
Synergic Data Extraction and Crawling for Large Web Sites

Celine Badr, Paolo Merialdo, Valter Crescenzi
Dipartimento di Ingegneria

Università Roma Tre
Rome - Italy

{badr, merialdo, crescenz}@dia.uniroma3.it

Abstract—Data collected from data-intensive web sites is
widely used today in various applications and online services.
We present a new methodology for a synergic specification
of crawling and wrapping tasks on large data-intensive web
sites, allowing the execution of wrappers while the crawler
is collecting pages at the different levels of the derived web
site structure. It is supported by a working system devoted to
non-expert users, built over a semi-automatic inference engine.
By tracking and learning from the browsing activity of the
non-expert user, the system derives a model that describes the
topological structures of the site’s navigational paths as well
as the inner structures of the HTML pages. This model allows
the system to generate and execute crawling and wrapping
definitions in an interleaved process. To collect a representative
sample set that feeds the inference engine, we propose in
this context a solution to an often neglected problem, called
the Sampling Problem. An extensive experimental evaluation
shows that our system and the underlying methodology can
successfully operate on most of the structured sites available
on the Web.

Keywords-data extraction; crawler; web wrapper; sampling;

I. INTRODUCTION

Large data-intensive web sites contain information of
interest to search engines, web applications, and various
online service providers. These sites often present structural
regularities, embedding content into predefined HTML tem-
plates using scripts. Regularities are also apparent at the
topological level, with similar navigational paths connecting
the pages obeying to a common template. In this paper, we
extend the work introduced in [1], to address two related
issues for capturing useful information from structured large
web sites: first, the pages containing the information of
interest need to be downloaded; second, the structured
content needs to be extracted by web wrappers, i.e., software
modules that collect page content and reorganize it in a
format more suitable for automatic processing than HTML.

In general, crawlers and wrappers generation have been
studied separately in the literature. Numerous tools exist for
generating wrappers, with different levels of automation.
They usually aim at extracting information from semi-
structured data or text, and they use to that effect scripts
or rule-based wrappers that rely on the structure or format
of the source HTML. In some cases, wrappers are based
on ontlogies or NLP techniques. Concerning the level of

automation, hand-coded wrappers require a human expert,
which becomes a cumbersome task for data extraction on
large data-intensive web sites. Fully automatic wrappers
have also been implemented [1], [2], but they necessitate
considerable data post-processing and may suffer from lower
accuracy. In semi-automatic wrapping, the main focus has
been on learning approaches that take several positive and
negative labeled examples as input.

Various tools also exist to crawl web pages and entire web
sites. Popular techniques start with seed URLs and either
search on the pages for hyperlinks matching certain patterns,
or consider all encountered hyperlinks and then apply se-
lection and revisit techniques for downloading target pages
based on content or link structure [3], [4]. For deep Web
crawling, some work has been proposed to obtain and index
URLs resulting from different form submissions, e.g., [5].
However, the production of crawlers for structured web sites
remains a subject with large room for improvement.

When it comes to large web data-intensive sites, it is
commonly useful to extract data from a subset of the pages,
in general pertaining to vertical domains. For example, in
a finance web site, one may be interested in extracting
company information such as shares, earnings... In this case,
there is no need to download all the site’s pages about market
news, industry statistics, currencies, etc. Thus we propose a
new approach in which the two problems of crawling and
wrapping are tackled concurrently, where the user indicates
the attributes of interest while making one browsing pass
through the site hierarchy. The specifications are created in
the same contextual inference run. Moreover, the execution
of the wrappers takes place while the crawler is collecting
pages at the different levels of the derived web site structure.
The mutual benefits are manifested as the produced simple
wrappers extract the specific links followed by the crawling
programs, and the crawlers are in turn used to obtain
sample pages targetted for inferring other wrappers. We have
developed a working system that offers these capabilities to
non-expert users. It is based on an active-learning inference
engine that takes a single initial positive example and a
restricted training set of web pages. We also define in this
context the Sampling Problem, a problem often undervalued
in the literature, and we show how it is mitigated by our
approach when collecting a representative training set for

200Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

the inference process.
Throughout the paper, we consider an example web site

that offers financial information on companies. We are
interested in extracting from company pages data about
stock quotes that is accessible in two different navigation
sequences in the site topology: first, the home page displays
companies’ initials as links. Clicking on a letter leads to
a listing of all the companies with this given initial. Each
company name in turn links to a page containing the data
to extract. Second, by filling and submitting a form on the
home page, one reaches index pages grouping the companies
by financial sector. Index pages are paginated, and by
following the links provided in each paginated result list,
the target company pages can be finally reached.

The rest of the paper is organized as follows: Section II
presents our web site abstract model, on which we build the
interleaved crawling and wrapping definitions; Section III
lists and explains the crawling algorithm; Section IV defines
the extraction rule classes used for extracting both data and
links leading to the pages where these data are located;
Section V presents the wrapper and assertion constructs
that enhance our synergic crawling and wrapping tasks; in
Section VI, we define the sampling problem and present our
approach to collect a sample set; Section VII summarizes the
results of the extensive experimental activity we conducted;
Section VIII discusses related work; and finally, Section IX
concludes the paper and presents some possible future
developments.

II. AN ABSTRACT MODEL FOR DESCRIBING LARGE
WEB SITES

To access data from data-intensive web sites, we aim
to reach these data on pages collected by a crawler using
wrappers tailored to the user’s information needs. We note
that large web sites are composed of hundreds of pages that
can generally be grouped in few categories, such that pages
of the same category share a common HTML template and
differ in contents. These sites also exhibit topological regu-
larities in the navigational paths that link the pages and page
categories. By capturing these regularities, we describe large
web sites with an abstract model of three interrelated levels:
the intensional, extensional, and constructional levels.

A. Intensional level description

Our intensional model defines two main constructs for
building schemes: the Page-Class construct describes a set of
similar pages of the same category, while the Request-Class
construct models a set of homogeneous requests (GET or
POST) to navigate from the pages of one Page-Class to those
of a consecutive Page-Class. In our model, Request-Classes
are typed, in the sense that each Request-Class specifies the
Page-Class that it leads to.

The above concepts are illustrated in the graph of Fig-
ure 1: for our example site, the home page can be mod-

	 Figure 1. Intensional model example.

eled by a singleton Page-Class HOME from which depart
two Request-Classes, BYINITIAL and BYSECTOR, lead-
ing to two Page-Classes, INDEXBYINITIAL and SECTOR.
INDEXBYINITIAL models the index pages grouping com-
panies by initials while SECTOR describes index pages
grouping companies by financial sector.

Both Page-Classes, by means of Request-Classes
OVERVIEW and COMPOSITION respectively, lead to the
last Page-Class COMPANY whose pages contain detailed
information about companies, one company on each page.
In particular, Request-Class NEXT models the link leading
to another page instance of the same Page-Class SECTOR.

B. Extensional level description

An extensional listing of a Page-Class is a set of pages
called Page-Class support that: (i) obey to a common
HTML template and hence have similar structure; (ii) are
about a common topic (each page represents a different
instance of the same conceptual entity); (iii) are reachable
by similar navigational paths, that is, by crossing pages that
also correspond to predefined Page-Classes. Similarly, the
extensional definition of a Request-Class is a set of requests
called Request-Class support that: (i) lead to page instances
of the same Page-Class; (ii) can be generated by clicking
on comparable links or by different submissions of the same
web form.

The two intensional constructs can be used together to
build complex schemes, and to each scheme an extensional
counterpart can be associated. That is, a scheme instance can
be obtained by arranging the supports of every Page-Class
and Request-Class involved into a graph that reflects the log-
ical organization of the modeled site, where nodes represent
page instances of a Page-Class in the scheme, while edges
represent request instances of a Request-Class. We call an
instance empty whenever every Page-Class (and hence every
Request-Class) has empty support. An extensional graph for
our example is partially shown in Figure 2.

C. Constructional level description

The constructional level in our model bridges the in-
tensional and extensional descriptions by providing all the
operative details needed to build the schema instances.
Constructional elements are in fact the information that the

201Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

Figure 2. Extensional model example.

system needs to start from the entry page, determine the
possible navigational paths to follow, proceed to subsequent
pages, and extract the attributes of interest to the user. These
elements consist of: (i) for the entry Page-Class, the set
E = {e1, . . . , en} of addresses of the pages in its support
(typically the URL e of the page is sufficient); (ii) for each
Request-Class r, a function err that builds its support, given
a page instance of the Page-Class from which it departs. We
call this function an extraction rule since it extracts requests
from pages, e.g., the initials hyperlinks on the home page.
Two other constructional elements, assertion and wrapper,
are added to our model in order to enhance the Page-Class
constructs. They are detailed in Section V.

III. CRAWLING ALGORITHM

Having defined our abstract model and how to build its in-
stances, we explain how the crawler operates in this context.
We first formalize the definition of navigational path, a main
component for our crawling algorithm. On the intensional
level, a navigational pathN = (P0·r10 ·P1·r21 ·. . .·rhh−1·Ph) is
a sequence of Page-Classes and Request-Classes such that
each Request-Class rk+1

k is outgoing from Page-Class Pk

and ingoing to Page-Class Pk+1, k = 1..h− 1. It essentially
corresponds to a path in the graph associated with the
scheme. For our purposes, the interesting navigational paths
start from an entry Page-Class (HOME, in our example)
and reach a target Page-Class containing the relevant data
(COMPANY). On the extensional level, the navigational path
consists of navigational trees, where each tree is rooted at
one entry page of the site and its descendants represent the
pages visited by following the various requests in the support
of the Request-Classes traversed.

A generalization of the user’s sample browsing activity
derives the navigational path definition as a sequence of
constructional Page-Class and Request-Class elements. The
crawler then finds all the navigational tree instances of this
given path in the web site, in order to eventually download
-strictly- all the pertaining pages.

Algorithm 1: Crawling algorithm based on the abstract
model for large web sites

Input : A navigational path N =
(P0 · r10 · P1 · r21 · . . . · rth−1 · Ph);
addresses E = {e1, . . . , en} of P0’s pages;
a set of extraction rules
{err

k+1
k |k = 0, . . . , h− 1}

Output: The navigational trees T instances of N .

Let T = {t1, . . . , tn} be an empty instance of N ;
foreach ei ∈ E do

add the page with address ei as root of ti;

for k = 0 to h− 1 do
foreach page p ∈ supportti(Pk) do

foreach request r ∈ err
k+1
k (p) do

Let d be the page obtained by means of r;
insert d as a child of p in ti;
insert d in supportti(Pk+1);

return T ;
supportti(P) support of P in the navigation tree ti

err
k+1
k (p) set of requests associated with the

rk+1
k and extracted by applying the

extraction rule er on page p

To do so, a crawler operates according to Algorithm 1.
It starts with an input navigational path and an empty set
of the corresponding navigational tree instances. Then it
incrementally builds each instance by first adding a root
page from the support of the entry Page-Class P0, using
to that effect the input addresses E. Subsequently, for each
page p in the Page-Class under consideration, the algorithm
uses err(p) to build the support of the outgoing Request-
Class r, that is, to extract on p the actual set of requests
corresponding to r. These requests are sent to the web server
in order to obtain new pages. The latter are added to the
support of the Page-Class that constitutes the destination
of the processed Request-Class. The crawler continues by
iteratively picking each page p from the support of an al-
ready populated Page-Class and following its corresponding
requests, once extracted. It thus incrementally builds other
instances and the algorithm stops when all the requests have
been sent.

IV. SPECIFICATION OF EXTRACTION RULES

To perform wrapping and crawling tasks in an interrelated
mode, our system infers extraction rules. These rules are
used in crawling to locate the requests to be followed, and
in wrapping to extract the relevant data from the downloaded
target pages.

In Section II, we have already discussed extraction rules
for requests. We revisit the previous definition to also

202Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

model wrappers for extracting relevant data from a page.
An extraction rule er is then more generally defined as a
function that locates and returns a set of strings si from the
HTML code of page p: er(p) = {s1, . . . , sk}.

In order to infer extraction rules, our algorithm takes as
input a few positive examples provided by the user, high-
lighting the strings to extract (links or attributes). Eventually,
only the rules compatible with collected user feedback are
kept. Defining the class of inference rules to be generated
constitutes then an important design choice. On one hand, a
large and expressive class is more likely to include all the
useful rules but may require many initial samples and a lot
of user interaction before the correct rules are discerned. On
the other hand, a limited and concise class of extraction rules
requires less samples, and therefore less user interaction, but
is also less expected to include correct extraction rules that
are valid on all the pages. We address this tradeoff by opting
for extraction rules based on XPath expressions and obtained
from the union of three simple classes:
ABSOLUTE containing all absolute XPath expressions with

positional predicates in each location step, generalized
when a superset of several samples is needed

URL-REGEX obtained by filtering the rules in the
ABSOLUTE class with simple regular expressions, and
used mainly for extracting links where the URL value
obeys to a general pattern

LABELED consisting of relative XPath expressions that
make use of a fixed node considered part of the template
to locate the string to extract

These classes proved to work on more than one hundred
real web sites with very good performance results, while
maintaining simplicity and requiring very limited user effort
to discern a correct rule.

V. WRAPPER AND ASSERTION CONSTRUCTS

As mentioned, wrappers and assertions are constructs
used in our constructional model to enhance the system’s
definitions of crawling and data extraction activities.

Wrappers are tools for extracting data values on web
pages. Data wrappers generated by our system consist of
rules taken from the LABELED class as they are less sensitive
to variations on the page. They require that the node chosen
as a reference be present in most of the target pages while
being as close as possible to the data node. We associate
the wrapper element with the Page-Class construct so that
when crawling to build a Page-Class support, if a wrapper
definition is encountered, it is executed instantly on the
downloaded page.

Assertions are Boolean predicates over web pages. They
are formulated as a set of XPath expressions locating valid
template nodes, and a page is said to satisfy an assertion
if and only if it agrees with all the XPath expressions
associated with the template of its respective Page-Class.
As we relax extraction rules and allow them to extract a

superset of the correct links, the system can detect and dis-
card any false positive pages crawled by checking whether
their template matches or not all the established assertions.
Consequently, assertions replace the need for adding more
expressive classes of extraction rules when the crawler’s
performance is not satisfactory, which means fewer rules
produced in response to the examples provided by the user,
and fewer subsequent examples required from the user to
discern the correct rules [6].

VI. SAMPLE SET SELECTION

The input required for the semi-automatic generation of
the crawling programs and annexed wrappers is provided
through interaction of a non-expert user with our system
through a browser-based interface. For the model generation,
the system tracks user navigation and derives an internal
schema from the user’s browsing activity as per the model
listed in Section II, with the Page-Classes and Request-
Classes of the web site along with the needed extraction
rules. As for wrappers inference, the system generates ex-
traction rules for the data selected by the user and evaluates
them with the active learning module of the underlying
inference engine. Then for any page with uncertainty, be
it for the template or for the extracted values, the user
is prompted to confirm the results, correct them, or even
discard the page.

A. Sampling Problem

In order to produce correct and effective extraction rules,
automatic and semi-automatic inference methods require
samples with a certain quality of representativeness [6]
that inexpert users cannot provide. Therefore the sample
pages chosen by the tool to collect user feedback need to
be representative of their corresponding Page-Classes. In
addition, the navigational paths linking them together need
to cover a rather wide variety of the possible paths in the
selected informative domain. As a result, selecting sample
pages introduces what we define as the Sampling Problem.
This problem, often neglected, consists in determining which
sample pages to choose in order to have “good” positive
examples and guide an inexpert user in the inference process.
Consider the following two scenarios:
Example 1: the downloaded sample pages all belong to one

specific subset; say company pages from the Agricul-
ture sector in our running example. Such pages would
all contain the token “Sector: Agriculture”.

Example 2: the downloaded sample pages share a particu-
lar variation in the template, such as the pages of top-
ranked companies in our example containing a table
with statistical data. The headers of this table constitute
tokens that are not shared by other pages that do not
rank first in their respective sector.

In these examples, sample pages may not be representative
of all their Page-Class instances, as they contain some

203Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

specific tokens that are not present in the remaining target
pages. This can in turn affect negatively the crawler, were
wrong template assertions derived from these tokens, as well
as the data extraction process, were any relative rules to be
built around these tokens.

B. Resolution

The manifestations of the sampling problem are: (i) in
characterizing the valid pages template, (ii) in collecting
good navigational path instances, (iii) and in generating
accurate extraction rules for the data of interest. In the first
case, the problem is to generate a template characterizing
only relevant web pages and discard “false positives”. A
template consists of a set of valid tokens that are present in
most of the sample pages at the same XPath location. The
second case relates to the need of covering the domain’s
navigational paths with minimum bias, and is addressed
by tracking and generalizing the user’s navigation at each
step. The third case can then be resolved having collected
a diversified page sample and derived a valid template. We
propose the following approach to characterize valid page
templates based on a statistical analysis of page contents
and a learning algorithm requiring limited user effort:

• at each navigation level, consider all the pages obtained
by generalizing selected links or form requests

• from this set of pages, which can be very large, choose
a fixed percentage of random sample pages to download

• analyze tokens occurrence and data extraction results
on the sample pages to train the classifier

• apply uncertainty sampling techniques to select query
pages to propose to the user for feedback

• update tokens set, assertions, and extraction rules from
user feedback

With this technique, our system is able to collect and use a
representative subset from the site pages to infer performing
wrappers and crawlers relevant to the user’s needs. At
execution time, the constructional details, as described in
Section II-C, recorded in XML format, are used to guide the
interleaved crawling and wrapping on the large web site.

VII. EXPERIMENTS

In this section, we summarize our experiments conducted
with the system prototype, called CoDEC, implemented
as a Mozilla Firefox extension. We used our prototype
for generating specifications and executing them on real
web sites to analyze the performance on a wide variety
of heterogeneous topics, page templates, and navigational
paths. We evaluate our experiments by computing the F-
measure as

F = 2
P ∗R
P +R

(1)

This value ranging between 0 and 1 reports the harmonic
mean of the precision P and recall R. For crawling, it
evaluates the set of downloaded pages as compared to the set

of actual target pages. Whereas for wrapping, the F-measure
evaluates the values extracted by the generated rules with
respect to the correct set of attribute values on the target
pages. Larger F-measure values imply better results.

Table I sums up the experiment results of our crawl-
ing techniques on 100 different sites belonging to various
domains. The simplest class ABSOLUTE was sufficient to
extract most of the links leading to target pages. In few cases,
where other links leading to non-target pages were located
very close to the correct links, URL-REGEX extraction rules
improved the precision by discarding the links that do not
match an inferred URL pattern. One crawling limitation was
the inability to discard target pages with the same template
but different semantic entities, such as pages for coaches
downloaded with those of players in a soccer web site.

Table II summarizes the results of testing our wrapping
techniques on a subset of the previous sites, where we
manually chose some attributes to extract. Optional attributes
are those that occur only on a fraction of the pages in
the same Page-Class. When several attributes on a page
are optional, their inconsistent occurrence and location are
likely to cause extraction rules to fail, so we observe low
recall for these tests. Moreover, valid extraction rules cannot
be generated when poor HTML formatting affects user
selection of data. All in all, the overall results collected on
the different web sites support the effectiveness of our tool.

VIII. RELATED WORK

Data extraction for structured web sources has been
widely studied, as shown in the various surveys on wrapper
generation [7], [8], [9], and the several works on wrap-
per specification, inference and evaluation of extraction
rules (such as [10]). However, our approach focuses on
how to contextually specify, create, and execute simple
and interrelated crawling and wrapping algorithms, rather
independently from the underlying inference mechanisms
of extraction rules. A few works [11], [12], [13] have ad-
dressed the automatic discovery of content pages and pages
containing links to infer a site’s hierarchical organization.
These approaches mainly aim at finding paths to all generic
content pages within a web site, often with some limitations
of specific hypotheses to allow automation. In contrast, we
aim at semi-automatically gathering pages from a selected
class type of interest to a user, with a minimal human
effort. The work by [14] partially inspired our URL-REGEX
class, as they use URL patterns to specify crawlers in their
GoGetIt! system. However, our experiments show that many
web sites cannot be crawled in this restrictive way alone.
In addition, they adopt a breadth-first strategy to compare
the site’s pages DOM trees with a provided sample page,
while our system works on a small set of sample pages
presented to a user for feedback. Sellers A. et al [15] propose
a formalism for data extraction by describing and simulating
user interactions on dynamic sites. However, the declarative

204Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

Table I
CRAWLING RESULTS SUMMARY

Total # of web sites Total # of pages crawled Overall F-measure
100 208769 0.99

Table II
WRAPPING RESULTS SUMMARY

Domain # of web sites # of pages # of attributes # of optional attributes Overall F-measure
FINANCE 3 610 5 0 1.00
BASKETBALL 4 2310 7 1 0.99
SOCCER 4 1214 5 0 0.99
MOVIES 3 3046 7 6 0.92

specifications are defined by an expert programmer and
not derived from an actual user’s navigation. Finally, [16]
implement a web scale system for data extraction that
generates extraction rules on structured detail pages in a
web site. They apply extensive calculations for clustering
pages according to template similarity and rely on several
user inputs for annotation and rule learning. Their work is
different in scope from ours since we work on synergic
crawling and wrapping that can cover various Page-Classes
in a web site while deriving information from the user’s
browsing activity.

IX. CONCLUSION AND FUTURE WORK

We presented in this article a new semi-automatic method-
ology for synergic crawling and wrapping in the scope of
information retrieval. Our contributions can be summarized
by: (i) a formalism to specify interleaved crawling programs
and wrappers concurrently over structured web sites; (ii) the
introduction of the Sampling Problem, which illustrates how
randomly chosen samples can be biased and negatively
impact the inference tasks; (iii) an approach to mitigate the
effects of the sampling problem by requiring minimal effort
from an inexpert user; (iv) and an experimental evaluation to
validate our proposed techniques. Our experiments revealed
encouraging results, and can be further improved with the
potential inclusion of semantic assertions and a mechanism
to deal with any optional attributes with changing location
on the page. The quantification of user effort and its variation
with the learning implementation parameters is still the
subject of an ongoing examination.

REFERENCES

[1] C. Bertoli, V. Crescenzi, and P. Merialdo, “Crawling programs
for wrapper-based applications,” in IRI, 2008, pp. 160–165.

[2] Y. Zhai and B. Liu, “Structured data extraction from the
web based on partial tree alignment,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 18, no. 12, pp. 1614–
1628, 2006.

[3] S. Chakrabarti, M. Van den Berg, and B. Dom, “Focused
crawling: a new approach to topic-specific web resource
discovery,” Computer Networks, vol. 31, no. 11, pp. 1623–
1640, 1999.

[4] M. Jamali, H. Sayyadi, B. Hariri, and H. Abolhassani, “A
method for focused crawling using combination of link struc-
ture and content similarity,” in WI 2006. IEEE, 2006, pp.
753–756.

[5] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and
A. Halevy, “Google’s deep web crawl,” Proc. VLDB Endow.,
vol. 1, no. 2, pp. 1241–1252, Aug. 2008.

[6] V. Crescenzi and P. Merialdo, “Wrapper inference for am-
biguous web pages,” Applied Artificial Intelligence, vol. 22,
no. 1&2, pp. 21–52, 2008.

[7] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and
J. S. Teixeira, “A brief survey of web data extraction tools,”
SIGMOD Record, vol. 31, no. 2, pp. 84–93, 2002.

[8] S. Flesca, G. Manco, E. Masciari, E. Rende, and A. Tagarelli,
“Web wrapper induction: a brief survey,” AI Commun.,
vol. 17, no. 2, pp. 57–61, 2004.

[9] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan, “A
survey of web information extraction systems,” IEEE Trans.
Knowl. Data Eng., vol. 18, no. 10, pp. 1411–1428, 2006.

[10] J. Carme, M. Ceresna, and M. Goebel, “Web wrapper speci-
fication using compound filter learning,” in IADIS, 2006.

[11] V. Crescenzi, P. Merialdo, and P. Missier, “Clustering web
pages based on their structure,” Data Knowl. Eng., vol. 54,
no. 3, pp. 279–299, 2005.

[12] H.-Y. Kao, S.-H. Lin, J.-M. Ho, and M.-S. Chen, “Mining
web informative structures and contents based on entropy
analysis,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 1, pp.
41–55, 2004.

[13] Z. Liu, W. K. Ng, and E.-P. Lim, “An automated algorithm for
extracting website skeleton,” in DASFAA, 2004, pp. 799–811.

[14] M. L. A. Vidal, A. S. da Silva, E. S. de Moura, and J. M. B.
Cavalcanti, “Gogetit!: a tool for generating structure-driven
web crawlers,” in WWW, 2006, pp. 1011–1012.

[15] A. J. Sellers, T. Furche, G. Gottlob, G. Grasso, and C. Schall-
hart, “Taking the oxpath down the deep web,” in EDBT, 2011,
pp. 542–545.

[16] P. Gulhane, A. Madaan, R. Mehta, J. Ramamirtham, R. Ras-
togi, S. Satpal, S. Sengamedu, A. Tengli, and C. Tiwari,
“Web-scale information extraction with vertex,” in ICDE
2011. IEEE, 2011, pp. 1209–1220.

205Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

