. 2.

[10] J. Kwon, P. Rao, B. Moon, and S. Lee, "Fast XML document

filtering by sequencing twig patterns", ACM Transactions on

Internet Technology (TOIT), vol. 9, I. 4, Article 13, 2009, pp.

13.1-13.51.

[11] J. Lu, T. Ling, C. Chan, and T. Chen, "From region encoding

to extended dewey: On efficient processing of XML twig

pattern matching", In proceedings of the 31st International

Conference on VLDB, Trondheim, Norway, 2005, pp. 193-

204.

[12] P. O‟Neil, E. O‟Neil, S. Pal, I. Cseri, G. Schaller, and N.

Westbury, "ORD-PATHs: Insert-friendly XML node labels",

In proceeding of ACM/SIGMOD international conference on

Management of Data, 2004, pp. 903-908.

[13] W. Shui, F. Lam, D. Fisher, and R. Wong, (2005) "Querying

and marinating ordered XML data using relational databases",

Proceedings of the 16th Australasian database conference -

vol. 39, Newcastle, Australia, 2005, pp. 85-94.

[14] I. Tatarrinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E.

Shekita, and C. Zhang, "Storing and querying ordered XML

using a relational database system", ACM/SIGMOD Record,

Madison, Wisconsin, 2002, pp. 204-215.

[15] H. Wang, and X. Meng, "On sequencing of tree structures for

XML indexing", In the proceedings of the 21st international

conference on Data Engineering, 2005, pp. 372-383.

[16] H. Wang, H. He, J. Yang, P. Yu, and J. Yu, "Dual labeling:

Answering graph reachability queries in constant time", In the

proceedings of the International conference of Data

Engineering, 2006, pp. 75-86.

[17] H. Wang, X. Wang, and W. Zeng, "A research on

automaticity optimization of KeyX index in native XML

database", In proceedings of the 2008 international conference

on Computer Science and Software Engineering, 2008, pp.

700-703.

[18] X. Wu, M. Lee, and W. Hsu, "A prime number labeling

scheme for dynamic ordered XML trees", In proceedings of

the 20th international conference on Data Engineering, 2004,

pp. 66-78.

[19] J. Yoon, S. Kim, G. Kim, and V. Chakilam, "Bitmap-based

indexing for multi-dimensional multimedia XML document",

In proceedings of the 5th International Conference on Asian

Digital Libraries-ICADL2002, Singapore, 2002, pp. 165-176.

[20] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura,

"XRel: A path-based approach to storage and retrieval of

XML documents using relational databases", ACM/IT., vol. 1,

I. 1, NY, USA, 2001, pp. 110-141.

[21] J. Yun, and C. Chung, "Dynamic interval-based labelling

scheme for efficient XML query and update processing",

Journal of Systems and Software, vol. 81, I. 1, 2008, pp. 56-

70.

[22] C. Zhang, J. Nsughton, D. DeWitt, Q. Luo, and G. Lohman,

"On supporting contaiment queries in relational database

management systems", In proceedings of the 2001 ACM

SIGMOD international conference on Management of Data,

California, USA, 2001, pp. 425-436.

[23] N. Zhang, M. Özsu, I. Ilyas, and A. Aboulnaga, "FIX:

Feature-based indexing technique for XML documents", In

proceedings of the 22nd international conference on VLDB,

vol. 32, Seoul, Korea, 2006, pp. 259-270.

[24] D. Florescu, and D. Kossmann “A Performance Evaluation of

alternative Mapping Schemas for Storing XML Data in a

Relational Database”, TR:3680, May 1999, INRIA,

Rocquencourt, France, pp. 1-24.

[25] DBLP. The DBLP Website, Available at http://dblp.uni-

trier.de/, [Last accessed on 28/04/2013].

[26] PennProj. The Penn Treebank Project Website, Available

online at http://www.cis.upenn.edu/~treebank/, [Last accessed

on: 28/04/2013].

[27] A. Schmidt, F. Waas, M. Kersten, D. Carey, I. Manolescu,

and R. Busse. “XMark: A Benchmark for XML Data

Management”, International conference on Very Large Data

Bases, Hong Kong, China, 2002, pp. 974-985.

113Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

