
RESTful Correlation and Consolidation of
Distributed Logging Data in Cloud Environments

Christian Pape, Sven Reissmann, Sebastian Rieger
Applied Computer Science

University of Applied Sciences
Fulda, Germany

{christian.pape, sven.reissmann, sebastian.rieger}@informatik.hs-fulda.de

Abstract—Due to the availability of virtualization technologies
and related cloud infrastructures, the amount and also the
complexity of logging data of systems and services grow steadily.
Automated correlation and aggregation techniques are required
to support a contemporary processing and interpretation of
relevant logging data. In the past, this was achieved using
highly centralized logging systems. Based on this fact, the paper
introduces a prototype for an automated semantical correla-
tion, aggregation and condensation of logging information. The
prototype uses RESTful web services to store and analyze the
logging data of distributed logging sources. In this context we
will also present the special requirements of handling logging
systems in highly dynamic infrastructures like enterprise cloud
environments, which provide dynamic systems, services and
applications.

Keywords—Monitoring; Enterprise Cloud; Web Services; Log
Analysis; Log Correlation;

I. INTRODUCTION

The vast rise of virtualization technologies and the related
wide availability of virtual machines increased the amount of
logging data over the past years [1]. In addition to virtual
machines themselves, cloud infrastructures, in which they
are deployed, also deliver new services and applications in
a fast and highly dynamic manner, producing logging data
that is needed to monitor their states and service qualities.
This leads to a growth of logging sources and the demand
for logging systems to dynamically handle new sources and
collect the corresponding data. Each new source provides
detailed logging information and increases the overall amount
of logging data. Typically logging data will be compressed and
also anonymized at short intervals if individual-related data
is included. Also, outdated log entries can be removed, but
the number of logging sources (e.g., the number of virtual
machines) themselves can’t be reduced. For instance, in a
virtualized cloud infrastructure where servers, storage and also
the network is virtualized, each system, service and application
should at least provide a minimal set of logging data to allow
an effective analysis of the status and relevant events during
service operation.

To support this analysis and evaluation across logging
information originating from a large number of different dis-
tributed source systems, correlation techniques offer a way
to group similar systems and applications. Furthermore, cor-
relation can be used for the aggregation of logging data
hence providing a condensation based on its relevance. In
this paper, we introduce a solution to persist logging data that

originated from syslog sources in a NoSQL-based database by
enhancing existing solutions and using RESTful web services.
For correlation and consolidation purposes, this data will also
be enriched with meta information before providing the data
for distributed analysis and evaluations.

The paper is layed out as follows. In the next section, the
state-of-the-art of distributed logging in cloud environments
is described. Section III gives examples of related work and
research projects that also focus on improving the management
and analysis of logging data in distributed or cloud envi-
ronments. Requirements for the correlation and consolidation
of logging data in enterprise clouds are defined in Section
IV. Using RESTful web services and NoSQL-based storage,
the prototype presented in Section V was implemented. It
provides aggregation and condensation of logging data in cloud
environments by correlating individual events from distributed
sources. The prototypic implementation is evaluated and com-
pared to the state-of-the-art and related work in Section VI.
In the last section of this paper, a conclusion is drawn and
aspects for future research are outlined.

II. STATE-OF-THE-ART

The following sections give an overview on logging in
distributed environments using aggregation and consolidation
techniques for standard logging mechanisms like syslog. Also,
the advantages of evolving NoSQL databases, which are typ-
ically backed by RESTful webservices, are outlined.

A. Distributed Logging in Cloud Environments

Current cloud service providers offer a variety of monitor-
ing mechanisms. For example, Amazon AWS and RackSpace
both provide monitoring and alarms for their virtual ma-
chines. In the basic version, these services monitor several
performance metrics (e.g., CPU, I/O and network utilization).
Advanced versions (e.g., Amazon CloudWatch) allow the
customers to check the current status of services running in
the virtual machines and to define custom metrics and alarms
that can be monitored using individual APIs of the cloud
service provider. While these APIs could be used to send
specific events and alarms, there is no specific service to handle
the aggregation, correlation and management of logging data
generated and provided by the operating systems and services
running in the virtual machines. Furthermore, the individual
APIs currently vary from provider to provider. Hence it is
not possible to use a unified monitoring across different

194Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

cloud service providers. This also hinders the establishment of
enterprise clouds that should allow the integration of private
or hybrid cloud services operated by public cloud service
customers, as these solutions again use individual monitoring
techniques. An appropriate standard to address the issue of a
cloud service provider independent open logging standard, is
currently in the works at the IETF [2].

Until such open standards are available, distributed logging
in cloud environments could be carried out by developing
specific logging mechanisms for the infrastructures, platforms
or applications (IaaS, PaaS, SaaS) used in the cloud. The
drawback of this approach would be the effort that is needed
for the software development and maintenance. Moreover,
the individual APIs developed by the customers are likely
to need a migration to upcoming cloud logging standards
in the near future. Therefore, the more appropriate approach
could be to extend existing and established logging services
to support distributed cloud scenarios. The de-facto standard
logging service offered in every predefined Linux-based virtual
machine image by existing cloud providers is syslog, which is
described in the next section. As a matter of fact, syslog is
also the basis for the upcoming Internet-Draft [2] focusing
on cloud-based logging services. Logging data can be stored
and structured in NoSQL-based databases using RESTful web
services as described in Section II-C.

B. Log Aggregation and Consolidation with Syslog

Syslog [3] defines a distributed logging solution for gen-
erating, processing and persisting host- and network-related
events. Since its introduction, the syslog protocol evolved into
the de-facto standard for the processing of logging events on
UNIX-based systems and several network devices. A syslog
message consists of multiple parts. First part is the so called
PRI part, which contains a numeric priority and the facility
that generated the message. Second part is a header, which
includes a timestamp and the hostname of the producer of the
message. The latter allows the grouping of different messages
originating from the same individual machine. The closing
MSG part consists of the message itself and can also include
additional informations like the id of the process that produced
the event. In a default configuration syslog messages of a
host system are stored in files on the host’s local filesystem.
As outlined above, the impact of virtualization technologies
and the corresponding growth of logging sources indicate
that a centralized collection and analysis of syslog data is of
essential importance. Otherwise, an overall rating of nearly
identical messages originating from different sources would
be a difficult task.

A centralized logging infrastructure and the utilization of
relays to cascade logging servers in large environments, were
also design goals of the syslog development. Originally, syslog
[3] defines the User Datagram Protocol (UDP) to transport
messages. Today the reliable Transmission Control Protocol
(TCP) is preferred [4]. Also, additional security features like
Transport Layer Security (TLS) assure integrity and authen-
ticity of the data during the transport [5]. Figure 1 shows an
example of a centralized logging environment.

The rsyslog server [6] provides an open source implemen-
tation of the syslog protocol and is among other solutions like

VMVMVM

VMVMVM

internal
systems & services

centralized
logging server

storage

monitoring/
reporting &
log analysis

external
systems & services

lo
gg

in
g

da
ta

(S
ys

lo
g)

Fig. 1. Centralized logging of distributed systems and services

syslog-ng one of the most popular syslog servers. Also, a large
number of plugins are available for rsyslog to support different
message normalization techniques and new storage backends
like MongoDB, HDFS or ElasticSearch. For these reasons, the
popularity of rsyslog increased over the past years. Therefore,
we use rsyslog in our research to provide centralized logging
of syslog messages.

C. RESTful Log Management utilizing NoSQL Databases

The term NoSQL, standing for Not only SQL, refers to
a type of databases that became an interesting alternative
to SQL databases over the last couple of years. Although
there are different implementations of NoSQL databases that
fit different needs, they all share one aspect: They are not
relational databases. A reason for the popularity of such new
databases might on one hand be their performance. On the
other hand the new requirements on storing unstructured data
have changed with new concepts like BigData and full-text
search. While relational databases demand the structure of
the data to be specified when creating the database, NoSQL
databases do not have such a need, allowing the structure
of the data to be modified or extended at any time. Also,
creating a relational database for data that does not easily map
into a table-layout (e.g., different log formats from distributed
sources) is not easy. Regarding the storage of logging data,
the most important issues are the performance of the database
system, especially as in many cases there is a tremendous
amount of data to be stored, and the flexibility to add new
log sources that may introduce new data structures.

When looking at the different approaches of NoSQL
databases, three main types can be identified. Key-Value-
Stores allow to store unstructured data simply in form of key-
value pairs. These databases achieve high performance when
querying for keys, but are not very well suited to perform
searches on the stored values. Going one step further, column-
oriented databases allow the storage of closely related data in
an extendable column. Besides using a column layout, they
are not bound to the restrictions of the highly structured table
layout SQL uses, but also allow to store data in a more detailed
structure compared to key-value pairs. A third type of NoSQL

195Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

databases is referred to as document-based datastores. These
types of databases are able to store collections of documents,
each of which having a completely independent structural
layout. The structure of new documents can be extended at
any time, meaning that documents may consist of any number
of key-value pairs of any length. Most of the document-based
databases provide a RESTful web service interface allowing
to store and retrieve documents using the JSON-standard.
Therefore, document-based datastores provide a high degree
of flexibility and interoperability.

Regarding the requirements of storing logging data, not all
of the previously mentioned NoSQL technologies are suitable
for a centralized logging data storage. Key-Value stores as well
as column-oriented databases allow highly efficient queries
for the data using their keys, while not being suitable for
doing full-text searches and correlation on the stored data.
Document-based datastores in contrast, allow highly efficient
search queries on the full data and also efficient queries using
the documents’ keys. For our work we used ElasticSearch [7]
as a document-based NoSQL datastore, which also offers a
high-performance, full-featured text search engine based on
Apache Lucene.

The decision to use REST instead of SOAP for our web
service was driven by two reasons. First and foremost, the
ElasticSearch search and analytics engine primarily offers
REST APIs, which mainly use JSON [7]. Also, the rsys-
log daemon we chose offers corresponding output modules.
Second, the usage of REST perfectly fits the logging in
the cloud environments we evaluated, because it is not as
strictly tied to XML as SOAP [20]. Therefore, the overhead to
transfer logging messages between the logging server and the
prototype to correlate and consolidate the logging data, that
we present in this paper, can be minimized. Otherwise, for
each syslog message being sent to our prototype, the plain text
logging data would need to be embedded in an XML structure.
While it would have been possible to address this issue, e.g.,
with SOAP Message Transmission Optimization Mechanism
(MTOM), this would still increase the overhead of requests
and responses from the the logging server, which also leads to
a decrease in performance. On the other hand, SOAP would
provide alternative transport protocols and a strict definition
of the interface and used data types [21]. The latter ones are
not an issue for this paper, as data types and interfaces are
already defined by rsyslog output modules and ElasticSearch.
Overall, the simplicity of REST [20] allows a rather light-
weight implementation for the communiation needed between
the central logging server and the prototype that we will
present in Section V.

III. RELATED WORK

The challenge of persisting and evaluating decentralized
logging data has been in the focus of many research publi-
cations. For instance, the evaluation of decentralized logging
informations in IaaS, PaaS and SaaS cloud environments
were described in [8] and [9]. Also, an internet draft is in
development [2], covering logging of syslog messages from
distributed cloud applications. Besides the requirements by
these new highly distributed applications, there is also a chal-
lenge for analysis and structuring of logging information. Ex-
isting solutions for automated log analysers only comply with

some of these requirements [10]. Therefore, Jayathilake [10]
recommends the structuring of logging data and to extract the
contained informations. In this context, NoSQL databases are
best suited for handling these variable fields. These databases
provide an adaptive approach of persisting data and allow the
use of different table schemata or, e.g., an document-based
approach storing key-value pairs. As outlined in [11] and [12],
the evaluation and rating itself can be automated by event
correlation and event detection techniques. Both publications
also describe the use of the correlation solution Drools, that
we use for our research. Correlation techniques help to reduce
(and consolidate) the logging data so that only a condensed
representation including relevant information, required for
analysis and evaluation, will be persisted. As described in [12],
a reduction of syslog data by up to 99% is possible. A solution
based on the NoSQL database MongoDB using MapReduce
to correlate and aggregate logging data in distributed cloud
analysis farms is described in [13]. This solution however lacks
event correlation and detection techniques.

IV. REQUIREMENTS FOR CORRELATION OF LOGGING
DATA IN ENTERPRISE CLOUDS

We initially described that centralized logging environ-
ments tend to produce a tremendous amount of logging events
at the central logging server. To manage the storage of all these
data and provide a way to perform a fast analysis on the stored
data, the use of the previously mentioned NoSQL datastores
seems obvious. However, looking at the amount of data that
has to be manually analysed and evaluated, the question arises
whether it is possible to automate the process of evaluating the
relevance of certain syslog events or even reduce the amount
of data that will be stored. The latter is only reasonable if it
can be guaranteed that no valuable information will be lost by
the reduction of messages. In the next sections, we are going to
describe our approach for automatic evaluation and reduction
of syslog events in detail.

A. Correlating Distributed Logs in Enterprise Clouds

The core objective of this paper is the processing of the
data provided from syslog and to identify important events of
the network or individual hosts. For instance, the sequence
of messages of an ongoing SSH brute force attack illustrates
the demand for an automated rating of messages. During a
brute force attack, the SSH daemon generates a log entry for
each invalid login attempt. These messages are delivered to
a centralized syslog server, indicating individual failed login
attempts. However, the relative small number of events might
become lost in the large total amount of syslog messages.

An IT operator analysing the logging data is not interested
in displaying each individual login attempt, but rather wants to
know whether the brute force attack led to a successful login.
To answer this kind of question, the syslog messages must
be filtered for the corresponding SSH daemons and searched
for failed login attempts that are followed by a successful
login. Thus, a system registering a large number of failed login
attempts, and finally a successful login, might experience a
successful brute force attack, while the possibility of an attack
is rising along with the number of failed login attempts. The
time-consuming and costly search for attack patterns like this
can be simplified by an automated rating of syslog messages.

196Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

To identify individual messages describing similar events from
different operating systems and platforms, it is required to
normalize syslog data before correlating and persisting them.
For the lookup of SSH login attempts, it is sufficient to
examine single individual syslog messages. In order to identify
a completed attack, a sequence of these matching messages
must be investigated. If the conditions for a successful attack
are met, it is possible to generate a new prioritized syslog
message to support the immediate detection of these security
threats in the network.

B. Consolidating Logging Data from Distributed Services

A second goal of our work was to reduce the amount of
messages that actually get persisted into ElasticSearch. This
may seem subordinate against the backdrop of increasing com-
puting performance and concepts like BigData, but reducing
the actual data still results in faster and easier analysis, even
when using these new techniques. In practice, we actually see
an advantage of the reduction of stored messages in long-term
storage and data analysis. Such reduction techniques basically
delete messages of a certain age or don’t persist messages
below a certain severity. However, these simple mechanisms
result in a loss of valuable information, and for this reason are
not practicable in our view.

Our approach first provides a grouping of messages. For
example, same or recurring events are summarized. Based on
those groups we are able to generate new summarized syslog
messages containing a dense representation of all the valuable
information of the initial messages and hence allowing us to
actually drop those without loosing information. Using our
solution, it is possible to reduce the amount of messages
that needs to be stored at the central database server, and
therefore improving the performance of the system without
loosing information. Furthermore, it is possible to manipulate
the severity of the newly generated messages, to even increase
their value for later analysis.

An example of such a modification of syslog messages
could be used to detect the previously mentioned brute force
attack, that results in a flood of messages with a low priority.
By generating a single message with a high priority - telling an
administrator what the actual attack looked like, judging from
the number of login attempts, the duration of the attack and the
actual result - we produce information that helps to estimate
the situation and the next steps to be taken. Also, regardless
of waiving all the failed login attempts at the central database
server, it is still possible to perform an exact analysis of the
attack by looking into the logfiles of the actual server that was
under attack.

A second example of consolidating messages would be the
correlation of application access logs. For instance, in a cloud
environment new machines will be spawned on demand, so
several machines provide a single service in a cooperative way.
An example could be a number of dynamically started HTTP
servers receiving requests via a load balancer. The requests on
the individual servers will be logged to the centralized syslog
server, but these individual events must be aggregated, e.g.,
to support the decision process of starting new or stopping
VMs running an HTTP server. The access log messages can be
correlated to an access count per timeslot and it is also possible

to count active HTTP servers by differentiating distinct logging
sources. As already illustrated in the previous example it is
again not necessary to persist the original access messages.
The correlated logging information is useful to evaluate the
load on all servers and can also be used to determine whether
running machines have to be stopped or new ones need to be
started.

Taking the logging information into account a thorough
decision can be made that goes beyond the possiblities of
network-based load balancing and failover techniques. A more
generic approach would be to use Drools to count messages
matching a set of rules for specific timeslots and to generate
histograms for these kind of messages. This approach allows to
compare different timeslots and answer questions like ”Were
the same number of crond jobs executed on monday and
tuesday?”. Also, a visual representation of these results, e.g., as
presented in [14], could be possible with the benefit of easily
identifying anomalies at first sight.

V. IMPLEMENTATION OF LOG CORRELATION AND
CONSOLIDATION IN CLOUD ENVIRONMENTS

To facilitate the analysis and storage of logging data in
distributed cloud environments, this paper presents a log corre-
lation and consolidation prototype. The prototypic implemen-
tation uses rsyslog [6] as a central syslog server that receives
and normalizes syslog messages originating from distributed
sources, e.g., VMs in the cloud. After normalizing the data
and hence allowing to process the data from different sources
in a unified way, the logging information is serialized to JSON
and sent using a RESTful web service to our prototype, which
we implemented in Java. The prototype embodies a correlation
engine, which analyses the messages and afterwards persists
them, again using JSON via a RESTful web service, in an
ElasticSearch cluster. Our implementation of the correlation is
based on the Complex Event Processing (CEP) Engine Drools
Fusion [15]. This engine allows the definition of rules using
temporal reasoning that we use for the correlation of messages.

VMVMVM

VMVMVM

monitoring/
reporting & log

analysis

storage

log correlation
& aggregation

(Drools Fusion)

NoSQL storage
(ElasticSearch)

JSON JSON

central logging server
(rsyslog + liblognorm)

S
ys

lo
g d

at
a

(T
LS

)

Syslog correlation
prototype

Fig. 2. Correlation and aggregation of centralized logging data

Figure 2 shows the setup of our testbed. Syslog messages
are sent from the distributed clients to the rsyslog server
using a secure TLS connection. The server normalizes the
messages using liblognorm [16] and transmits the normal-
ized messages in JSON format using RESTful web services

197Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

to the correlation prototype. By using REST, our prototype
implements a flexible interface that can easily be used from
a variety of cloud services. Moreover, the majority of the
compute cloud providers offer syslog-based logging in their
VMs and therefore our entire approach using rsyslog can
be used to correlate the logging data across multiple and
heterogenous cloud environments. Having received the mes-
sages, our prototype temporarily stores the logging data locally,
but also instantly transfers them to the ElasticSearch cluster,
again using RESTful JSON-based web service requests. The
temporal storage is currently needed for the evaluation of
the defined rules in the Drools engine, as it is configured
to be done in-memory to achieve a better performance. As
described in the last section of this paper, we’re also evaluating
persisting the messages directly and execute the correlation in
the NoSQL storage to overcome the size limitation of our in-
memory approach. The rules can be easily extended to provide
multiple correlation and consolidation techniques. An example
is presented in Section VI. Messages that did not match any of
the rules will be removed from the in-memory cache. On the
other hand, messages matching at least one rule are correlated,
and the result is stored with a flag representing the successful
correlation and a reference to original messages that have been
correlated in the ElasticSearch cluster. By cyclic searching for
successful correlation flags in the ElasticSearch cluster and
pruning the original messages they refer to, a consolidation is
achieved.

VI. SCALABLE RESTFUL LOG ANALYSIS IN CLOUD
ENVIRONMENTS

In this section we give an example of the usage of our
solution for the correlation of logging data being generated
during an SSH brute force attack as described in Section IV-A.
The aim is to generate a new syslog message with a higher
priority in the case of a successful SSH login immediately
after a certain number of failed logins during possible SSH
brute force attacks. To detect this scenario we defined the
rules shown in the following listings in the correlation engine
of our prototype. Hence, the detection of the successful SSH
brute force attack will be done automatically by our prototype.
For the correlation of the syslog messages that indicate a
successful brute force attack on the password during an SSH
login, the corresponding syslog messages need to be isolated
and filtered from the stream of logging data originating from
the syslog server. Examples for the failed and successful SSH
login messages are shown in listing 1. The messages shown
here have already been normalized by rsyslog and are therefore
independent of the individual host that generated them.

% F a i l e d password f o r r o o t from 1 9 2 . 1 6 8 . 1 . 1
p o r t 34201 ssh2

% Accepted password f o r r o o t from 1 9 2 . 1 6 8 . 1 . 1
p o r t 34201 ssh2

Listing 1. Syslog message of failed and successful SSH logins

To correlate these events, our prototype implements the
rules using Drools Fusion [15], which detect messages match-
ing a successful SSH login after a certain amount of previously
failed logins (based on the message format shown in listing
1). Listing 2 contains the rules we defined for our example.
The rule matching failed messages requires a success message
within 1 minutes after at least 10 failed messages.

s u c c e s s : Message (
message matches
"Accepted password for [ˆ\\s]* from [ˆ\\

s]* port [ˆ\\s]* ssh2")
f a i l e d : A r r a y L i s t (s i z e >= 10) from

c o l l e c t (
Message (t h i s b e f o r e [0 , 1m] s u c c e s s ,

message matches
"Failed password for [ˆ\\s]* from [ˆ\\

s]* port [ˆ\\s]* ssh2"))

Listing 2. Drools fusion rules to detect successful SSH brute force attacks

If the failed rule that we defined in listing 2 matches, our
current implementation generates a new syslog message with
the facility ”security” and priority ”emergency” containing the
message ”Possible successful SSH brute force attack”. It would
also be possible to postpone the persistence of the logging data
until the correlation is finished, to store all message related
to the attack with a higher priority, e.g., ”emergency”, in the
ElasticSearch cluster. Another possibility would be to only
persist the new message that indicates the possible SSH brute
force attack with a high priority and drop the other messages
that have been correlated. Messages needed for the correlation
are kept automatically in the in-memory cache by Drools
Fusion according to the rules we defined. Drools automatically
removes messages from the cache that do not match any of
the rules anymore.

VII. CONCLUSION AND FUTURE WORK

In the previous sections, we presented a solution to auto-
matically correlate and consolidate syslog messages containing
logging data from distributed sources in cloud environments.
Besides evaluating the requirements for such implementations
and defining an appropriate concept, a prototype based on
RESTful web services and NoSQL database storage was
developed. The prototype addresses the requirements for cor-
relation and consolidation of distributed logging sources in
today’s enterprise cloud environments. It supports the proper
condensation of log messages by grouping individual mes-
sages. The achieved reduction improves the performance of
processing and analysing logging data especially in distributed
environments with a lot of systems (typically virtual machines)
sending similar logging information.

Existing monitoring solutions could be enhanced to use
the presented prototype as a filter improving the quality and
relevance of the logging data (e.g., by using escalation tech-
niques, traps, or sending messages regarding detected events)
as shown in the example of an SSH brute force attack in
Section IV-A and VI. The integration of the prototype with
existing network monitoring tools (e.g., OpenNMS, splunk)
is one of the next steps for our research. An interesting
starting point could be their interfaces to correlate events, i.e.,
to perform a root-cause-analysis, that could be extended to
consume relevant events that were filtered from the distributed
logging data by our prototype. Another option could be to
use these interfaces bidirectionally to enrich the logging infor-
mation, e.g., combining information in the logging data with
the location or other details from asset, configuration, system
or service management. For example, expected downtimes

198Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

could be resolved to ignore corresponding log events in the
prototype.

While this paper focuses on the usage of the de-facto
network-based logging standard syslog, the prototype pre-
sented in this paper could also handle different text-based
logging sources (e.g., application specific log files, log4j, etc.).
A current limitation regarding the amount of logging data that
can be correlated is the available memory. Theoretically, the
prototype could also use data that is already stored in the
NoSQL storage for the correlation to overcome this limitation.
While this approach has a negative impact on performance, it
could on the other hand dramatically increase the accuracy
of complex correlation over long-term data. The enhancement
could be easily implemented using the RESTful search API
not only for the analysis but also while filtering and before
persisting the logged data in the NoSQL database. In the next
version of our prototype, we will implement this extension
and evaluate the performance impact (regarding latency to
store a log entry and overall throughput of the correlation
engine). Also, balancing the load of complex correlations
across multiple instances of the prototype, e.g., elastically in
the cloud, could be an option. Using OpenStack we currently
set up an enterprise cloud environment to serve as a scalable
platform for our prototype.

Our predefined rule set outlined in this paper can easily
be generalized to fit the requirements of other use cases.
In our ongoing evaluation we will therefore contrast the
results of our prototype to comparative work being presented
in [11], [12] and [13]. Another possible topic for future
research could be the integration of existing knowledge-based
systems and automated reasoning as developed, e.g., for net-
work anomaly and intrusion detection systems (IDS). Even
more interesting could be the integration of existing work
that has been published regarding the detection of anomalies
in syslog messages. Makanju et. al. [17] are describing a
promising solution to detect anomalies in logging data of high
performance clusters (HPC). Administrators can confirm the
detected anomalies to correlate them with error conditions and
trigger a consolidation. These techniques could also facilitate
the definition of correlation rules as patterns are detected
without prior configuration. Syslog-based event forecasting,
as described, e.g. in [18], could be another promising option
for our prototype. The prototype could be used to enhance
the information being evaluated to generate the forecast, but
can also consume the forcasting data. This way, existing
rulesets could be augmented. Furthermore, the definition of
rules could be simplified by automatically deriving rules from
the forecasts, which have been submitted to our prototype. To
detect failures and error conditions in cloud environments this
has already been proposed in [19]. We will evaluate to extend
this approach to allow for the correlation and aggregation of
logging data in enterprise cloud environments.

REFERENCES

[1] C. Canali and R. Lancellotti, “Automated clustering of vms for scalable
cloud monitoring and management,” in Software, Telecommunications
and Computer Networks (SoftCOM), 20th International Conference on,
2012, pp. 1-5.

[2] G. Golovinsky, D. Birk, and S. Johnston, “Syslog extension for cloud us-
ing syslog structured data - draft-golovinsky-cloud-services-log-format-
03,” Internet-Draft, IETF, 2012.

[3] C. Lonvick, “RFC 3164: The BSD syslog protocol,” Request for Com-
ments, IETF, 2001.

[4] R. Gerhards, “RFC 5424: The syslog protocol’,” Request for Comments,
IETF, 2009.

[5] K. E. Nawyn, “A security analysis of system event logging with syslog,”
SANS Institute, no. As part of the Information Security Reading Room,
2003.

[6] R. Gerhards, “The enhanced syslogd for linux and unix rsyslog,” http:
//www.rsyslog.com, [retrieved: 4, 2013].

[7] Elasticsearch Global BV, “The enhanced syslogd for linux and unix
rsyslog,” http://www.elasticsearch.org/, [retrieved: 4, 2013].

[8] R. Marty, “Cloud application logging for forensics,” in Proc. 2011 ACM
Symposium on Applied Computing, ACM, 2011, pp. 178-184.

[9] A. Rabkin and R. Katz, “Chukwa: A system for reliable large-scale log
collection,” in Proc. 24th international conference on Large installation
system administration, USENIX Association, 2010, pp. 1-15.

[10] D. Jayathilake, “Towards structured log analysis,” in Computer Science
and Software Engineering (JCSSE), International Joint Conference on,
2012, pp. 259-264.

[11] A. Müller, C. Göldi, B. Tellenbach, B. Plattner, and S. Lampart,
“Event correlation engine,” Department of Information Technology and
Electrical Engineering - Master’s Thesis, Eidgenössische Technische
Hochschule Zürich, 2009.

[12] M. Grimaila, J. Myers, R. Mills, and G. Peterson, “Design and analysis
of a dynamically configured log-based distributed security event detec-
tion methodology,” The Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology, vol. 9, no. 3, 2012, pp. 1-23.

[13] J. Wei, Y. Zhao, K. Jiang, R. Xie, and Y. Jin, “Analysis farm: A cloud-
based scalable aggregation and query platform for network log analysis,”
in Cloud and Service Computing (CSC), International Conference on,
2011, pp. 354-359.

[14] K. Fukuda, “On the use of weighted syslog time series for anomaly
detection,” in Integrated Network Management (IM), IFIP/IEEE Interna-
tional Symposium on, 2011, pp. 393-398.

[15] J. Community, “Drools - jboss community,” http://www.jboss.org/
drools/, [retrieved: 4, 2013].

[16] R. Gerhards, “A syslog normalization library,” http://www.liblognorm.
com, [retrieved: 4, 2013].

[17] A. Makanju, A. Nur Zincir-Heywood and E. E. Milios, “Interactive
Learning of Alert Signatures in High Performance Cluster System Logs,”
in Network Operations and Management Symposium (NOMS), IEEE,
2012, pp. 52-60.

[18] A. Clemm and M. Hartwig, “NETradamus: A forecasting system
for system event messages,” in Network Operations and Management
Symposium (NOMS), IEEE, 2010, pp. 623-630.

[19] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi and Y. Matsumoto,
“Online failure prediction in cloud datacenters by real- time message
pattern learning,” in Cloud Computing Technology and Science (Cloud-
Com), 4th International Conference on, IEEE, 2012, pp. 504-511.

[20] C. Pautasso, O. Zimmermann and F. Leymann, “Restful web services
vs. ’big’ web services: making the right architectural decision,” in Proc.
of the 17th international conference on World Wide Web, ACM, 2008,
pp. 805-814.

[21] M. Zur Muehlen, J. V. Nickerson, K. D. Swenson, “Developing web
services choreography standards - the case of REST vs. SOAP,” Decision
Support Systems, 40.1, 2005, pp. 9-29.

199Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

