

Towards a Mobile Application Performance Benchmark

Florian Rösler

Department of Cooperative Studies

Berlin School of Economics and Law

Berlin, Germany

florian.roesler@gmail.com

André Nitze

Department of Cooperative Studies

Berlin School of Economics and Law

Berlin, Germany

andre.nitze@hwr-berlin.de

Andreas Schmietendorf

Department of Cooperative Studies

Berlin School of Economics and Law

Berlin, Germany

andreas.schmietendorf@hwr-berlin.de

Abstract—In this work-in-progress paper, we present our

current findings concerning performance efficiency in cross-

platform mobile applications (apps) and how they can

contribute to a general benchmarking approach. At first,

several test cases for evaluating performance of mobile

applications are described. Then, the performance efficiency of

native and hybrid apps is compared on a mobile device using

IBM Worklight. The results show that hybrid applications still

suffer performance issues in comparison to native apps. The

performance deviations and reasons for them are discussed

and evaluated. It is concluded that the performance of mobile

applications is crucial to user experience and satisfaction.

Software quality should thus not be sacrificed, despite the

economic attractiveness of hybrid development approaches.

The results provide a starting point for a general approach to

benchmark mobile application performance, which is

discussed in the end.

Keywords- Mobile applications; benchmark; software

quality; performance efficiency.

I. INTRODUCTION

The market for mobile devices is currently contested by
several Operating system (OS) providers. The two most
popular OSs, Android and iOS, currently, make up about
90% of the market [5], but both bear big differences in their
development processes. The remaining 10% are made of less
popular OSs including BlackBerry, Windows Phone and
Symbian. Therefore, when developing smartphone
applications, a wide range of skills is required to cover all
available platforms in their native environments. To supply
this diverse market, software companies need a competent
workforce that is capable of handling the development for
the required platforms within multiple codebases. This leads
to expensive development processes and costly maintenance.

To overcome the differences among the various OSs,
several cross-platform development frameworks have been
published to streamline the creation of apps for multiple
platforms. As most of these frameworks are based on web
technologies, web developers are able to build apps without
first learning specific programming skills required by the
individual platforms, eliminating the need for specialists for
each targeted platform. This enables companies to employ a
smaller and less specialized workforce, creating a more cost
efficient way to create apps for multiple OSs. On the
downside, web technologies bear limitations that confront
development companies with a number of tradeoffs. Some of

these limitations have been already made public by scientific
research, whereas others still remain unclear.

There are several aspects of performance measurement in
mobile app development. Delivering products in an efficient
manner demands short development cycles with high quality
(i.e., few errors), which can be seen as a form of process
performance. The product performance (the app itself) is
primarily reflected by user ratings in the app distribution
platforms. Consumer apps with poor performance can lead to
disgruntled users, who delete the app and subsequently cause
negative publicity. In the future, apps meant for the business
sector will continue to significantly affect business processes
and revenues. In this case, the impact of performance will be
much more of an issue since it can significantly constrain the
operation of a company. For example, when there are
contracts to be approved, sales representatives must be able
to quickly receive customer data or conduct other time-
critical processes dependent on mobile interaction with
business data.

This paper shows performance related problems that
come with cross-platform approaches comprising web
technology. It aims to emphasize that mobile app
development should not be conducted as economically as
possible, but rather in a manner that is the most appropriate
for the customer.

After considering related work in the field, we will
describe the technical concept of hybrid applications. Then,
we will describe the method used to gather data and present
our results. Eventually, we will interpret our findings and
outline an approach for further research.

II. RELATED WORK

Charland and LeRoux explain the key problems of cross-
platform development, which include code execution time
and User Interface (UI) issues [4]. They also point out that
end users care about the quality of the app more so than they
do about the efforts put into its development.

According to Ohrt and Turau, the use of cross-platform
frameworks results in slower launch times and bigger
application package sizes in comparison to their native
counterparts [10]. The results for each individual framework
vary widely, from being unremarkably less efficient to being
slower and bigger by several orders of magnitude.

Corral, Sillitti and Succi test the performance of cross-
platform apps in terms of accessing hardware features of an
Android phone [6]. They conclude that most routines, except

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

one (launching a sound notification, 35% faster), are slower
than native code. Whereas some routines are only slower by
a factor of around 2, some are considerably slower, by a
factor of 30 or even 500.

Toca compares several cross-platform development
frameworks by measuring various functions, including start-
up time and scroll performance [12]. He states that the usage
of some frameworks may lead to a bad user experience;
frame rates during scrolling drop to insufficient values and
starting the apps sometimes takes longer than 10 seconds.

Heitkötter, Hanschke and Majchrzak identify criteria to
rate cross-platform and native development [7]. Their work
is based on interviews with domain experts and developing
prototypes. As one of the reviewed frameworks, called
PhoneGap appears as fast as its native counterparts, they
conclude that cross-platform frameworks could also be an
alternative when developing for a single platform.

III. HYBRID APPLICATIONS

Hybrid mobile apps are wrapped local web applications,
which allow the execution of native code. This requires the
native code pieces to be called out of the browser. Such a
technique is known as the “PhoneGap Hack”, which led to a
library for calling several device APIs [2]. These are
currently included and maintained in the PhoneGap
framework, also known as Apache Cordova. Apache
Cordova enables the creation of cross-platform apps using
only Hypertext Markup Language (HTML), Cascading Style
Sheets (CSS) and JavaScript. Moreover, developers are
enabled to access a device’s camera, Global Positioning
System (GPS) sensor and many other device functionalities
using JavaScript [1]. Cordova currently supports all the
major Oss [2] and offers the possibility to implement plug-
ins by the developer, which are own pieces of native code
[3]. These plug-ins can then also be used with JavaScript
calls.

Among today’s most prominent hybrid frameworks stand

the already mentioned Apache Cordova and IBM Worklight.

Unlike Cordova, Worklight is distributed under a proprietary
license. While Worklight comprises Apache Cordova, it adds
several features aimed at business applications. These
include the operation of a backend server, which supports
access to different data sources [8]. It also provides multiple
authentication mechanisms and security concepts for
accessing business data (ibid.).

Figure 1 shows the architecture of hybrid mobile
applications and exemplary metrics to measure performance
in mobile software systems, including device configuration,
network characteristics, and backend and third party
services.

As hybrid apps at their core are web applications, they
utilize UI toolkits to display user interfaces. Because UI
toolkits can only imitate certain behaviour of native controls,
they sometimes lack the native look and feel that most users
expect [11].

IV. METHOD

For a meaningful comparison two nearly identical
Android apps, containing all in the following presented test
cases are developed. Besides a native app, a hybrid IBM
Worklight app is created, each utilizing jQuery Mobile as its
UI toolkit. The defined test cases are meant to compare these
apps by the subcharacteristics of performance efficiency as
described in ISO/IEC 25010 [9], namely time behavior and
resource utilization. Both versions only comprise basic UI
elements and no rich media. In order to minimize the
interference of background threads, the used smartphone is
put into flight mode during testing. Every test case is
executed ten times to obtain an arithmetic mean value.

A. System under Test

In order to retrieve comparable results, the test cases are
each executed on the same device. The chosen device is a
Samsung Galaxy Tab 2 10.1, which can be classified as a
mid-class tablet and should therefore provide satisfactory
performance.

When measuring time behavior, two timestamps are
taken; one before a test case is executed and one right after
execution has finished. In the case of resource utilization,
instead of timestamps, a representational key figure for the
memory consumption is recorded. As apps share resources
among each other on Android, we use the Private Dirty
Random Access Memory (RAM) as a representative key
figure. The Private Dirty RAM indicates which amount of
memory is only consumed by the specific app and is
therefore freed upon closing the app.

B. Test cases

Although Ohrt and Turau already compared the start-up
time of hybrid apps as well as their memory consumption
after start-up [10], we recreate their experiments. This is
because their tested apps were virtually empty and the hybrid
app did not contain a UI toolkit. We expect a remarkable
increase in time and memory consumption when the app’s
web resources are loaded. Those parts of an app cannot rely
on an intelligent library sharing mechanism like Zygote,
which shares Java libraries across apps.

Figure 1. Architectural overview of hybrid mobile applications with

performance metrics.

JavaScript-

Bridge

Hardware
(sensors, file system, network)

Browser

Wrapped App

Native Code
Java, Object.-C,

C++, C#

Web Code
HTML, CSS,

JS

Mobile device

Mobile OS

Performance

metrics

- Start up / loading

time

- Network stability/

latency/ bandwidth

- Processing speed

(frontend/ backend)

- File system (access

time, throughput)

- Number of remote

calls

Middleware/

Backend
(data base, 3rd

party APIs…)

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

0

2

4

Native jQuery
M

em
o
ry

 in
 M

B

Figure 4. Memory consumption after start-up.

0

1000

2000

3000

Native jQuery

T
im

e
in

 m
s

Figure 2. Start-up time comparison of native (Android) and

hybrid (jQuery) apps.

70%

18%

12%

Native Shell

UI Toolkit

Other

Figure 3. Start-up time details for hybrid (jQuery) apps.

0

250

500

Native jQuery

T
im

e
in

 m
s

Figure 5. Time to add 100 list items.

It must be noted that Worklight apps are in general much
more extensive than a basic Cordova app due to the included
backend functionality. It is currently not possible to exclude
these libraries from Worklight projects even when they are
not used by an app.

In order to retrieve comparable values for the basic UI
performance of an app, a certain amount of items are added
to a list view. List views represent a common way of
navigation and display of data, thus its performance is crucial
to the overall impression of an app. In the case of the hybrid
apps, the list items are added by utilizing standard DOM
(Document Object Model)-methods. As Android utilizes data
binding to connect an array to the list view, the creation of
the array and its items are excluded from the time
measurement. The described test case is additionally tracked
in terms of memory consumption, thus indicating how
efficient list items are handled by the specific system. Such a
test case cannot act as a precise performance benchmark, but
shall rather point out a general performance comparison as
list view operations are a basic feature that should be
executed close to real time. If an app struggles adding 100
items in a benchmark environment, where the number of
background processes is minimized, it may have stronger
execution issues when adding these items in a real life
situation, where other processes take large amounts of
processing power.

V. RESULTS

The outcome of the first test case reveals that, while the
native application is nearly immediately loaded, the hybrid
counterpart is significantly slower by a factor of around 20
(see Figure 2). With a startup time of more than two seconds,

the hybrid app shows a remarkable delay, which is

noticeable by the user. In an app, which contains real
content, this additional loading time may negatively
influence a user’s satisfaction.

When analyzing the start-up process further, it becomes
clear that the native shell, which wraps hybrid apps, takes up
a majority of the time span followed by the UI toolkit's
loading time (see Figure 3). During this time, the internal
Cordova server is started, which refers JavaScript calls to
their native counterparts. Additionally, required JavaScript
libraries as well as web resources are loaded into the browser
view, which hosts the app. Thus, loading a native app is a
more trivial process to the operating system and can be
executed much faster.

The measurement of the memory consumption during
start-up shows similar results. The differences in memory

utilization after start-up are significant, with the hybrid
application consuming more than four times the memory of
the native implementation, which takes up less than 700KB
(see Figure 4). This difference is explainable by the
Worklight shell and the UI toolkit, which cannot be shared
among hybrid apps. When running multiple hybrid apps at
the same time, each utilizes its own copy of the
aforementioned resources. Native Android apps on the other
hand can share libraries that bring in basic functionalities
like UI operations among each other, which decreases the
overall memory footprint. Additionally, the DOM, which is
required to display web pages within Cordova is also stored
in the phone’s RAM.

The test case for adding 100 list items to a list view
shows that the native implementation performs close to real
time (see Figure 5). In the case of the hybrid app, the process
takes nearly half a second, therefore being slower by an

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

order of magnitude. The reason for the difference when
adding the items in the hybrid implementation could be the
utilization of the DOM, which cannot compete with the
efficiency of native UI mechanisms. Although the
performance of the hybrid app is still acceptable, users might
feel a delay when loading the screen with the list items,
which again could affect the user’s satisfaction. It also
should be mentioned that low-end phones may show worse
results. On low-end phones, adding list items can lead to
long waiting times, which may be unacceptable for such a
common operation.

The results for measuring the memory consumption
when adding list items indicate that the native
implementation is remarkably more efficient than the hybrid

version (see Figure 6) as the jQuery Mobile app utilizes 16
times more memory than the native implementation. The
reason for the higher memory increase of the hybrid
implementation may again be the DOM, which stores the
document in an expensive tree structure, which usually
includes redundancies like recurring element names. On the
contrary, the OS can handle native apps in a more efficient
way and store the values in inexpensive data structures.

VI. CONCLUSION AND FUTURE WORK

Hybrid apps were analyzed in terms of performance
efficiency, which is an important factor for the software
quality of apps. In all conducted tests, native apps were
superior to hybrid apps. Since performance is considered
crucial for user experience, low performance is likely to
influence a user’s satisfaction and rating of the app. Users of
low-end phones seem to be particularly disadvantaged by a
market shift towards hybrid apps. A large share of the market
for hybrid apps is currently advertised by many consulting
companies due to the economically efficient development
process. Despite this, companies should focus on their clients
who expect a satisfying performance, which is more likely to
be achieved with the native approach. Some cases cannot yet
be covered sufficiently in terms of responsiveness using
hybrid approaches. Although web technologies and hybrid
frameworks are progressing steadily, native development
prevails, at least for consumer-facing apps.

While many papers have already covered performance
efficiency of hybrid mobile apps, there is still no clear
statement of which approach to choose for a certain project.

We therefore suggest the creation of a general benchmark
method that can be implemented at the beginning of a
software development project for evaluation purposes. It
should cover the most important aspects of an app’s
performance, including the utilization of hardware features
or UI performance. These tests should support lead
developers and managers in deciding whether the
disadvantages in performance are negligible for the certain
use case.

As the environment of a hybrid app can differ in many
factors like OS, hybrid shell, UI toolkit and smartphone
hardware, it should be possible to implement the benchmark
for a specific system in a cost efficient manner with low time
expenses. However, a more general mobile application
performance benchmark would need to include a set of
configurations to cover the most widely used technological
pathways. To achieve this, more factors apart from
performance have to be incorporated as comparison criteria.
Furthermore, a more typical set of UI elements should be
derived from practical use cases. Also, more economical
factors have to be included as their impact on the platform
choice can be significant.

Model-driven development approaches like those
discussed in [13][14] and [15] have not yet found wide
adoption outside of academic projects and hence shall for
now be excluded of performance evaluations.

Regarding future developments, it can be assumed, that
the typical increase of computing speed and memory
capacity of mobile devices will lead to improved
performance. Nevertheless, decisions on the trade-off
between performance and other factors will always have to
be made.

REFERENCES

[1] Adobe PhoneGap 2013a. PhoneGap Documentation

Overview. [online] Available at:

<http://docs.phonegap.com/en/2.9.0/guide_overview_index.m

d.html#Overview> [Accessed 10 May 2014].

[2] Adobe PhoneGap 2013b. Adobe PhoneGap Build. [online]

Available at: <https://build.phonegap.com/> [Accessed 10

May 2014].

[3] Adobe PhoneGap 2013c. Plugin Development Guide. [online]

Available at:

<http://docs.phonegap.com/en/2.8.0/guide_plugin-

development_index.md.html> [Accessed 10 May 2014].

[4] Charland, A. and LeRoux, B. 2011. Mobile Application

Development: Web vs. Native. In Communications of the

ACM, vol. 54, 5 (May 2011), pp. 49-53. DOI=

http://dx.doi.org/10.1145/1941487.1941504.

[5] comScore, 2013. US Smartphone Subscriber Market Share

April 2013. [online] Available at:

<http://www.comscore.com/Insights/Press_Releases/2013/6/c

omScore_Reports_April_2013_U.S._Smartphone_Subscriber

_Market_Share> [Accessed 10 May 2014].

[6] Corral, L., Sillitti, A., and Succi, G. 2012. Mobile

multiplatform development: An experiment for performance

analysis. In Procedia Computer Science, vol. 10, pp. 736-743.

0

0.05

0.1

Native jQuery

M
em

o
ry

 in
 M

B

Figure 6. Increased memory consumption when adding 100 list

items.

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

[7] Heitkötter, H. Hanschke, S., and Majchrzak, T. 2012.

Comparing Cross-Platform Development Approaches For

Mobile Applications. Lecture Notes in Business Information

Processing, vol. 140, pp. 120-138.

[8] IBM 2012. IBM Worklight V5 Technology Overview. [pdf]

Available at:

<ftp://ftp.software.ibm.com/software/pdf/mobile-

solutions/worklight/WSW14181USEN.pdf> [Accessed 10

May 2014].

[9] ISO 2011. ISO/IEC 25010:2011. Geneva: ISO.

[10] Ohrt, J. and Turau, V. 2012. Cross Platform Development

Tools for Smartphone Applications. IEEE Computer, vol. 45,

pp. 72-79.

[11] Quilligan, A. 2013. HTML5 Vs. Native Mobile Apps: Myths

and Misconceptions. [online] Available at:

<http://www.forbes.com/sites/ciocentral/2013/01/23/html5-

vs-native-mobile-apps-myths-and-misconceptions/>

[Accessed 10 May 2014].

[12] Toca, F. 2011. Cross-Platform-Entwickung unter iOS und

Android: Technologieüberblick und Prototyp-basierte

Bewertung. (Cross-Platform Development on iOS and

Android) [Diploma Thesis] University of Magdeburg.

Available at: <http://wwwiti.cs.uni-

magdeburg.de/iti_db/publikationen/ps/12/thesisAlcalatoca.pdf

> [Accessed 10 May 2014].

[13] Balagtas-Fernandez, F.T. 2008. Model-Driven Development

of Mobile Applications. In: 23rd IEEE/ACM International

Conference on Automated Software Engineering, pp. 509-

512.

[14] Dunkel, J. and Bruns, R. 2007. Model-Driven Architecture for

Mobile Applications, In: Proceedings of the 10th

International Conference on Business Information Systems,

Springer, vol. 4439, pp. 464-477.

[15] Kramer, D., Clark, T., and Oussena, S.: MobDSL: A Domain

Specific Language for multiple mobile platform deployment.

In: 2010 IEEE International Conference on Networked

Embedded Systems for Enterprise Applications (NESEA

2010). Suzhou, S., pp. 1–7.

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

