
Enabling End Users to Build Situational Collaborative Mashups at Runtime

Gregor Blichmann, Carsten Radeck, Klaus Meißner
Technische Universität Dresden, Germany

{Gregor.Blichmann, Carsten.Radeck, Klaus.Meissner}@tu-dresden.de

Abstract—Web based collaboration gains importance in
everyday life. However, users have to switch between dedicated
collaboration tools that are not interoperable and do not satisfy
the long tail of user needs. To overcome this, users would have
to develop customized applications by themselves. Caused by
a lack of support for users without programming experiences,
existing approaches lack support for end user development
(EUD) or cause high cognitive load leading to frustration.
Therefore, we utilize the mashup paradigm to empower end
users in configuring their collaboration environment indepen-
dently. To address arbitrary collaboration demands, we enable
to synchronize collaborative and non collaborative components
during an application’s runtime. In addition, users are able
to share mashups as well as components, entirely or only in
part, with an arbitrary number of collaboration partners. To
further allow for individual user preferences, amongst others,
we facilitate a semantic component description to synchronize
different implementations of functionally similar applications.

Keywords-Collaborative End User Development; Synchronous
Groupware; Mashup Composition

I. INTRODUCTION

Indicated by an increasing number of solutions even the
technological requirements of collaborative applications can
be met by web browsers [1]. In this course, the number
of demands for individualized collaboration tools increases,
too. Especially within unstructured collaboration, character-
ized by its informal nature and non-hierarchical organization,
not all of the users’ demands can be anticipated during the
development of groupware [2]. Hence, end users have to
become developers themselves [3]. Within this, two basic
challenges exist: Enabling users with no programming ex-
periences to build individual collaboration tools and allowing
for simultaneous development and usage.

To cope with these challenges, mashups are a promising
approach, but neglect collaborative scenarios so far. Univer-
sal composition [4] combines arbitrary web resources span-
ning all application layers, i. e., data, logic and UI. There-
fore, end users can build desired applications by combining
existing components via, e. g., drag and drop. Combining
these benefits and supporting end users to build solutions
for synchronous collaboration independently, we propose
our vision for collaborative mashup EUD in this paper.
Based on an extensive literature review and experience with
previously projects, we identified three major challenges for
this approach, to whose solution we will contribute:

C1 To lower the training effort in new usage scenarios,
users should be able to collaborate using their preferred
applications. Therefore, all components, regardless of
their implementation or built-in support for collabora-
tion, have to be synchronizable and connectable. We
have to develop a mechanism for unified handling of
non collaborative and collaborative components, even
if the latter include more sophisticated means for,
e. g., awareness, which is insufficiently addressed by
universal composition approaches. To this end, at least
a unified component description has to be developed.

C2 In order to allow each user to use his desired device
or select components according to his preferences,
we will have to synchronize differently implemented
components with identical functionalities. In addition,
novel mechanisms for awareness between collaboration
partners are required, taking into consideration the
existence of different implementations and individually
granted sharing levels for different application parts.

C3 To support unstructured collaboration, fine-grained
sharing of mashup composition parts across all applica-
tion layers is necessary. An appropriate rights manage-
ment, especially regarding visualization and interaction
metaphors for non programmers, is not provided suf-
ficiently yet, and one of the major keys for success
within the solution to be developed.

Addressing these challenges, we propose a mashup en-
vironment where users without programming experiences
are supported to fulfil their individual collaboration needs.
The approach is part of the EDYRA project, which utilizes
recommendations [5] to enable mashup EUD. To extend
the current solution for collaborative scenarios, we strive
for a uniform handling of collaborative and non collabora-
tive components, synchronization of differently implemented
components with equal functionalities as well as fine-grained
sharing of arbitrary application parts.

Consider the following scenario we refer to throughout the
paper. Bob plans a sight seeing trip. To this end, he builds a
mashup including a map, a hotel search and a sight advisor
component. To contact Alice for some inspiration, he adds a
facebook messenger component. While the latter offers built-
in collaboration, the other components are not originally
intended for collaborative use. However, Bob can share all of
them for a synchronous usage with Alice. Because she uses

120Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

a smartphone, components will automatically be replaced
with functionally identical pendants optimized for touch
based devices. Bob restricts Alice’s rights so that she can
only view the selected location, but can not change it. To
get additional information about the discussed sights, Alice
inserts a Wikipedia component but keeps it private.

Before we present our envisioned approach in Section III,
we give an overview of our foundations in Section II.
Section IV briefly discusses related approaches. Finally,
Section V summarizes the vision and outlines future work.

II. CONCEPTUAL FOUNDATION

In the following, we give a brief overview of our con-
ceptual basis, the CRUISe platform [4]. CRUISe provides
universal composition through platform and technology
independent combination of arbitrary web resources and
services. Resources encapsulated as components are uni-
formly described using the Semantic Mashup Component
Description Language (SMCDL) [6]. SMCDL covers the
public component interface and non-functional properties,
like price, author and input modalities. The interface con-
sists of properties as well as parametrized operations and
events. Optionally, ontology concepts can be annotated to
clarify data semantics of parameters and properties as well
as functional semantics of operations. In general, UI and
service components are distinguished. Including all compo-
nents, their state, event-based communication, and layout, a
composition model declaratively describes mashup applica-
tions [4]. To enable context-aware selection of semantically
compatible components according to, e. g., suitable target
runtimes or user preferences, so called Templates are used
[6]. To this end, templates are equally characterized by a
component interface, but additionally include non-functional
requirements for ranking candidates. With regard to the
support for synchronous usage, CRUISe currently neither
enables to synchronize components nor to individually share
parts of the mashup with others.

III. COLLABORATIVE MASHUP EUD

In this section, we present our environment for collab-
orative mashup creation by end users. The Mashup Run-
time Environment (MRE) is shown in Figure 1. We take
advantage of loosely coupled clients, server side components
and access control using the server as proxy, through a
centralized architecture. Mashup Runtimes, which will be re-
used, for instance, from CRUISe, act as execution container
for mashups that context-sensitively retrieve components
from the Component Repository. To enable execution on
client and server, each environment has a Mashup Runtime.
Thus, we execute private components only in clients’ en-
vironments. Therefore, a collaborative mashup equals the
union of all composition fragments from all clients and the
server. To enable collaborative scenarios, Mashup Runtimes
are extended by the following middle-ware functionalities.

Through the Communication Manager clients can ex-
change messages with the server. Each client and the server
includes a Coordination Manager, which receives every
message published at the corresponding part of the MRE
first. Local messages are sent to the server, where the
Coordination Manager orchestrates further processing steps.
First, the Concurrency Manager ensures correct handling of
concurrent messages by preserving their global order and
drops redundant ones. Next, the Access Manager checks
which of the MRE parts has the right to receive the current
message with the help of a routing table, which includes
users’ sharing definitions. An User Service ensures trusted
authentication and is tightly coupled with a Context Service
that comprises a semantic user model. The Awareness Man-
ager analyzes the current message and generates a command
for all clients concerned to display, e. g., information about
a new component. Therefore, the Awareness Manager is
tightly couple with Access Manager, to ensure that only
clients that are granted receive this information. The Session
Manager handles necessary session data, like connected
users or included components.

CLIENT ENVIRONMENT NCLIENT ENVIRONMENT 1

SERVER ENVIRONMENT

MASHUP RUNTIME

COORDINATION
MANAGER

CONCURRENCY
MANAGER

ACCESS
MANAGER

SESSION
MANAGER

MASHUP
RUNTIME

COORDINATION MANAGER

COMMUNICATION MANAGER

COMMUNICATION MANAGER

MASHUP RUNTIME

COORDINATION MANAGER

COMMUNICATION MANAGER

CONTEXT
SERVICE

USER
SERVICE

AWARENESS
MANAGER

...

CO
M

PO
N

EN
T

RE
PO

SI
TO

RY

Figure 1. Architecture of the collaborative Mashup Runtime Environment

In the following, we briefly describe how we solve the
identified three challenges C1-C3 with the use of unified
mashup synchronization, synchronization of heterogeneous
composition fragments, and fine-grained application sharing.

A. Unified Synchronization for Mashup Components

In contrast to distinguish between collaborative and trans-
parently adapted, non collaborative components, we strive
for a hybrid approach, where users can uniformly use both
kinds in one environment. Thus, regarding C1, users can
choose components they are preferring or familiar with.
Besides service or UI, components will be classified in
collaborative and non collaborative. Furthermore, the former
are differentiated by support for: communication, e. g. chat,
coordination, e. g., task list or cooperation, e. g., text edi-
tor. Thereby, users can receive advice during composition
extensions like, e. g., adding a communication component
if only coordination and cooperation components exist. All
components will be uniformly described through SMCDL.

Assisting component developers with no knowledge about
collaboration support, the platform can synchronize non

121Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

collaborative components by using the interface definition
within the SMCDL comprising properties, operations and
events. Therefore, after, e. g., a marker of a map is changed,
the changed property triggers an event that is captured
through the corresponding client side Coordination Manager.
A further client side event delegation is suppressed. Instead,
the event is send within a message to the server’s Coordi-
nation Manager which then, after processing the message as
described above, distributes it to all Mashup Runtimes that
are allowed to receive. Now, the events are propagated within
the event bus of each client Mashup Runtime in parallel.
Although this approach allows only for limited awareness
support and basic concurrency control, its advantage is
genericity: no matter which implementation the component
has or which functionality it offers, it can be synchronized.

B. Synchronizing Heterogeneous Composition Fragments

To meet C2, first, detecting functionally similar compo-
nents with different implementations has to be possible. We
utilize the findings from [6]. Thereby, semantically annotated
component templates are used to find components with equal
interfaces. Additionally, subsumption-based matching de-
tects differences of operations’ and events’ data parameters.

To provide a more expressive functionality description,
we use Capabilities, basically consisting of an activity, e. g.,
search and an entity on which this activity is performed, e. g.,
hotels. Both are represented as ontology concepts. Based on
this, we try to detect functionally equal components with
different interfaces. Once two components where detected
as equal, mediation techniques [6] are employed to realize
synchronization. As an example, we can detect that a Google
Map and a Open Street Map fulfil the functionality location
selection and synchronize them even if one is representing
current marker positions as latitude and longitude and the
other as pure address string.

Enabling end users to successfully collaborate via compo-
nents offering the same functionality but requiring mediation
rises additional challenges concerning rights management,
concurrency control and awareness. As pointed out earlier,
the latter is very important for supporting end users. To offer
awareness across different components, we strive for aware-
ness ports within a component’s SMCDL. These ports can
be semantically annotated to express the kind of awareness
information they offer, e. g., text highlighting within a text
editor. Known semantic based mediation techniques can now
be used to exchange concrete awareness information in spite
of different implementations.

C. Fine-grained Release of Composition Fragments

Besides synchronizing an entire application, we enable
users to share only parts of it. Facing C3, we facilitate to
provide these parts with different restrictions to an arbitrary
number of users during application runtime. To specify

access privileges, so called sharing definitions are used
characterizing three aspects: object, subject, and permission.

The object indicates the application part to be shared.
This can potentially be any kind of composition fragment
like the whole application, a couple of components, a single
component, a part of a single component, or at least nothing.
The subject signals the persons with whom a user wants
to share an object. In principle, sharing can be divided in
private, shared, or public. While being private only the user
himself can access the object, public allows access to all
individuals in the session. Shared parts are accessible for
single persons or groups. How people can interact with
objects can be expressed by six permissions: no right to
even see the object, right to only view it, right to interact,
the right to reconfigure or edit the sharing object, e. g., add
a component or change wirings between components, and
right to again create sharing definitions for others.

A collaboration session starts by initially sharing applica-
tion parts with others. Within a session, every user can create
an arbitrary number of sharing definitions concerning objects
he has inserted or he has been granted the permission. That
means, not only the session initiator can define sharing
definitions. After accessing the collaborative mashup, every
participant can individually extend their part of the applica-
tion and individually define access rights for others. Due to
different definitions affecting, e. g., the same object, conflicts
can occur. Therefore, a conflict detection within the Access
Manager checks every definition. If a conflict is detected,
a visual user feedback about the conflicting definitions, the
conflict reasons and proposed resolutions will be displayed.

To ensure that the proposed permission can in principle be
realized with every object, components can additionally offer
different modes. Due to the use of black box components,
especially when sharing only parts of them, such modes
are needed. Take a map as an example. Besides its default
mode, it offers a more restrictive mode where a user only
can zoom or shift the map section, but is unable to set or
delete markers. Provided modes are uniformly declared in
the component’s semantic descriptor.

IV. RELATED WORK

Regarding EUD of composite collaborative web applica-
tions, a wide area of previous research was reviewed.

While early groupware frameworks, like Agilo [7], try to
ease groupware development through reuse of application
code, due to their programmatic approach, they lack in
support for users with no programming experience. To lower
the development complexity, many component or widget
based approaches have been presented. While Cheaib et
al. [2] only focus on web services, and do not regard UI
components, approaches like DyCe [8] enables to work
on shared components synchronously, but offers no fine-
grained right restrictions or dynamic switching between
private and shared. The ROLE project [9] supports learners

122Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

building their own personal learning environment through
combination of widgets. While users also are able to define
widgets as shared or private, shared widgets are usable for
every one. No adjustment during usage and no further fine-
grained sharing is possible. In addition Graasp [10] distin-
guishes space members between owner, editor or viewer, but
neither offers such fine-grained sharing definitions like we
do nor a detailed concept for an end user appropriate right
management. In addition, non of the solutions focus on the
synchronization of heterogeneous components.

The idea to transparently synchronize encapsulated black
box components by just accessing their outer interface was
proposed earlier in the area of transparent adaption and
collaboration transparency. Heinrich et al. [11] propose a
generic approach for DOM-based rich internet applications.
While they are able to synchronise arbitrary web appli-
cations, e. g., text or spread sheet editors, their solution
demands identically application instances. Further, they pro-
vide no solution for end users to share only some application
parts with others as well as to connect two application
instances.

In the domain of mashups, only two solutions addressing
synchronous collaboration were evident. Chudnovskyy et al.
[12] explicitly focus on the combination of telco widgets
and do not address the synchronization of arbitrary com-
ponents as well as the definition of fine-grained sharings.
The same holds true for Fox et al. [13], which only focus
on secure collaboration and present no further concepts for
sharing components through end users. Beyond this, actually
no known approach for synchronously develop, share and
extend mashup applications with others was proposed.

To sum up, none of the solutions provide sufficient support
for the challenges identified in Section I.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented our vision for supporting end
users developing individual, situational web applications for
synchronous collaboration. Based on CRUISe, we address
situational user needs through mashing up applications. The
envisioned solution will provide three contributions. We
enable to integrate and combine transparently synchronized
non collaborative components as well as components ex-
plicitly supporting collaboration. In addition, to enable users
with different contexts to collaborate, we synchronize dif-
ferently implemented components with similar functionality
using semantic component capabilities. Thirdly, we allow
for fine-grained sharing of arbitrary composition fragments.

As the proposed vision is still in an early stage, further
elaboration is necessary. We currently work on detailing the
semantic description of collaborative components and a user
study to evaluate our concepts for suitable visual interaction
techniques. As a foundation we continuously expand our
prototype to get user feed back.

VI. ACKNOWLEDGMENTS

EDYRA is funded by the Free State of Saxony and the
European Union within the ESF program (ESF-080951805).

REFERENCES

[1] C. Gutwin, M. Lippold, and T. C. N. Graham, “Real-time
groupware in the browser: Testing the performance of web-
based networking,” in CSCW. ACM, 2011, pp. 167–176.

[2] N. Cheaib, S. Otmane, and M. Mallem, “Tailorable groupware
design based on the 3c model,” in Int. J. Cooperative Inf.
Syst., vol. 20, no. 4, 2011, pp. 405–439.

[3] T. Schümmer, “A pattern approach for end user centered
groupware development,” Ph.D. dissertation, 2005.

[4] S. Pietschmann et al., “A metamodel for context-aware
component-based mashup applications,” in 12th Intl. Conf.
on Information Integration and Web-based Applications &
Services (iiWAS). ACM, 2010, pp. 413–420.

[5] C. Radeck, A. Lorz, G. Blichmann, and K. Meißner, “Hybrid
recommendation of composition knowledge for end user
development of mashups,” in Proceedings of the 7th Intl.
Conf. on Internet and Web Applications and Services (ICIW),
2012, pp. 30 – 33.

[6] S. Pietschmann, C. Radeck, and K. Meißner, “Semantics-
based discovery, selection and mediation for presentation-
oriented mashups,” in 5th Intl. Workshop on Web APIs and
Service Mashups (Mashups). ACM, 2011, pp. 1–8.

[7] A. Guicking and T. Grasse, “A framework designed for
synchronous groupware applications in heterogeneous en-
vironments,” in CRIWG, ser. Lecture Notes in Computer
Science, vol. 4154. Springer, 2006, pp. 203–218.

[8] D. A. Tietze, “A framework for developing component based
cooperative applications,” Ph.D. dissertation, TU Darmstadt,
Sankt Augustin, 2001.

[9] S. Govaerts et al., “Towards responsive open learning envi-
ronments: The role interoperability framework,” in EC-TEL,
ser. Lecture Notes in Computer Science, vol. 6964. Springer,
2011, pp. 125–138.

[10] E. Bogdanov et al., “A Social Media Platform in Higher Edu-
cation,” in Proceedings of the Global Engineering Education
Conference (EDUCON), 2012, pp. 1–8.

[11] M. Heinrich, F. Lehmann, T. Springer, and M. Gaedke,
“Exploiting single-user web applications for shared editing -
a generic transformation approach,” in Proceedings of the 21st
Intl. Conf. Companion on World Wide Web (WWW). ACM,
2012, pp. 1057–1066.

[12] O. Chudnovskyy et al., “End-User-Oriented Telco Mashups:
The OMELETTE Approach,” in Proceedings of the 21st Intl.
Conf. Companion on World Wide Web (WWW). ACM,
2012, pp. 235–238.

[13] R. Fox, J. Cooley, and M. Hauswirth, “Collaborative devel-
opment of trusted mashups,” in Proceedings of the 12th Intl.
Conf. on Information Integration and Web-based Applications
& Services (iiWAS). ACM, 2010, pp. 255–262.

123Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

