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Abstract—XML update is problematic for many XML 

database techniques. The main issue tackled by these 

techniques is the cost reduction of updating the XML’s 

hierarchal structure inside the underlying storage. PACD 

technique, introduced earlier, is an attempt in this direction. 

This paper mainly provides a complexity analysis of the 

PACD’s updates primitives. The analysis, along with the 

comparative experimental results presented here, have shown 

that the cost of eight update primitives (out of nine discussed) 

leys under acceptable range of a constant ‘c’ where ‘c’ is an 

extremely small number comparing to the number of nodes ‘n’ 

in the underlying database. Such good performance is lacked 

in the compared techniques.  
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I.  INTRODUCTION 

Data stored in the extensible markup language (XML) 
containers (database) is subject to updates when 
circumstances change. Unfortunately, handling XML 
updates is a common problem in the existing XML storage 
models and optimization techniques. Relational approaches 
using node labeling techniques [6][12][13][14][16][22] 
require a large number of renumbering operations in order to 
keep the node labels updated whenever a node is inserted, 
deleted or moved from one location to another in the XML 
tree. For those approaches which use path summaries to 
encode the XML hierarchical structure, e.g., [3][4][7], an 
additional cost results from updating these summaries. In 
native XML approaches such as sequence based [10][15][17] 
and feature based techniques [19][23], the update problem is 
even worse. In the first case, the consequences of a single 
update operation, for example deleting a node, can affect 
hundreds or even thousands locations in the corresponding 
sequence depending on the node‟s location in the XML tree. 
A similar problem occurs in the case of feature based 
techniques, which rely on encoding the relationship between 
the nodes and the different ePaths of the XML tree into what 
is called feature-based matrices [19]. 

PACD, an acronym for Parent-Ancestor-Child-
Descendant, as an XML processing technique introduced in 
[2], brings the cost of updating the XML‟s hierarchal 
structure to the data representation level by encoding these 
structures into a set of structure-based matrices, which allow 
direct access to the information of the nodes affected by such 
update operations. This paper mainly introduces the PACD‟s 
Updates Query Handler (UQH) and provides a complexity 
analysis of its update primitives. The paper starts by 

revisiting the PACD‟s framework in Section II; then, it 
introduces the UQH framework in Section III. Section IV 
discusses the complexity of the different update primitives 
while Sections V and VI, respectively, summarize the 
complexity discussion and provides a supportive 
comparative experimental result. The paper is concluded in 
Section VII.  

II. PACD‟S XML PROCESSING MODEL 

PACD, introduced in [1][2], is a bitmap XML processing 
technique consisting of two main components: the Index 
Builder (IB) and the Query Processor (QP). The IB (see 
Figure 1) shreds the XML‟s hierarchal structure (derived by 
the XPath‟s thirteen axes and their extension; the Next and 
Previous axes [1]) into a set of binary relations each of which 
is physically stored as an n×n bitmap matrix. An entry in any 
matrix is either „1‟ if the corresponding relationship is exists 
between the coupled nodes or „0‟ otherwise [8][23]. 

 
Figure 1. PACD‟s Index Builder (IB) 

The IB component is also responsible to handle the XML 
updates. Once an update query is issued, the attached UQH 
determines the nodes affected by the update query and the 
type of the update operation itself. The following section 
introduces the PACD‟s UQH and its update primitives, while 
the primitives‟ complexity is discussed in Section IV.  
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III. THE UPDATE HANDLER 

PACD‟s Update Query Handler (UQH), represented by 
operation I.5 of Figure 1, is responsible for all update tasks 
targeted by any ML update operation. These tasks include 
the translation of the update query, and the determination and 
the execution of necessary update primitive. 

The execution of the update query starts by identifying 
the node(s) that are affected by the update command/query. 
The handler navigates through a finite-state-machine (FSM) 
version of the update-query [2] in order to locate the affected 
node-set. Once the target node-set is identified, the handler 
calls the appropriate update primitive (see Table I). PACD 
supports update primitives for single node insertion and 
deletion, twig insertion and deletion, and textual and 
structural-based changes.  

The update primitives act on all PACD‟s components 
including the NodeSet container [2] and the structure based 
matrices. Each update primitive has to execute certain 
instructions over each component such as adding new 
columns and rows (over the bitmapped matrices). The cost of 
the update-query is the sum-cost of executing all generated 
update primitives over the all PACD‟s components, i.e., 
matrices and NodeSet container.  For example, the „insert‟ 
primitive can involve adding one or more rows and columns 
to the bitmapped matrices, as well as adding one or more 
entries to the NodeSet container. So, the cost of the insert 
operation will be the cost of inserting the node information 
inside the NodeSet container plus the cost of inserting one 
row and column inside the „child‟, „desc‟ and „next‟ matrices 
respectively. The general update algorithm is given in Table 
II.  

TABLE I. XML UPDATE PRIMITIVES 

Insertion 

insertLeaf adds a leaf node 

insertNonLeaf adds an internal node  

insertTwig  
adds a single-rooted, connected sub-

tree  

Deletion 

deleteLeaf removes a leaf node 

deleteTwig 
remove a single-rooted, connected 

sub-tree 

Updating 

changeName rename an element or attribute name 

changeValue 
edit the value (text) of an attribute 

(element) 

shiftNode 
move a node from one place to 

another 

shiftTwig 
move a single-rooted, connect sub-

tree from one place to another 

TABLE II. XML UPDATES EXECUTION ALGORITHM 

INPUT: update-query 

OUTPUT: none 

Construct the FSM execution plan corresponding to query‟s twig  

node-set = the returned node-set from the FSM execution 

Using the update-query syntax, determine the primitive(s) 

Call the update-primitive(s) with the obtained node-set: 

 Alter the NodeSet container; 

 Alter the childOf matrix; 

 Alter the descOf matrix; 

 Alter nextOf matrix; 

End; 

IV. DISCUSSION OF UPDATE PRIMITIVES 

This section discusses, through examples, the complexity 
of the update primitives. The complexity is counted as the 
number of the „change‟ actions performed on the NodeSet, 
child matrix, descendant (desc) matrix and next matrix. Due 
to space limitation, the paper only presents sample 
algorithms for some update primitives and then provides an 
example on how the algorithm works based on the XML tree 
in Figure 2.   

  

Figure 2. An Example XML Tree (includes an insertion case) 

A. Insert Primitives 

Table I has shown three insertion primitives that can be 
triggered against XML databases. The prototypes of the 
methods implementing these primitives are: 

 insertLeaf(node_info, parentID [,precedingID]); 

 insertNonLeaf(node_info, parentID [,precedingID]); 

 insertTwig(twig_info, parentID [,precedingID]) 

 
In the above prototypes, the „node_info‟ indicates the 

information of the node(s) to be inserted which includes the 
nodeID, tag_name and the optional textual contents. The 
„parentID‟ refers to the node ID of the parent node under 
which the insertion will take place. The „precedingID‟ must 
be specified if the document order [6][16] is to be preserved, 
and it indicates the node ID of the node that must precede the 
new node. 

1. Leaf Node Insertion 

This method inserts a node at the bottom-most level of 
the tree under parentID node and next to precedingID node. 
Both parentID and precedingID are identified by the UQH 
during the query translation process. 

Example: Add the „year‟ information, i.e., 2003, to the book 

identified by the key „book/110‟, where the „year‟ 

information must precede the „author‟ information (Figure 

2).   

The cost breakdown of the above operation is:  

NodeSet child desc next Total 

1 3 4 4 12 hits 

2. Non-Leaf Node Insertion 

This method can insert a node at any level of the tree 
except the bottom-most level. ParentID and precedingID are 
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identified by the UQH prior calling the primitive. In this 
paper, the analysis assumes that the primitive is only creating 
an additional level between a parent and its children, making 
these children as the children of the inserted node.  

TABLE III. INSERTING NON-LEAF NODE ALGORITHM 

insertNonLeaf(node_info:nodeType,parentID:nodeIDType,precID: 

nodeIDType) 

 Get the next nodeID; 

 Insert the node information into NodeSet; 

 *-- update the child matrix: 

 Add a row and column to the „child‟; 

 Let: childSet = {node(i), where child[i,parentID] = „1‟}  

 For each i  childSet: 

  Set: child[i,nodeID] = „1‟; 

 Set: child[nodeID,parentID] = „1‟; 

 *--update the desc matrix: 

 Add a row and column to the „desc‟; 

 Let: anceSet = {node(i), where desc[parentID,i] = „1‟}  

          parentID; 

 Let: descSet = {node(j), where desc[j,parentID] = „1‟}; 

 For each i  anceSet: 

  Set: desc[nodeID,i] = „1‟; 

 For each j  descSet: 

  Set: desc[j,nodeID] = „1‟; 

 *--update the next matrix: 

 Add a row and column to the „next‟; 

 If precID  null: 

  Let: temp = {node(i), where next[i,precID] = „1‟}; 

  Set: next[nodeID,precID] = „1‟; 

  If temp  null: 

   Set: next[temp,precID] = „1‟; 

END. 

Example: Make the current author of the book titled 

„Indexing XML‟ to be the FIRST author of the book so that 

other authors can be added. This requires adding a parent 

node called „au_det‟ for the „first‟ and „last‟ nodes under 

the original „author‟ node (Figure 3).   

The cost breakdown of the above operation is:  

NodeSet child desc next Total 

1 5 6 0 12 hits 

 

 Figure 3. Non-Leaf Node Insertion 

 

 

3. Twig Insertion 

This method inserts a sub-tree of „m‟ nodes under the 
parentID and after the precID. Both the parentID and the 
precID are determined by the UQH, and the twig is only 
inserted at bottom-most nodes. The twig insertion can be 
modeled as inserting multiple connected nodes. In other 
words, inserting a twig of „m‟ nodes requires „m‟ times the 
cost of inserting a single leaf-node and can be performed by 
the same algorithm in Table III starting at the twig‟s root 
node. 

Example: add a second author sub-tree, i.e., including the 

„first‟ and „last‟ name, to the book titled „Indexing XML‟ 

(Figure 4).   

The cost breakdown of the above operation is:  

NodeSet child desc next Total 

3 9 14 8 34 hits 
 

 Figure 4. Twig Insertion 

4. Complexity Analyses  

Due the space limitation the full complexity analyses of 
the operations is omitted. The following table only 
summarizes the number of work-units required to conduct 
the insertion primitives in general. 

TABLE IV. COMPLEXITY ANALYSES SUMMARY OF THE INSERTION 

PRIMITIVES 

 

B. Deletion Primitives 

Table I has shown two deletion primitives that can be 
triggered against XML databases. The prototypes of the 
methods implementing these primitives are: 

 deleteLeaf(nodeID); 

 deleteTwig(twigRootNodeID); 
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In the above prototypes, the „nodeID‟ indicates the node 
ID of the node that to be deleted while the 
„twigRootNodeID‟ indicates the node ID of the root node of 
the targeted twig. The discussion in this section assumes that 
deleting a non-leaf node results in a cascade deletion of its 
children, therefore the „deleteTwig‟ operation will be applied 
in the case of deleting a non-leaf node.  

1. Leaf Node Deletion 

This method deletes a node from the bottom-most level of 

the tree labeled with nodeID, which is returned by the UQH 

during the query translation process. 

Example: Remove the author‟s last-name from the book 

identified by the key „book/110‟.   

The cost breakdown of the above operation is:  

child desc next NodeSet Total 

2 2 2 1 7 hits 

2. Twig Deletion 

This method deletes a connected sub-tree rooted at 
„twigRootNodeID‟ from the XML tree. The twig root node 
ID is returned by the UQH during the query translation 
process. 

TABLE V. INSERTING NON-LEAF NODE ALGORITHM 

deleteTwig(twigRootNodeID: nodeIDType) 

 *-- reconnect the next_of list of the nextOf matrix: 

 Let:  

  next = {node(i), where nextOf[i,twigRootNodeID] = „1‟}; 

  prev = {node(j), where nextOf[twigRootNodeID,j] = „1‟}; 

 If next  null AND prev  null: 

  Set: nextOf[next,prev] = „1‟; 

 *--identify all the node inside the deleted twig: 

 Let: descSet = {node(i), where descOf[i, twigRootNodeID] = 

         „1‟}  twigRootNodeID; 

 *--remove row and columns from all matrices, and the node_info 

    *-- from the NodeSet : 

 For each i  descSet: 

  Locates the corresponding row and column of the nodeID 

                 inside the „childOf‟; 

  Remove the row and column from the „childOf‟;  

  Locates the corresponding row and column of the nodeID 

                 inside the „descOf‟; 

  Remove the row and column from the „descOf‟;  

  Locates the corresponding row and column of the nodeID  

                 inside the „nextOf‟; 

  Remove the row and column from the „nextOf‟;  

  Locate the corresponding record of the nodeID inside the 

                „NodeSet‟; 

  Delete the nodeID; 

END. 

Example: Remove the complete author‟s information from 

the book identified by the key „book/110‟ (Figure 5). Note: 

this will remove the nodes „&8‟ and „&9‟.   

The cost breakdown of the above operation is:  

child desc next NodeSet Total 

4 4 4 2 14 hits 

Figure 5. Twig Deletion 

3. Complexity Analyses  

The following table only summarizes the number of 
work-units required to conduct the deletion primitives in 
general. 

TABLE VI. COMPLEXITY ANALYSES SUMMARY OF THE DELETION 

PRIMITIVES 

 

C. Change Primitives 

Table I has shown four change primitives that can be 
triggered against XML databases. The prototypes of the 
methods implementing these primitives are: 

 changeName([nodeID|oldName],newName); 

 changeValue([nodeID|oldName],newValue); 

 shiftNode(nodeID,newParentID[,leftID]); 

 shiftTwig(twigRootID,newParentID[,leftID]); 

 
In the above prototypes, the „nodeID‟ indicates the node 

ID of the targeted node targeted. The „oldName‟ and 
„newName‟ indicate the tag-name of the targeted node. The 
„newValue‟ is the textual content of the node to be altered. 
The „parentID‟ and the „leftID‟ are the node ID of the parent 
node and left node of the targeted node. Finally, the 
„twigRootID‟ is the node ID of the twig to be shifted.  

1. Tag-Name Change 

This method renames a node (identified by the nodeID) 
or a set of nodes (that have the same name identified by 
oldName) to the new name newName. 

Example: Change the name of the node „thesis‟ to be 

„phdthesis‟.   

This query changes the tag name of the node &11 from 
„thesis‟ to „phdthesis‟ with the cost of one work-unit. 

Example: Change the name of all nodes labeled with „key‟ to 

be „pub_id‟.   
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In this query, the „oldName‟ parameter is the word „title‟ 
and the „newValue‟ parameter is a function that converts its 
argument to the uppercase. The query will perform three 
work units in total.   

2. Textual-Value Change 

This method changes the textual contents of a node 
(identified by the nodeID) or a set of nodes (that have the 
same name identified by oldName) to the new value 
newValue. 

Example: Change the publication year for the book labeled 

with „Book/101‟ to be „2000‟ instead of „2001‟.   

This query changes the value of the node &2 from „2001‟ 
to „2000‟ with the cost of one work-unit. 

Example: Change the „title‟ of all publications to the 

uppercase.   

In this query, the „oldName‟ parameter is „title‟ and the 
„newValue‟ parameter is a function that converts its 
argument to the uppercase. The query will perform three 
work units in total.  

3. Single Node Shifting 

This method moves the node labeled with nodeID to be 
under the node newParentID. If the exact location is 
required, the preceding node at the new location, i.e., 
„leftID‟, must be specified. 

Example: Move the publication year of book „book/101‟ to 

be the publication year for the book „Book/110‟ (Figure 6).   

The cost breakdown of the above operation is:  

childOf descOf nextOf Total 

2 4 4 10 hits 

Figure 6. Single Node Shifting (Parent Change) 

4. Twig Shifting 

This method moves a sub-tree (twig) rooted at the 
twigRootID to be a sub-tree under the node newParentID. If 
the exact location is required, the preceding node at the new 
location, i.e., leftID, must be specified. 

TABLE VII. INSERTING NON-LEAF NODE ALGORITHM 

shiftTwig(twigRootID: nodeIDType, newParentID: nodeIDType, 

     leftID: nodeIDType) 

 *-- update the childOf matrix: 

 Let: oldParentID = {node(i), where childOf[twigRootID,i] = 

           „1‟}; 

 Set: 

  childOf[twigRootID,newParentID] = „1‟; 

  childOf[twigRootID,oldParentID] = „0‟; 

 *--update the descOf matrix: 

 Let:  

  twigNodeSet = {node(1..m), where node(i)  twig}; 

  oldAnceSet = {node(i), where descOf[twigRootID,i] = „1‟}; 

  newAnceSet = {node(j), where descOf[newParentID,j] = „1‟} 

                 newParentID; 

 For each node i  newAnceSet: 

  For each node j  twigNodeSet: 

   Set: descOf[j,i] = „1‟; 

 For each node i  oldAnceSet: 

  For each node j  twigNodeSet: 

   Set: descOf[j,i] = „0‟; 

 *--update the nextOf matrix: 

 Let:  

  next_of_ twigRootID = {node(i), where  

                 nextOf[i, twigRootID] = „1‟}; 

  prev_of_ twigRootID = {node(j), where  

                nextOf[twigRootID,j] = „1‟}; 

  next_of_leftID = {node(i), where nextOf[i,leftID] = „1‟}; 

  prev_of_leftID = {node(j), where nextOf[leftID,j] = „1‟}; 

 Set (if any combination is not null):  

  nextOf[next_of_twigRootID,prev_of_twigRootID] = „1‟; 

  nextOf[twigRootID,prev_of_twigRootID] = „0‟; 

  nextOf[twigRootID,leftID] = „1‟; 

  nextOf[next_of_leftID, twigRootID] = „1‟; 

  nextOf[leftID,prev_of_leftID] = „0‟; 

  nextOf[next_of_leftID,leftID] = „0‟; 

END. 

 

Example: Move the author information of book „book/110‟ 

to be the author for the book „Book/101‟ (Figure 7).   

The cost breakdown of the above operation is:  

child desc next Total 

2 12 2 16 hits 

Figure 7. Twig Shifting (Parent Change) 
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5. Complexity Analyses 

The following table only summarizes the number of 
work-units required to conduct the change primitives in 
general. 

TABLE VIII. COMPLEXITY ANALYSES SUMMARY OF THE CHANGE 

PRIMITIVES 

 

V. OVERALL COMPLEXITY  

The analysis provided above has shown that the cost of 
all update-primitives over the PACD‟s uncompressed data 
representation lies in acceptable limits in general. Of the 
update primitives discussed, the highest update complexity is 
only a fraction of the number of nodes, i.e., „n‟, and this only 
happens during the infrequently accessed operation 
„insertNonLeaf‟. The cost of other update operations ranges 
between a very small constant „c‟ (where „c‟ is an extremely 
small number comparing to the number of nodes „n‟ in the 

database) and „mc‟ in the case of manipulating a twig of 
size „m‟ nodes.  

 From the technical point of view, the bitmapped XML 
structure and the introduction of the previous/next axes [2] 
has played a major role in such cost reduction. Unlike node-
labeling based techniques, e.g., [11][18][21], the use of the 
next matrix -to encode the document order- has narrowed the 
spread of label changes to the adjacent nodes (only) of the 
targeted node. Also encoding the basic XML structures (the 
child/parent and descendant/ancestor relationships) using the 
bitmapped node couplings (the child and desc matrices) has 
reduced the high cost and complexity that result from using 
path-summaries [5][9] [7][20] and sequences [10][15] to 
encode such structures. The analysis has shown that the 
number of changes in the child structure is bounded by a 
small constant „c‟ (where „c‟ is an extremely small number 
comparing to the number of nodes „n‟ in the database) in 
most cases except the „insertNonLeaf‟ primitive which 

requires „‟ number of hits depending on the node‟s breadth 
degree.  

Another source of cost reduction in PACD‟s update 
transactions is the separation between the textual contents 
representation and the XML hierarchal structure 
representation. Because of that, the content-based primitives 
only affect the NodeSet container while the structure-based 
update primitives affect the bitmapped matrices. This is not 
the case of path-summary and sequence-based techniques 
where the underlying path-summary or sequence has to be 

changed for either type of updates (content-based or 
structure-based). In general, the number of hits over the 
NodeSet container is limited by the number of targeted nodes 
except when amending a tag/attribute name or a node value 
for a set of nodes that share the same tag/attribute name. In 
this case, the cost is limited by the number of nodes that 
share the same tag/attribute name which is also considered 
small comparing to the entire XML tree. 

VI. A COMPARATIVE STUDY 

A. The Experiment Setup 

A comparative experiment between the performance 
PACD technique and two representative XML techniques 
from the literature is conducted to support the above 
complexity analyses. The experiment executes 6 update 
queries –as a representation of the above update primitives- 
translated over 3 XML databases for the 3 selected XML 
techniques. The 6 update queries are listed in Table IX while 
the characteristics of the 3 XML databases are given Table 
X. Also Table XI shows the XML/RDBMS mapping schema 
of the three compared techniques, PACD, XParent and Edge, 
while other specifications of these techniques can be found at 
the references [2], [9] and [24] respectively. 

The experiment counts the number of changes (hits) done 
over the technique‟s underlying representation (2

nd
 column 

of Table XII) of the XML database, and lists them per query 
ID in separate columns (see Table XII) over each XML 
database. The number of hits, over all components, is 
summed up in the last 3 rows of Table XII which 
summarizes the overall experimental results.  

TABLE IX. THE EXPERIMENTAL UPDATE QUERIES 
Query ID Query Description 

U1 Insert an Atomic Value, i.e., leave node 

U2 Insert a Non-atomic Value, i.e., non-leave or internal 
node 

U3 Delete an Atomic Value , i.e., leave node 

U4 Delete a Non-atomic Value , i.e., non-leave or internal 
node 

U5 Change an Atomic Value, i.e., the textual content of a 
node 

U6 Change a Non-atomic Value, i.e., tag-name 

TABLE X. FEATURES OF THE EXPERIMENTAL XML DATABASES 

 DBLP [25] XMark [27] Treebank [26] 

Size (#of nodes) †† 2,439,294 2,437,669 2,437,667 

Depth(#of levels) 6 10 36 

Min Breadth† 2 2 2 

Max Breadth 222,381 34,041 56,385 

Avg Breadth† 11 6 3 

#of Elements 2,176,587 1,927,185 2,437,666 

#of Attributes 262,707 510,484 1 

† Figures exclude leaf nodes 

†† Dataset also contains two versions of each database at 50% and 25% 
of the size of the base database. Both the depth and the average 

breadth of the base databases are maintained in the smaller 

databases 
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B. Experimental Results Summary  

Comparing to other techniques, PACD appeared having 
the best performance for most of the queries in all situations. 
The experiment has also shown that the performance of 
XParent and Edge was delayed by the cost of the document 
order persevering mechanism. PACD eliminates this cost by 
encoding the previous/next relationship which requires at 
most two amendments for any node update operation. 

TABLE XI. THE EXPERIMENTAL COMPARABLE XML TECHNIQUES 

Technique Components (XML/RDBMS Mapping Schema) 

PACD 

XMLNodes(nodeID, type, tagID) 

XMLSym(tagID, desc) 

XMLValues(nodeID, value) 
childOf(childID, parentID)     OIMatrix(Source, Target, 

relType) 

descOf(descID, anceID) 
nextOf(nextID, prevID) 

Edge Edge(source, target, ordinal, label, flag, value) 

XParent 

labelPath(pathID, length ,PathDesc) 

element(pathID, ordinal, nodeID) 

data(pathID, ordinal, nodeID, value) 
dataPath(nodeID, parented) 

ancestors(nodeID, anceID, level) 

VII. CONCLUSION 

This paper has discussed the PACD‟s updating 
framework which is managed by a set of low cost update 
primitives. Once an update query is issued, the Update Query 
Handler (UQH) process identifies the target node-set and the 
necessary update primitive(s). The translation of an update 
query may generate one or more update primitives each of 
which may alter one or more XML nodes. The UQH 
currently can generate nine update primitives divided into 
three categories; the insert, delete, and change primitives.  

The analysis and the experimental results in this paper 
have shown that the computation cost of XML update 
queries can be improved using the update primitives, which 

specifically act on the PACD data representation. The cost 
analysis of all update primitives is provided in Tables IV, VI 
and VIII. 
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