
A Run-time Life-cycle for Interactive Public Display Applications

Alice Perpétua1,2
1Faculty of Engineering

University of Porto
Porto, Portugal

ei08060@fe.up.pt

Jorge C. S. Cardoso
2CITAR/School of Arts

Portuguese Catholic University
Porto, Portugal

jorgecardoso@ieee.org

Carlos C. Oliveira
Faculty of Engineering

University of Porto
Porto, Portugal

colive@fe.up.pt

Abstract—Public display systems are becoming increasingly
complex. They are moving from passive closed systems to open
interactive systems that are able to accommodate applications
from several independent sources. This shift needs to be
accompanied by a more flexible and powerful application
management. In this paper, we propose a run-time life-cycle
model for interactive public display applications that addresses
several shortcomings of current display systems. Our model
allows applications to load their resources before they are
displayed, enables the system to quickly pause and resume
applications, provides strategies for applications to terminate
gracefully by requesting additional time to finish the
presentation of content, allows applications to save their state
before being destroyed and gives applications the opportunity
to request and relinquish display time.

Keywords-interactive public displays; run-time life-cycle.

I. INTRODUCTION
In this paper, we propose a run-time life-cycle model for

interactive public display applications. This model allows
both the display application and the display system to better
manage their resources.

The most common and simple approach for content
scheduling in public displays is to follow a timetable where
each content item is given a pre-determined amount of
display time. In this approach, display systems usually have
only one active application at a time, using all the display’s
resources. Applications are simply instantiated and killed by
the display system. This approach works well with time-
based content where the content’s duration is known, such as
in videos, or with non-time-based content where the display
owner can easily decide how much display time the content
should have, as in still images or text.

However, the movement towards open display systems
[1] creates a more complex environment where the
traditional scheduling approach may compromise the user’s
experience. In an open network, display owners can easily
interconnect their displays and take advantage of various
kinds of existing content, including rich interactive
applications. Application developers can create applications
and distribute them globally, to be used in any display. Users
can not only watch the content played on the display, but
also appropriate it in various ways such as interacting with it,
expressing their preferences, submitting and downloading
content from the display.

In this environment, while display owners may still have
control over what is displayed, display systems must be
prepared to manage an increasing number of applications in
a more flexible and unanticipated way. For example, imagine
an interactive video application for public displays where
users can somehow select videos to play next. Before
displaying another application, the display system should
make sure the video is allowed to finish, in order not to
disturb the viewing experience. Other applications, such as
“background” applications, may require display time in
response to asynchronous events such as user interactions or
other external events. For example, an application may wish
to briefly display a calendar notification only when a specific
user or group of users, who subscribed to those calendar
notifications, are present. In these situations, the currently
displayed application that is about to be interrupted should
be able to quickly resume operation after the notification. A
more detailed analysis of the challenges of content
scheduling in open display networks can be found in [2].

This type of environment requires display systems to
function more as operating systems, and it also requires a
specific application framework that defines a more fine-
grained run-time life-cycle. This will allow a better display
resource management just like we have in other platforms.
For example, the Android platform defines a rich run-time
application life-cycle that breaks down all the possible states
and transitions between states of an application from the time
it is loaded into memory and started, to the time it is shut
down and removed from memory. This break down of
possible states allows application programmers and system
to negotiate the resources that an application needs in each
state, guaranteeing an efficient usage of those resources on
the one hand, and rapid application switching and loading,
on the other hand. For example, an application may be
paused if another application comes to the foreground (e.g.,
because the user requested another application), stopping
animations and other CPU consuming operations and save its
state to persistent storage (because paused applications may
be destroyed by the system if it needs memory). When the
application is resumed, it can start the animations again. It is
easy to imagine that display systems will need this kind of
resource management when the number of applications that
each display handles grows.

In this paper, we present our initial effort in this
direction. We have looked at existing computing platforms
(mobile and desktop) and their typical application run-time
life-cycles and synthesized and adapted those models

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

according to the specific requirements of a public display
system. We have also a first implementation of the proposed
model as a Google Chrome extension for web-based public
display applications.

The rest of this paper is organized as follow. Section II is
dedicated to present relevant related work. Section III
addresses the observed shortcomings in existing public
displays systems and associated design goals for the run-time
life-cycle presented in Section V. Section IV summarizes all
information gathered about run-time life-cycles of existing
computing platforms. Section V describes our proposed life-
cycle model, and Section VI concludes.

II. RELATED WORK
Many public display content players / content schedulers

have been implemented by researchers and industry.
For example, Linden et al. [3] proposes a web-based

framework for managing the screen real estate of the UBI-
hotspot system - a public display system that supports
concurrent applications on a single display. The framework
was implemented using Mozilla Firefox browser and custom
JavaScript code that manages the temporal and spatial
allocation of the screen to various applications. These
hotspots support two modes: a passive broadcast mode, and
an interactive mode. These two modes represent different
ways for deciding when and which application/content
should be loaded by the display system. The framework does
not support any type of fine-grained control over the
execution of an application. For example, if an application
takes a long time to load, the user will be aware of this (at
best the application may use a splash screen). Similarly,
when unloading, the system simply unloads the content,
giving no possibility for the application to run clean-up
operations. Even if an application is often used, it will
always have to be completely loaded and unloaded every
time it is used; the system does not put applications in a
suspended state for rapid resuming.

Yarely [4] is a public display player for open pervasive
display networks that was developed to replace the existing
software infrastructure of the Lancaster e-Campus system
[5]. Yarely uses a subscription management system where
each display node receives a content descriptor set that lists
the content that the player should play and how it should be
scheduled. It also supports caching of content items so that
displays still function under network failures and
disconnections. Even though Yarely is a very powerful
software player, even capable of running native content, it is
still geared towards passive content that is scheduled
consecutively and where the content length can be known a
priori. Yarely supports dynamic schedule changes that allow
it to display unforeseen content such as emergency
broadcasts, but it does not provide any specific support for
interrupted content to be resumed.

III. EXISTING PROBLEMS AND DESIGN GOALS
Work on interactive public display applications [6][7] has

identified a number of shortcomings in existing public
display systems. In this section, we present the observed

problems and the associated design goal for the run-time life-
cycle we propose in this paper.

A. Application loading
Many interactive applications have noticeable loading

times that designers usually address by showing a splash
screen or loading indicator. Loading times may be, in some
cases, avoidable or reduced by leveraging on caching
techniques, but they are not generally solvable. Many
applications, particularly web-based applications, have to set
up communication channels with their own servers and with
external services. These initialization processes may be hard
to circumvent to give users the impression of instant loading.
On public displays these loading times represent wasted
resources and reduce the user experience: the time an
application takes to load could have been used to display the
previous content for a bit more time.

Our goal is to create a display system that efficiently
manages the screen in these situations by assigning display
time only when the application is ready to display useful
content.

B. Graceful termination
Interactive applications have no intrinsic duration that

display owners can use when setting up their display’s
schedule. The result is that applications may be assigned an
arbitrary time slot for running. For some applications, this
results in a suboptimal user experience because they are
sometimes interrupted in the middle of an important
operation. The interactive video player application is a
paradigmatic example: an application that lets users
search/select videos to play next. The public display player
may terminate this application before the video finishes,
representing an obvious failure for users.

Our goal is to allow applications to, within system-
defined bounds, request additional display time to finish an
import operation or process. Obviously, these requests may
not be honored by the system if another content with higher
priority needs display time.

C. Forced unloading, pausing, and resuming
Another issue we noticed in interactive applications was

the difficulty of running proper finishing processes before
the application is terminated. Usually, applications are
simply unloaded from the browser component without
warning. This results in added difficulty for the application
to save state and terminate connections in a proper manner.
Although standard web events could be used in this case,
they would still be very dependent on the concrete
implementation of the player (some players assign browser
tabs to applications, others reuse a single tab). Additionally,
in some situations it is more efficient to pause and resume an
application instead of unloading and reloading it again in the
future. For example, if an alert must be displayed, the
interrupted application probably does not need to be
unloaded, but simply taken to a paused state where it stops
most activity, until the alert is removed from the display.

Our goal is to support application termination, pausing,
and resuming. The system should allow applications to

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

terminate properly if the application is to be killed.
Additionally, applications should be able to quickly resume
operation if they are interrupted by the system, without
having to be completely loaded again.

D. Application-requested loading and unloading
Another problem faced by interactive applications for

public displays is that they usually have no way to request
display time by themselves, or to relinquish the display if
they have no possibility to continue. Although some public
display players do allow unanticipated content to be
displayed, this usually requires manual intervention. Ideally,
applications should be able to request display time in order to
display short-term notifications, for example. Conversely,
applications that find themselves in a situation where they
can no longer continue to execute (e.g., because a
fundamental resource could not be loaded) should be able to
inform the display system and relinquish the display.
Obviously, this requires additional management policies on
the display system to guarantee that applications do not
misbehave and take over the display.

Our goal is to support this kind of operation, allowing
display applications to request display time for short periods,
and to give up the display time if they are unable to continue
operating.

IV. ANALYSIS OF EXISTING PLATFORMS
The main objective of this paper is to describe our initial

model for a run-time life-cycle for public display
applications. To arrive at this model, we have looked at
existing computing platforms in order to learn about the
existing run-time life-cycles. We then synthesized these
models and adapted the result to take into account our design
goals.

We have analyzed the Android platform, iOS, Windows
Phone, Windows 8, and Applets platforms. The main event
callbacks associated with each platform are presented in
Table 1. Each platform has different ways to manage
applications and give applications different levels of
granularity for managing their resources. However, we can
identify commons categories of application states/event
callbacks:

Initializing refers to callback methods that are invoked
only once by the system, while the application is in memory.
All initial routines related to the user interface or data should
be done here.

Starting/Resuming refers to callback methods that are
called before the application is put into the foreground, either
for the first time, or because the user is resuming the
application. Different platforms handle this process
differently, but in general these callbacks allow applications
to start graphical animations, sounds, and other quick
initializations. These callbacks may be invoked several times
during the lifetime of the application in memory.

 Pausing refers to callbacks that signal the application
that it is being interrupted and is being taken out of the
display, at least partially. In these cases, applications should
stop animations, sound, and other CPU intensive operations.

Stopping/Destroying refers to callbacks that signal the
application to stop executing, unload all unnecessary
resources, and perform state saving routines. Stopped
applications may not be immediately removed from memory,
but are good candidates to be destroyed and removed from
memory if the system needs the resources.

V. RUN-TIME LIFE-CYCLE
The model for a run-time life-cycle for public display

applications is presented graphically in Fig. 1, and described
next.

onCreate() – This represents the application’s entry
point method and is called only once while the application is
in memory. Depending on the implementation, it is possible
that application code may execute before this method is
called. In our Javascript implementation for example, we
cannot prevent applications from executing before the
onCreate() method is invoked. However, only after
onCreate() can an application interact with the display
system and it should not be assumed that the display system
is ready before the onCreate() is called.

onLoad() – The onLoad() method is called when the
display system decides to give display time to the
application. Before the display time is actually assigned to
the application, the system calls onLoad() and expects
applications to reply with a loaded() method call. At the
onLoad() stage, applications should perform all necessary
loading routines to ensure the application is ready to be
displayed.

onResume() – this callback is called immediately before
the application is put visible on the display. At this phase,
applications should make sure they are ready to show
content. This callback can be used to perform very fast
initialization routines such as starting animations. When this

TABLE I. SUMMARY OF ANALYSED PLATFORMS

Callbacks
categories

Platforms
Android Android services iOS Windows

Phone
Windows 8 Applets

Initializing onCreate() onCreate() WillFinishLaunchingWithOptions()
DidFinishLaunchingWithOptions()

Launching() onLaunched() Init()

Starting/Resuming onStart()
onResume()
onRestart()

onStartCommand()
onBind()

DidBecomeActive() Activated() Activating()
Resuming()

Start()

Pausing onPause() WillResignActive()
WillEnterForeground()

Deactivated() VisibilityChanged()
Suspending()

Stopping/Destroying onStop()
onDestroy()

onUnbind()
onDestroy()

DidEnterBackground()
WillTerminate()

Close() Stop()
Destroy()

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

method is called there should be no noticeable delay before
content is displayed by the application.

onFinishRequest() – this callback signals the application
that it should finish. In this stage applications should notify
the system about how much more time they need to finish
gracefully. The system will honor the application’s time
request, within pre-defined limits, and call onPause() when
the time required by the application expires. This callback
may not be invoked if the system has another urgent content
to display, in which case the onPause() callback will be used
immediately.

onPause() – called to signal that the application should
pause animations, sounds and other unnecessary operations.
In this stage the application is either not visible or only
partially visible. Paused applications may be resumed
quickly by the system by invoking the onResume() callback.

onUnload() – when an application is closed, it should
release all processing resources and clean navigation data as
well as state information;

onDestroy() – signals the application that it is being
removed from memory. Applications should perform any
finalization routines here, perhaps saving state to persistent
storage either locally or remotely.

showMe() – Applications can signal the system that they
want display time by calling the showMe() method. The
system will then apply its internal policy to determine if and
when the application should be given display time.

releaseMe() – Conversely, applications can signal the
system that they cannot display any more content (perhaps
due to a server error or other condition). The system will
then take the necessary steps to bring another application to
the display.

VI. CONCLUSIONS
We have presented a run-time life-cycle model for public

display applications that allows a better resource
management for display systems that have to handle a high
number of independent applications. The model allows
applications to load their resources before they are displayed,
system to, allows applications to terminate gracefully, allows
rapid pausing and resuming, and allows applications to
request and relinquish display time.

We have started to implement this model as a Google
Chrome Extension where each application is assigned a
browser tab. Our implementation manages the life-cycle of

each application determining which tab should be displayed
at any time. We support two types of applications:
foreground and background applications. The display owner
schedules foreground applications, to be shown for pre-
defined periods of time. Background applications are loaded
at startup by the system, but are only assigned display time
when they request it. Our system will apply a priorities
scheme to determine which applications can interrupt which
applications. It will also manage the system memory
resource by dynamically destroying and creating applications
based on their memory footprints and usage pattern.

ACKNOWLEDGEMENTS
This paper was financially supported by the Foundation

for Science and Technology — FCT — in the scope of
project PEst-OE/EAT/UI0622/2014.

REFERENCES
[1] N. Davies, M. Langheinrich, R. Jose, and A. Schmidt, “Open

Display Networks: A Communications Medium for the 21st
Century,” Computer (Long. Beach. Calif)., vol. 45, no. 5, pp.
58–64, May 2012.

[2] I. Elhart, M. Langheinrich, N. Davies, and R. José, “Key
Challenges in Application and Content Scheduling for Open
Pervasive Display Networks,” in Work in Progress Session
PerCom 13, 2013, pp. 393-396.

[3] T. Linden, T. Heikkinen, T. Ojala, H. Kukka, and M. Jurmu,
“Web-based framework for spatiotemporal screen real estate
management of interactive public displays,” in Proceedings of
the 19th international conference on World wide web - WWW
’10, 2010, p. 1277-1280.

[4] S. Clinch, N. Davies, A. Friday, and G. Clinch, “Yarely: a
software player for open pervasive display networks,” pp. 25–
30, Jun. 2013.

[5] O. Storz, A. Friday, and N. Davies, “Supporting content
scheduling on situated public displays,” Comput. Graph., vol.
30, no. 5, pp. 681–691, 2006.

[6] J. C. S. Cardoso and R. José, “Evaluation of a programming
toolkit for interactive public display applications,” in
Proceedings of the 12th International Conference on Mobile
and Ubiquitous Multimedia - MUM ’13, 2013, pp. 1–10.

[7] J. C. S. Cardoso and R. José, “PuReWidgets: a programming
toolkit for interactive public display applications,” in
Proceedings of the 4th ACM SIGCHI symposium on
Engineering interactive computing systems - EICS ’12, 2012,
p. 51-60.

Figure 1. Application lifecyle for public displays.

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

