
Compressing Large Size Files on the Web in MapReduce

Sergio De Agostino
Computer Science Department

Sapienza University
Rome, Italy

Email: deagostino@di.uniroma1.it

Abstract—Lempel-Ziv (LZ) techniques are the most widely
used for lossless file compression. LZ compression basicly
comprises two methods, called LZ1 and LZ2. The LZ1 method
is the one employed by the family of Zip compressors, while
the LZW compressor implements the LZ2 method, which is
slightly less effective but twice faster. When the file size is large,
both methods can be implemented on a distributed system
guaranteeing linear speed-up, scalability and robustness. With
Web computing, the MapReduce model of distributed process-
ing is emerging as the most widely used. In this framework,
we present and make a comparative analysis of different
implementations of LZ compression. An alternative to standard
versions of the Lempel-Ziv method is proposed as the most
efficient one for large size files compression.

Keywords-web computing; mapreduce framework; lossless
compression; string factorization

I. INTRODUCTION

Lempel-Ziv (LZ) techniques are the most widely used
for lossless file compression. LZ compression [1], [2], [3]
is based on string factorization. Two different factorization
processes exist with no memory constraints. With the first
one (LZ1) [2], each factor is independent from the others
since it extends by one character the longest match with
a substring to its left in the input string. With the second
one (LZ2) [3], each factor is instead the extension by one
character of the longest match with one of the previous fac-
tors. This computational difference implies that while sliding
window compression has efficient parallel algorithms [4],
[5], [6], [7], LZ2 compression is hard to parallelize [8] and
less effective in terms of compression. On the other hand,
LZ2 is more efficient computationally than sliding window
compression from a sequential point of view. This difference
is maintained when the most effective bounded memory
versions of Lempel-Ziv compression are considered [6], [9].
While the bounded memory version of LZ1 compression
is quite straightforward, there are several heuristics for
limiting the work-space of the LZ2 compression procedure
in the literature. The ”least recently used” strategy (LRU)
is the most effective one. Hardness results inside Steve
Cook’s class (SC) have been proved for this approach [9],
implying the likeliness of the non-inclusion of the LZ2-
LRU compression method in Nick Pippenger’s class (NC).
Completeness results in SC have also been obtained for a
relaxed version of the LRU strategy (RLRU) [9]. RLRU was

shown to be as effective as LRU in [10] and, consequently, it
is the most efficient one among the Lempel-Ziv techniques.

Bounding memory is very relevant with distributed pro-
cessing and it is an important requirement of the MapReduce
model of computation for Web computing. A formalization
of this model was provided in [11], where further con-
straints are formulated for the number of processors, the
number of iterations and the running time. However, such
constraints are a necessary but not sufficient condition to
guarantee a robust linear speed-up. In fact, interprocessor
communication is allowed during the computational phase
and experiments are needed to verify an actual speed-
up. Distributed algorithms for the LZ1 and LZ2 methods
approximating in practice their compression effectiveness
have been realized in [6], [12], [13], where the stronger
requirement of no interprocessor communication during the
computational phase is satisfied. In fact, the approach to a
distributed implementation in this context consists of apply-
ing the sequential procedure to blocks of data independently.

In Sections 2 and 3, we describe the Lempel-Ziv com-
pression techniques and their bounded memory versions
respectively. Section 4 sketches past work on the study
of the parallel complexity of Lempel-Ziv methods leading
to the idea of relaxing the least recently used strategy. In
Section 5, we present the MapReduce model of computation
and introduce further constraints for a robust approach to
a distributed implementation of LZ compression on the
Web. Section 6 makes a comparative analysis of different
implementations of LZ compression in this framework and
proposes an alternative to the standard versions as the most
efficient one for large size files compression. Conclusions
and future work are given in Section 7.

II. LEMPEL-ZIV DATA COMPRESSION

Lempel-Ziv compression is a dictionary-based technique.
In fact, the factors of the string are substituted by pointers
to copies stored in a dictionary, which are called targets.
LZ1 (LZ2) compression is also called the sliding (dynamic)
dictionary method.

Given an alphabet A and a string S in A∗ the LZ1
factorization of S is S = f1f2 · · · fi · · · fk where fi is the
shortest substring, which does not occur previously in the
prefix f1f2 · · · fi for 1 ≤ i ≤ k. With such factorization, the

135Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

encoding of each factor leaves one character uncompressed.
To avoid this, a different factorization was introduced (LZSS
factorization) where fi is the longest match with a substring
occurring in the prefix f1f2 · · · fi if fi ̸= λ, otherwise
fi is the alphabet character next to f1f2 · · · fi−1 [14]. fi
is encoded by the pointer qi = (di, ℓi), where di is the
displacement back to the copy of the factor and ℓi is the
length of the factor (LZSS compression). If di = 0, li is the
alphabet character. In other words the dictionary is defined
by a window sliding its right end over the input string, that
is, it comprises all the substrings of the prefix read so far in
the computation.

The LZ2 factorization of a string S is S =
f1f2 · · · fi · · · fk where fi is the shortest substring, which
is different from one of the previous factors. As for LZ1 the
encoding of each factor leaves one character uncompressed.
To avoid this a different factorization was introduced (LZW
factorization) where each factor fi is the longest match with
the concatenation of a previous factor and the next character
[15]. fi is encoded by a pointer qi to such concatenation
(LZW compression). LZ2 and LZW compression can be
implemented in real time by storing the dictionary with
a trie data structure. Differently from LZ1 and LZSS, the
dictionary is only prefix.

III. BOUNDED SIZE DICTIONARY COMPRESSION

The factorization processes described in the previous
section are such that the number of different factors (that is,
the dictionary size) grows with the string length. In practical
implementations instead the dictionary size is bounded by
a constant and the pointers have equal size. For LZSS (or
LZ1) compression this can be simply obtained by sliding
a fixed length window and by bounding the match length.
Real time implementations are realized by means of hashing
techniques providing a specific position in the window where
a good approximation of the longest match is found on
realistic data. For LZW (or LZ2) compression dictionary
elements are removed by using a deletion heuristic. The
deletion heuristics we describe in this section are FREEZE,
RESTART, SWAP, LRU [16] and RLRU [9].

Let d + α be the cardinality of the fixed size dictionary
where α is the cardinality of the alphabet. With the FREEZE
deletion heuristic, there is a first phase of the factorization
process where the dictionary is filled up and “frozen”.
Afterwards, the factorization continues in a “static” way
using the factors of the frozen dictionary. In other words, the
LZW factorization of a string S using the FREEZE deletion
heuristic is S = f1f2 · · · fi · · · fk where fi is the longest
match with the concatenation of a previous factor fj , with
j ≤ d, and the next character.

The shortcoming of the FREEZE heuristic is that after
processing the string for a while the dictionary often be-
comes obsolete. A more sophisticated deletion heuristic is
RESTART, which monitors the compression ratio achieved

on the portion of the input string read so far and, when
it starts deteriorating, restarts the factorization process. Let
f1f2 · · · fj · · · fi · · · fk be such a factorization with j the
highest index less than i where the restart operation happens.
Then, fj is an alphabet character and fi is the longest match
with the concatenation of a previous factor fh, with h ≥ j,
and the next character (the restart operation removes all the
elements from the dictionary but the alphabet characters).
Usually, the dictionary performs well in a static way on a
block long enough to learn another dictionary of the same
size. This is what is done by the SWAP heuristic. When
the other dictionary is filled, they swap their roles on the
successive block.

The best deletion heuristic is the LRU (last recently used)
strategy. The LRU deletion heuristic removes elements from
the dictionay in a “continuous” way by deleting at each step
of the factorization the least recently used factor, which is
not a proper prefix of another one. In [9] a relaxed version
(RLRU) was introduced. RLRU partitions the dictionary in
p equivalence classes, so that all the elements in each class
are considered to have the same “age” for the LRU strategy.
RLRU turns out to be as good as LRU even when p is
equal to 2 [10]. Since RLRU removes an arbitrary element
from the equivalence class with the “older” elements, the
two classes (when p is equal to 2) can be implemented with
a couple of stacks, which makes RLRU slightly easier to
implement than LRU in addition to be more space efficient.
SWAP is the best heuristic among the “discrete” ones.

IV. LZ COMPRESSION ON A PARALLEL SYSTEM

LZSS (or LZ1) compression can be efficiently parallelized
on a PRAM EREW [4], [5], that is, a parallel machine
where processors access a shared memory without reading
and writing conflicts. On the other hand, LZW (or LZ2)
compression is P-complete [8] and, therefore, hard to par-
allelize. Decompression, instead, is parallelizable for both
methods [17]. The asymmetry of the pair encoder/decoder
between LZ1 and LZ2 follows from the fact that the hardness
results of the LZ2/LZW encoder depend on the factorization
process rather than on the coding itself.

As far as bounded size dictionary compression is con-
cerned, the “parallel computation thesis” claims that sequen-
tial work space and parallel running time have the same
order of magnitude giving theoretical underpinning to the re-
alization of parallel algorithms for LZW compression using
a deletion heuristic. However, the thesis concerns unbounded
parallelism and a practical requirement for the design of
a parallel algorithm is a limited number of processors. A
stronger statement is that sequential logarithmic work space
corresponds to parallel logarithmic running time with a
polynomial number of processors. Therefore, a fixed size
dictionary implies a parallel algorithm for LZW compression
satisfying these constraints. Realistically, the satisfaction
of these requirements is a necessary but not a sufficient

136Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

condition for a practical parallel algorithm since the number
of processors should be linear. The SCk-hardness and SCk-
completeness of LZ2 compression using, respectively, the
LRU and RLRU deletion heuristics and a dictionary of
polylogarithmic size show that it is unlikely to have a paral-
lel complexity involving reasonable multiplicative constants
[9]. In conclusion, the only practical LZW compression
algorithm for a shared memory parallel system is the one
using the FREEZE, RESTART or SWAP deletion heuristics.
Unfortunately, the SWAP heuristic does not seem to have a
parallel decoder. Since the FREEZE heuristic is not very
effective in terms of compression, RESTART is a good
candidate for an efficient parallel implementation of the pair
encoder/decoder on a shared memory parallel system and
even on a system with distributed memory. However, in
the context of distributed processing of massive data with
no interprocessor communication the LZW-RLRU technique
turns out to be the most efficient one. We will see these
arguments more in detail in the next two sections.

V. THE MAPREDUCE MODEL OF COMPUTATION

The MapReduce programming paradigm is a sequence
P = µ1ρ1 · · ·µRρR where µi is a mapper and ρi is a
reducer for 1 ≤ i ≤ R. First, we describe such paradigm and
then discuss how to implement it on a distributed system.
Distributed systems have two types of complexity, the inter-
processor communication and the input-output mechanism.
The input/output issue is inherent to any parallel algorithm
and has standard solutions. In fact, in [11] the sequence P
does not include the I/O phases and the input to µ1 is a
multiset U0 where each element is a (key, value) pair. The
input to each mapper µi is a multiset Ui−1 output by the
reducer ρi−1 for 1 < i ≤ R. Mapper µi is run on each pair
(k, v) in Ui−1, mapping (k, v) to a set of new (key, value)
pairs. The input to reducer ρi is U ′

i , the union of the sets
output by µi. For each key k, ρi reduces the subset of pairs
of U ′

i with the key component equal to k to a new set of
pairs with key component still equal to k. Ui is the union
of these new sets.

In a distributed system implementation, a key is associated
with a processor (a node in the Web). All the pairs with
a given key are processed by the same node but more
keys can be associated to it in order to lower the scale
of the system involved. Mappers are in charge of the data
distribution since they can generate new key values. On
the other hand, reducers just process the data stored in the
distributed memory since they output for a set of pairs with
a given key another set of pairs with the same given key.

To add the I/O phases to P , we extend the sequence to
µ0ρ0µ1ρ1 · · ·µRρRµR+1ρR+1, where (λ, x) is the unique
(key, value) pair input to µ0 with λ empty key and x input
data. µ0 distributes the data generating the multiset U0 while
ρ0 is the identity function. Finally, µR+1 maps UR to a
multiset where all the pair elements have the same key λ

and ρR+1 reduces such multiset to the pair (λ, y) where y
is the output data.

The following complexity requirements are stated as nec-
essary for a practical interest in [11]:

• R is polylogarithmic in the input size n;

• the number of processors (or nodes in the Web)
involved is O(n1−ϵ) with 0 < ϵ < 1;

• the amount of memory available for each node is
O(n1−ϵ);

• the running time of mappers and reducers is polynomial
in n.

As mentioned in the introduction, such requirements are
necessary but not sufficient to guarantee a speed-up of the
computation. Obviously, the total running time of mappers
and reducers cannot be higher than the sequential one and
this is trivially implicit in what is stated in [11]. The
non-trivial bottleneck is the communication cost of the
computational phase after the distribution of the original
input data among the processors and before the output
of the final result. This is obviously algorithm-dependent
and needs to be checked experimentally since R can be
polylogarithmic in the input size. The only way to guarantee
with absolute robustness a speed-up with the increasing of
the number of nodes is to design distributed algorithms
implementable in MapReduce with R = 1. Moreover, if
we want the speed-up to be linear then the total running
time of mappers and reducers must be O(t(n)/n1−ϵ) where
t(n) is the sequential time. These stronger requirements are
satisfied by the distributed implementations of the several
versions of LZ compression discussed in the next section,
except for one of them, which requires R = 2.

VI. LZ COMPRESSION ON THE WEB IN MAPREDUCE

We can factorize blocks of length ℓ of an input string
using any of the bounded memory compression techniques
with an O(ℓ) time, O(n/ℓ) processors distributed algorithm.
The algorithm is suitable for a small scale system but due
to its adaptiveness it works on a large scale parallel system
only when the file size is large.

With the sliding window method, ℓ is equal to kw where
k is a positive integer and w is the window length [6],
[12], [13]. The window length is usually several thousands
kilobytes. The compression tools of the Zip family, as the
Unix command “gzip” for example, use a window size of
at least 32K. From a practical point of view, we can apply
something like the gzip procedure to a small number of input
data blocks achieving a satisfying degree of compression
effectiveness and obtaining the expected speed-up on a real
parallel machine. Making the order of magnitude of the
block length greater than the one of the window length
guarantees robustness on realistic data. The window length is

137Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

usually several thousands kilobytes. The compression tools
of the Zip family, as the Unix command “gzip” for example,
use a window size of at least 32K. It follows that the block
length in our parallel implementation should be about 300K
and the file size should be about one third of the number of
processors in megabytes.

In the MapReduce framework, we implement the dis-
tributed procedure above with a sequence µ0ρ0µ1ρ1µ2ρ2
where µ0ρ0 and µ2ρ2 are the input and output phases,
respectively. Let X = X1 · · ·Xm be the input string where
Xi is a substring that has the same length ℓ ≥ 300K
for 1 ≤ i ≤ m. The complexity requirements of the
MapReduce model will be satisfied by the fact that ℓ is
allowed to be strictly greater than 300K. The input to µ0

is the pair (0, X) mapping this element to the set S of
pairs (1, X1) · · · (m,Xm) and the reducer ρ0 sets U0 to S
as input to µ1. U0 is mapped to itself by µ1 and ρ1 reduces
(i,Xi) to (i, Yi) where Yi is the LZSS coding of Xi for
1 ≤ i ≤ m. Finally, µ2 maps each element (i, Yi) of its input
U1 = {(1, Y1) · · · (m,Ym)} to (0, Yi) and ρ2 outputs (0, Y)
where Y = Y1 · · ·Ym. Obviously, the stronger requirements
for a linear speed-up, stated in the previous section, are
satisfied by this program.

As far as LZW compression is concerned, it was originally
presented with a dictionary of size 212, clearing out the
dictionary as soon as it is filled up [15]. The Unix command
”compress” employs a dictionary of size 216 and works with
the RESTART deletion heuristic. The block length needed
to fill up a dictionary of this size is approximately 300K.
As previously mentioned, the SWAP heuristic is the best
deletion heuristic among the discrete ones. After a dictionary
is filled up on a block of 300K, the SWAP heuristic shows
that we can use it efficiently on a successive block of about
the same dimension where a second dictionary is learned.
A distributed compression algorithm employing the SWAP
heuristic learns a different dictionary on every block of
300K of a partitioned string (the first block is compressed
while the dictionary is learned). For the other blocks, block
i is compressed statically in a second phase using the
dictionary learned during the first phase on block i − 1.
But, unfortunately, the decoder is not parallelizable since the
dictionary to decompress block i is not available until the
previous blocks have been decompressed. On the other hand,
with RESTART we can work on a block of 600K where the
second half of it is compressed statically. We wish to speed
up this second phase though, since LZW compression must
be kept more efficient than sliding window compression. In
fact, it is well-known that sliding window compression is
more effective but slower. If both methods are applied to a
block of 300K and LZW has a second static phase to execute
on a block of about the same length, it would no longer have
the advantage of being faster. We showed how to speed up
in a scalable way this second phase on a very simple tree
architecture as the extended star network in [12], [18]. The

idea is to factorize small sub-blocks of at least 100 bytes of
the second half in parallel. This is possible with no relevant
loss of compression effectiveness since the dictionary has
already been learned and the factorization is static.

In the MapReduce framework, the program sequence is
µ0ρ0µ1ρ1µ2ρ2µ3ρ3 where µ0ρ0 and µ3ρ3 are the input and
output phases, respectively. Let X = X1Y1 · · ·XmYm be the
input string where Xi and Yi are substrings having the same
length ℓ ≥ 300K for 1 ≤ i ≤ m and Yi = Bi,1 · · ·Bi,r such
that Bi,j is a substring that has the same length ℓ′ ≥ 100 for
1 ≤ j ≤ r. The complexity requirements of the MapReduce
model will be satisfied by the fact that ℓ is allowed to
be strictly greater than 300K and ℓ′ strictly greater than
100 bytes. Keys are pairs of positive integers. The input
to µ0 is the pair ((0, 0), X), which is mapped to the set S
of pairs ((0, 1), X1), ((1, 1), B1,1), · · ·, ((1, r), B1,r), · · ·,
((0,m), Xm)), ((m, 1), Bm,1), · · ·, ((m, r), Bm,r) and the
reducer ρ0 sets U0 to S as input to µ1. U0 is mapped to itself
by µ1. ρ1 reduces ((0, i), Xi) to a set of two (key, value)
pairs, that is, {((0, i), Zi), ((0, i), Di)}, where Zi and Di

are respectively the LZW coding of Xi and the dictionary
learned during the coding process. On the other hand,
((i, j), Bi,j) are reduced to themselves by ρ1 for 1 ≤ i ≤ m
and 1 ≤ j ≤ r. The second iteration step µ2ρ2 works as the
identity function when applied to ((0, i), Zi). µ2 works as
the identity function when applied to ((i, j), Bi,j) as well.
Instead, ((0, i), Di) is mapped by µ2 to ((i, j), Di) for 1 ≤
j ≤ r. Then, ρ2 reduces the set {((i, j), Bi,j), ((i, j), Di)}
to ((i, j), Zi,j) where Zi,j) is the coding produced by the
second phase of LZW compression with the static dictionary
Di. Finally, µ3 maps (i, Zi) to ((0, 0), Zi) and ((i, j), Zi,j)
to ((0, 0), Zi,j). Then, ρ3 outputs ((0, 0), Z) where Z =
Z1Z1,1 · · ·Z1,r · · ·ZmZm,1 · · ·Zm,r.

The communication cost during the computational phase
of the MapReduce program above is determined by µ2. The
dictionary Di is sent from the node associated with the key
(0, i) to the node associated with the key (i, j) in parallel
for 1 ≤ i ≤ m and 1 ≤ j ≤ r. Each factor f in Di can
be represented as pc where p is the pointer to the longest
proper prefix of f (an element of Di) and c is the last
character of f . Since the standard sizes for the dictionary
and the alphabet are respectively 216 and 256, three bytes
can represent a dictionary element. Conservatively, at least
ten nanoseconds are spent to send a byte between nodes.
Therefore, the communication cost to send a dictionary is at
least 30(216) nanoseconds, which is about two milliseconds.
Considering the fact that 300K are compressed usually in
about 30 milliseconds by a Zip compressor and in about 15
milliseconds by an LZW compressor, the communication
cost is acceptable.

The approach described above is not robust when the data
are highly disseminated [19]. However, when compressing
large size files even on a large scale system the size of the
blocks distributed among the nodes is larger than 600K.

138Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

In order to increase robustness when the data are highly
disseminated, the most appropriate approach is to apply
a procedure where no static phase is involved. Therefore,
new dictionary elements should be learned at every step
while bounding the dictionary size by means of a deletion
heuristic. It is, then, reasonable to propose LZW-RLRU as
the most suitable in this context since it is the most efficient
one. The relaxed version (RLRU) of the LRU heuristic is:

RLRUp: When the dictionary is not full, label the
ith element added to the dictionary with the
integer ⌈i · p/k⌉, where k is the dictionary
size minus the alphabet size and p < k is the
number of labels. When the dictionary is full,
label the i− th element with p if ⌈i · p/k⌉ =
⌈(i − 1)p/k⌉. If ⌈i · p/k⌉ > ⌈(i − 1)p/k⌉,
decrease by 1 all the labels greater or equal to
2. Then, label the i−th element with p. Finally,
remove one of the elements represented by a
leaf with the smallest label.

In other words, RLRU works with a partition of the dictio-
nary in p classes, sorted somehow in a fashion according to
the order of insertion of the elements in the dictionary, and
an arbitrary element from the oldest class with removable el-
ements is deleted when a new element is added. Each class is
implemented with a stack. Therefore, the newest element in
the class of least recently used elements is removed. Observe
that if RLRU worked with only one class, after the dictionary
is filled up the next element added would be immediately
deleted. Therefore, RLRU would work like FREEZE. But
for p = 2, RLRU is already more sophisticated than SWAP
since it removes elements in a continuous way and its
compression effectiveness compares to the original LRU.
Therefore, LZW-RLRU2 is the most efficient approach to
compress on the Web or any other distributed system when
the size of the input file is very large. In the MapReduce
framework, a program sequence µ0ρ0µ1ρ1µ2ρ2 implements
it as the one for the LZSS compressor explained at the
beginning of this section.

Decompression in MapReduce is simmetrical. To decode
the compressed files on a distributed system, it is enough
to use a special mark occurring in the sequence of pointers
where the coding of a block ends. The input phase distributes
the subsequences of pointers coding each block among the
processors. If the file is encoded by an LZW compressor
using a second phase with a static dictionary, a second
special mark indicates for each block the end of the coding
of a sub-block. The input phase distributes the coding of
the first half of each block and the coding of the sub-
blocks of the second half. Then, two iterations as for
the compression case decompress in MapReduce. The first
one decodes the first half of each block and learns the
corresponding dictionary. The second sends the dictionaries
to the corresponding processors for the decoding of the sub-

blocks of the second half.

VII. CONCLUSION

We showed how to implement Lempel-Ziv data compres-
sion in the MapReduce framework for Web computing. With
large size files, the robustness of the approach is preserved
with scalability since no interprocessor communication is
required. It follows that a linear speed-up is guaranteed
during the computational phase. With arbitrary size files,
scaling up the system is necessary to preserve the efficiency
of LZW compression with very low communication cost if
the data are not highly disseminated. The MapReduce frame-
work allows in theory a higher degree of communication
than the one employed in the procedures presented in this
paper. In [11], it has been shown how the PRAM model of
computation can be simulated in MapReduce under specific
constraints with the theoretical framework. These constraints
are satisfied by several PRAM Lempel-Ziv compression and
decompression algorithms designed in the past [5], which are
suitable for arbitrary size highly disseminated files. As future
work, it is worth investigating experimentally if any of these
algorithms can be realized with MapReduce in practice on
specific files.

REFERENCES

[1] A. Lempel and J. Ziv, ”On the Complexity of Finite Se-
quences,” IEEE Transactions on Information Theory, vol. 22,
1976, pp. 75-81.

[2] A. Lempel and J. Ziv, ”A Universal Algorithm for Sequen-
tial Data Compression,” IEEE Transactions on Information
Theory, vol. 23, 1977, pp. 337-343.

[3] J. Ziv and A. Lempel, ”Compression of Individual Sequences
via Variable-Rate Coding,” IEEE Transactions on Information
Theory, vol. 24, 1978, pp. 530-536.

[4] M. Crochemore and W. Rytter, ”Efficient Parallel Algorithms
to Test Square-freeness and Factorize Strings,” Information
Processing Letters, vol. 38, 1991, pp. 57-60.

[5] S. De Agostino, ”Parallelism and Dictionary-Based Data
Compression,” Information Sciences, vol. 135, 2001, pp. 43-
56.

[6] L. Cinque, S. De Agostino and L. Lombardi, ”Scalability
and Communication in Parallel Low-Complexity Lossless
Compression,” Mathematics in Computer Science, vol. 3,
2010, pp. 391-406.

[7] S. De Agostino, ”Lempel-Ziv Data Compression on Parallel
and Distributed Systems,” Algorithms, vol. 4, 2011, pp. 183-
199.

[8] S. De Agostino, ”P-complete Problems in Data Compression,”
Theoretical Computer Science, vol. 127, 1994, pp. 181-186.

[9] S. De Agostino and R. Silvestri, ”Bounded Size Dictionary
Compression: SCk-Completeness and NC Algorithms,” Infor-
mation and Computation, vol. 180, 2003, pp. 101-112.

139Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

[10] S. De Agostino, ”Bounded Size Dictionary Compression:
Relaxing the LRU Deletion Heuristic,” International Journal
of Foundations of Computer Science, vol. 17, 2006, pp. 1273-
1280.

[11] H. J. Karloff, S. Suri and S. Vassilvitskii, ”A Model of Com-
putation for MapReduce,” Proc. SIAM-ACM Symposium on
Discrete Algorithms (SODA 10), SIAM Press, 2010, pp. 938-
948.

[12] S. De Agostino, ”LZW versus Sliding Window Compression
on a Distributed System: Robustness and Communication,”
Proc. INFOCOMP, IARIA, 2011, pp. 125-130.

[13] S. De Agostino, ”Low-Complexity Lossless Compression on
High Speed Networks,” Proc. ICSNC, IARIA, 2012, pp. 130-
135.

[14] J. A. Storer and T. G. Szimansky, ”Data Compression via
Textual Substitution,” Journal of ACM, vol. 24, 1982, pp.
928-951.

[15] T. A. Welch, ”A Technique for High-Performance Data Com-
pression,” IEEE Computer, vol. 17, 1984, pp. 8-19.

[16] J. A. Storer, Data Compression: Methods and Theory, Com-
puter Science Press, 1988.

[17] S. De Agostino, ”Almost Work-Optimal PRAM EREW De-
coders of LZ-Compressed Text,” Parallel Processing Letters,
vol. 14, 2004, pp. 351-359.

[18] S. De Agostino, ”LZW Data Compression on Large Scale and
Extreme Distributed Systems,” Proceedings Prague Stringol-
ogy Conference, 2012, pp. 18-27.

[19] S. De Agostino, ”Bounded Memory LZW Compression and
Distributed Computing: A Worst Case Analysis,” Proceedings
Festschrift for Borivoj Melichar, 2012, pp. 1-9.

140Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

