
Driving the Learning of a Web Aapplication Framework by Using Separation of

Concerns

Daniel Correa Botero, Fernando Arango Isaza, Carlos Mario Zapata Jaramillo

Universidad Nacional de Colombia

Medellín, Colombia

Emails: {dcorreab, farango, cmzapata}@unal.edu.co

Abstract— Web Applications Frameworks (WAFs) have

become very popular tools for developing software

applications. These tools lead to the implementation of a big

amount of classes, components, and libraries which support

developers for saving costs, time, and effort. Due to the big

number of WAF elements, a developer needs to invest

considerable effort and time in order to understand the WAF

usage. Some authors had proposed different framework

learning techniques, but these techniques focus on how to

document or show the framework information. Then, how to

drive the framework learning is a developer concern.

Commonly, developers follow a guide containing too much

information, but in some cases developers only need to learn an

incomplete WAF usage. After analyzing some software

projects, we define in this paper a list of web application

concerns. This list is connected to a list of WAF components,

indicating for each concern the specific elements a developer

should know for understanding and covering the concern.

Such a list helps the developer to drive the WAF learning. We

also develop a web application for driving the WAF learning

and an example with a real case of driving WAF learning.

Keywords-Framework learning; WAF; concerns; framework

comprehension; WAF components.

I. INTRODUCTION

Developing web systems is a complex, time-consuming,
and expensive task that often requires the coordination of
efforts across organizational and technical boundaries [1].
Web Applications Frameworks (WAFs) provide different
elements and components to develop effective web systems.
They are powerful techniques for large-scale reuse
promoting developers to improve quality and save costs and
time [2][3]. Since WAFs are considered crucial for rapid
web development [4], several frameworks are available, and
this topic is being included in research and development
[14][23][24].

Developers usually face the need for developing an
application by using a specific WAF (perhaps an unknown
one); consequently, they need to learn how to use the WAF
for developing the application. Several authors have
proposed different framework documentation techniques
such as: patterns [5], example-based learning [6], cookbooks
[7], and visualizations [8]. Some of these techniques are
adapted to WAF development. However, they only focus on
how to document or show the framework information
(architecture, components, classes, relationships, libraries,

etc). Currently, when a developer has to use a specific WAF,
he/she has to invest considerable effort on understanding it
[9]. This problem is due to the big amount of WAF
components and the increasing number of documents.
Sometimes, developers need to face the reading of hundreds
of documentation pages with information they never going to
use.

However, in most cases developer learning is primarily
influenced by the specific requirements of the application
he/she wants to develop. So, developers only need to be
concerned on the WAF elements needed to fulfill those
requirements. Then, how to drive the WAF learning to be
focused on those concerns is an important issue.

In the software development context, a concern is a
particular goal, concept, or area of interest [10]. Based on
this perspective, we have faced the driving WAF learning by
using a separation of concerns. In this approach, each
concern represents an application feature supporting a kind
of application requirements. For example: authorization, data
storage, internationalization and client-side validation are
different types of concerns supporting different kinds of
application requirements.

Separation of Concerns (SoC) has been used in multiples
software areas during the last years, e.g., requirements
specifications [11], framework architectures [1], and aspect-
oriented programming [12]. SoC is a basic principle of
software engineering. Derived from common sense, SoC
essentially means that dealing successfully with complex
problems is only possible by dividing the complexity into
sub-problems which can be handled and solved separately
from each other [13].

We use these separation of concerns connected to WAF
components [14], giving a specific structure of the elements
that a developer should learn for supporting the application
requirements. By following such ideas, we develop a new
WAF learning technique in which a developer only needs to
select the concerns related to his/her development or project,
and it will show to him/her the specific components and
documentation related. This technique helps developers to
save time and to focus on what really they need to learn.

In this paper, we propose a list of 29 basic concerns, and
a connection between the list of the concerns and a list of
WAF components. Next, we develop a representation of the
driving the WAF learning. After that, we develop a simple
web application for driving WAF learning, and finally we

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

develop an example with a real case of driving Codeigniter
learning.

II. FRAMEWORK UNDERSTANDING

Over the past decade, several documentation techniques

have been proposed to support the framework understanding

such as: patterns, example-based learning, and cookbooks,

among others. However, such techniques are still immature

and unused for developing software [2].

Shull et al. [6] show an evaluation of the role examples

play in framework reuse. As the main hypotheses, they

propose example-based techniques as appropriate to be used

by beginning learners instead of hierarchy-based techniques

because the latter have a larger learning curve. However, the

case study they use is based on a specific example with no

patterns, preventing reuse for other frameworks.

Flores and Aguiar [9] present some pattern-based proven

solutions to recurrent problems for framework

understanding. However, such solutions are top-level basic

suggestions.

Jackson et al. [8] support the programmers in

understanding the framework code by providing animated

visualizations of example programs interacting with the

framework. However, a comparison with other methods is

not provided.

Cookbooks are commonly used as a documentation

technique for web-based framework development.

Cookbooks are designed to be carefully read by

programmers as reference manuals. Cookbooks also

describe the entire framework composition. However, they

provide too much information, so they slow the framework

learning process.

Most of the aforementioned studies are only focused on

documenting the framework information—architecture,

components, classes, relationships, libraries, etc.—instead

of addressing the framework learning for developers.

Flores [25] presents an approach to guide the framework

learning process. His study presents DRIVER, a platform to

teach how to use a framework in a collaborative

environment. In such platform, learners can search and rate

available knowledge and get recommendations for the best

course of action. In this approach, learners should decide by

themselves—with no guidance based on their needs—on the

way they want to follow the documents. Besides, DRIVER

is still under development and improvement.

In conclusion, several framework documentation

techniques have been proposed, but how to address the

framework learning is still a developer task. Besides, these

techniques are applied to general frameworks, so WAFs are

still underspecified.

III. CONCERN LIST

Developers use WAFs for different reasons: developing a
software project, acquiring more knowledge, applying for a
job position, accessing the training about tools in
organizations, etc. No matter the reason, the final goal for

learning a WAF usage is to develop specific web
applications.

These specific web applications could be very different

from one to another. For example:

 Developer A could be requested to develop a
complex Customer relationship management (CRM)
system.

 Developer B could be requested to develop a simple
static website.

 Developer C has to develop a simple under-
construction home page.

In the first case, CRM system involves a lot of
requirements, more than the other applications. It means
developer A should learn and read more information than the
other developers. We could also recognize application B
maybe involves less data persistence and less database effort,
and maybe application C only involves displaying
information on screen (i.e., developer C is focused on a very
specific concern). In other words, different developers are
driven by different interests or concerns.

In the software development context, a concern is a
particular goal, concept, or area of interest. For example, the
core requirements of a library borrow card processing system
is related to processing book transactions; while its system
level concerns would be handle logging, transaction
integrity, authentication, security, performance, etc. [10].

Some authors have defined different concern lists or
methods to define concerns [1][11][15][16], but in most
cases the definition of these concerns is delegated to an
analyst. In other cases, the concern list is just a list of non-
functional requirements or a list of ambiguous elements like:
immunity, integrity, precision, robustness, among others.

However, these concern lists are very general and are
difficult to adapt to the specific WAF components and
elements that a developer should learn. So, based on the idea
of driving WAF learning through a concern list, we
developed a new web application concern list. In order to
develop this list, we analyzed more than 20 web projects that
were develop by computer science students in a course
during the last 2 years.

These projects are based on real industry needs. We
found similarities among each project requirements and we
grouped them in a concern list. In this analysis we registered
how many projects required a specific concern. Also, this
analysis shows that no matter how different seems each
application from one another, they use similar concerns.
After this process, we define in Table I, 29 concerns and we
categorize them in different groups.

This concerns list should be used by a developer. At the
beginning a developer has to recognize the specific
requirements for the project he/she is working on. After that,
he/she has to carefully read each concern and its specific
description. Finally, he has to select the concerns which are
involved in his/her project requirements.

Later on, each concern will be connected to the specific
components or elements of a WAF. This generates a
personalized learning guide.

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

TABLE I. LIST OF WEB APPLICATION CONCERNS

Concern

(Times of appearance

on projects)

Category We suggest to select this concern if:

1
Display information

on screen (20)
User Interface You have to display information on a screen.

2 Stylized screens (20) User Interface
Your screens have to be edited and stylized usually through a CSS file. Sometimes WAFs are
based on prefabricated styles.

3

Tools and accessories

for creating views
(20)

User Interface
You have to create forms, tables, or other view elements. (Some WAF support to create faster

view elements usually using front-end languages like html).

4
Routes and

navegability (20)
User Interface

You need to display a screen. Each application section or link has a specific route. These routes

and their connections are very different from WAF to WAF.

5
Capture and assign
data (20)

User Interface
Your application involves creating forms, to capture data, or to send data from a controller to a
view.

6
Client-side data

validation (20)
User Interface

You need to do validation in client side like guarantee not empty forms or specific type of data or

validations using AJAX. Besides, don't forget to revalidate in server-side.

7 Upload files (13)
Architecture and

data flow control
You need to upload files like images, and documents, among others.

8 Error handling (20)
Architecture and
data flow control

Your application generates client errors, or database errors, or any kind of errors. It is important to
know how to treat them, how to capture them and show them.

9
Internationalization

(3)

Architecture and

data flow control

Your application requires multiple languages or to have the screens texts centralized (which

improves maintainability).

10 Localization (2)
Architecture and
data flow control

The information displayed on your application screens depends on user location (e.g., show a
specific app to a user on US and another to a user in UK).

11 Caching (3)
Architecture and

data flow control

Performance is a very important requirement. Some WAF use caching systems to have pre-storage

of the information.

12 Testing (7)
Architecture and

data flow control
You need to know how to debug the application information or to apply some test.

13 Portability (7)
Architecture and
data flow control

You need to develop a version of your application for desktops and another for mobiles.

14 Data Selection (20)
Data modeling

and persistence
You need to extract data from a class model (usually connected to a table of your database).

15
Data Selection with
pagination (19)

Data modeling
and persistence

You need to extract data by pages from a class model (usually connected to a table of your
database).

16
Data selection using

filters (20)

Data modeling

and persistence
You need to select filtered data (usually using specific searches).

17
Multiple data

selection (20)

Data modeling

and persistence

You need to extract data from multiple class model (usually connected to various table of your

database).

18 Data storage (20)
Data modeling
and persistence

You need to save data from a class model (usually save data on your database).

19 Data editing (19)
Data modeling

and persistence
You need to edit data from a class model (usually update data your database).

20 Deleting Data (14)
Data modeling
and persistence

You need to delete data a class model (usually delete data your database).

21
Creating model

functions (20)

Data modeling

and persistence
You need to create specific functions for your classes.

22
Model-side data

validation (20)

Data modeling

and persistence
You need to apply model-side validations.

23 Authentication (20) Security You need a login in your application.

24 Authorization (20) Security You need to grant access to different areas in your application.

25
Control data in

session (20)
Security You need a login, a shopping cart or other functionality that require control data in session.

26
Server-side data

validation (20)
Security Your application require validate data (usually additional data that data from models).

27
Coupling modules
(14)

Modules and
extensions

You need to couple a specific module in your application (some WAFs have websites plenty of

specific modules like calendars, pdf generation, transformation to csv and much more). You have

to search if the module you need is available or you have to develop it.

28 Creating modules (14)
Modules and
extensions

You need to create a new module in your application.

29
Auto-generated code

(14)

Modules and

extensions

Your WAF offers the possibility to auto-generate a CRUD (create-read-update-delete) of a class

model.

78Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

IV. CONCERN LIST VS COMPONENT LIST

Several WAF comparison studies show many similarities
between them [17][18]. In a previous work, we defined WAF
components based on these similarities. We divided the
learning process for each component in a set of fundamental
tasks, each task details very specifically how components are
composed. Furthermore these tasks guide developers in what
they should learn in order to learn and use each component
[14].

In a real application, concerns are traduced and codified

into different components. Commonly, concerns are related
to aspect-oriented programming and they are codified into
aspects [19]. In object-oriented programming concerns could
be traduced into classes and/or components. They also could
be traduced in several ways: functions and libraries, among
others. It depends on the developer techniques, the tools, or
the programming architecture.

TABLE II. WAFS CONCERNS LIST VS WAFS COMPONENTS LIST

Component Task
 # of related

Concerns

Template

Manager

Identify if a different syntax is used in

the view layer and how it works
1

Identify how the communication

between controller and view layers is
achieved

1, 5, 7

Identify what functions are available 1

Identify how the variables get, post,
session, and files are treated

5

Identify how to create styles (css files)

and where are located
2

Role Manager

Identify how to validate permissions in
the application

24

Identify how to grant access to specific

areas.
24

Identify how to add types of roles 24

Data Validation

Identify how validations in control layer

are treated
26

Identify how validations in view layer

are treated
6

Identify how validations in model layer

are treated
22

Identify what kinds of validations are

predefined
6

Identify how to create new validation
types

--

Cache
Identify how to call cache 11

Identify where cache is used 11

Helper

Identify what kinds of helpers exist 3, 27

Identify what facilities give each helper

and how to use them
3, 27

Identify how to create and connect a
new helper or library

28

Tester
Identify how to create unit tests 12

Identify how to debug information 12

ORM

Identify how the transformation among

relational databases and class objects is
achieved

14, 15, 16,

17, 18, 19, 20

Identify how various objects are

gathered from different classes
17

Identify how one-one and many-many

relations, among others, are treated
17

Automatic code

generator

Identify how to call specific SQL
statements

--

Identify how to call and use auto-code

generators.
29

Identify what information is created and
how to edit it

29

Identify how to delete that information 29

Component Task
 # of related

Concerns

Superclass

model

Identify what functions are available
14, 15, 16,

17, 18, 19,

20, 21

Identify how to create model classes and

what functions should be override

14, 15, 16,

17, 18, 19,

20, 21

Identify how to create new class functions 21

Identify how to call attributes and

functions classes

14, 15, 16,

17, 18, 19,

20, 21

Superclass

Controller

Identify what functions are available 1

Identify how to create controller classes

and what functions should be override
1

Identify how to call model classes
14, 15, 16,

17, 18, 19,

20, 21

Identify how to call libraries or plugins 27, 28

Identify how to call views 1

Identify how to do redirects 8, 23, 24

Identify how the variables get, post,

session, and files are treated
5, 23, 25

Identify how to receive and send data to

views
5, 7

Identify how to show results by pages 15

Identify how to manage different packages
of languages

9

Identify how to show information

depending on user‘s location
10

Identify how to manage login and logout 23

Identify how to upload files 7

Identify how to design an application for

desktop and mobile
13

Route

Manager

Identify how URLs are and what means

each part of the URLs
4

Identify how to send and receive data from
URLs

4

Error

Handler

Identify what the sections to catch errors

are
8

Identify what the types of errors are 8

Identify how to capture and show these

errors
8

Database

Class

Identify how to connect to a specific
database

14, 15, 16,

17, 18, 19, 20

Identify how to add data to the database 18

Identify how to delete data from the
database

20

Identify how to edit data from the database 19

Identify how to filter data 16

Identify how to select data from the
database (even information from various

tables)

14, 15, 16, 17

Identify additional functions or
functionalities

--

79Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

Due to the WAF features and taking advantage of WAF
components separations, we connected application concerns
to WAF components and their tasks. This connection gives
the possibility to know for each concern what are the specific
components and tasks related to start the personalized
learning process.

Table II exhibits the common connection between the
lists. The connection is not an ultimate one; a senior WAF
developer could make adjustments as he/she considers. The
main idea is each task as a solution for a specific WAF (it
could be a link to website, forum or blog; could be a video or
a specific explanation text). Later, a real example is
developed.

We need to emphasize that one concern could be related
to a specific task or multiple tasks, of one or multiple
components.

These lists also give a perspective of the components all
developers should take advantage of. If a WAFs first-time
user read the concern list, he/she could find component for
crucial elements unknown to him/her (e.g.,
internationalization, caching, and portability, among others).
This means that if he/she implements these elements at the
beginning of the development; the final application would
have more quality.

The final step given the learning tasks is to associate the
specific learning material for each task in a specific WAF.
As these associations are very different for each WAF, and
are out of our scope, we suggest this process should be done
by a senior WAF developer. In our work we developed an
application capable to register these associations.

Figure 1. Example of ―Error handling‖ concern, connected to its

respectives components and tasks in Codeigniter.

Figure 1 is developed by using an executable pre-
conceptual schema [20]. In this figure, we show an example
about how concerns, components and learning tasks are
connected. If a developer is only interested on capturing and
fixing errors, he/she has to analyze and learn tasks
documentation. If a developer is interested on the error
handling concern, he/she could be also interested on others
concerns like: ―display information on screen‖ or maybe
―Client-side data validation‖, which increase the number of
components and tasks he/she has to analyze and learn.

In Figure 2, we summarize the driving of the WAF

learning process. Developer first step is to choose the
specific WAF in which he/she wants to develop the
application. The second step is analyzing the application to
develop and extract the requirements. Third, he/she has to
choose the concerns related to the application that support
the previously requirements. Finally, he/she has to work with
the specific elements and documentation tasks (previously
filled by a senior WAF developer) in order to build the
application.

Figure 2. Representing the drive of WAF learning process.

V. CONCERNS SELECTION EXAMPLE

A developer is requested to build an application module

by using a new framework. After the requirements

elicitation process, a requirements list is presented:

 The application has to extract the real estate
information from the main database.

 Only admin users—already created in the
database—can access the real estate information.
Then, a login system is required.

 Admin can filter real estate information ordered by
name, location or type.

80Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

We suppose the requested developer should select the

concerns listed in Figure 3. Similar to Figure 1, each

concern of Figure 3 will be connected to its related

components and tasks. Concerns of the Figure 3 support

developers as personalized learning guides, i.e., before

starting the learning process, developers can discard some

documentation unrelated to his/her needs.

Figure 3. Example of concerns selection.

VI. DL APPLICATION

Tasks documentation is a WAF senior developer job. We
developed a driving learning (DL) application [26] with the
aim of having this documentation available online and only
documenting tasks once in a specific WAF. This is a simple
web application which authorizes developers to build a
personalized learning guide (see Figure 4).

Figure 4. Home of DL application.

Figure 5 shows a real case on Codeigniter. The developer
complete the previously form and only chose ―Error
handling‖ concern. The applications show him/her the
solution to this concern with the specific components and
tasks he/she has to develop. This guide also allows WAF
senior developer to create some notes for each task in order
to better complete the information.

Figure 5. An example of a personalized learning guide on DL application.

Some advantages of this approach are:

 Developers will find a way to guide their learning
focusing only in what is concerned to them.

 By learning the basic concerns—first concerns—
developers has to understand the framework
fundamentals as architecture, folder layout, and basic
syntax. E.g., ‗display information on screen‘ concern
will give developer the framework fundamental
elements.

 Material should be developed by WAF senior
developers which guarantee no time wasting on
deprecated or wrong internet solutions.

 Future work will connect concerns with a specific
example gluing together the components and tasks.
As a bonus, exercises provide a source of code reuse
—e.g., ‗display information on screen‘ concern
connected with ‗hello world‘ example portraits the
framework architecture and a base code for all
apps—.

VII. CONCLUSIONS

WAF learning is an important issue. Nowadays, WAF

learners have to face hundreds of documentation pages and

web documents, but they really need to read and follow

some parts of the documentation. The main objective of

these developers is to build web applications which have

different requirements from one to another. By related the

documentation to the developer needs, we reduce the

amount of documents they have to face, and focus them on

what they need. Web application concerns are connected to

WAF components giving the possibility to know for each

concern what are the specific components and tasks related.

This connection is completed by a WAF senior developer;

he/she develops all documentation in a specific WAF. Our

DL application supports this documentation. In the final

step, a WAF learner starts his/her learning process by

selecting the concerns related to his/her requirements over

DL application and accessing to their personalized learning

guide.

81Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

VIII. FUTURE WORK

Programmers frequently use a copy-and-paste process to

develop their applications [21]. We will improve this

learning guide with examples for each concern. A developer

has the basic example of each concern and he/she could use

it in his/her applications. We will use micro-learning [22] to

separate the different steps of WAF learning and finally we

will develop a real experimental design to obtain stats and

better results.

DL application could also be improved allowing forum

discussions and star rating documentation, also increasing

the amount of material.

Comparison between different learning techniques like

example-based learning, cookbooks, micro-learning and

other techniques could be developed.

IX. REFERENCES

[1] X. Kong, L. Liu, and D. Lowe, ―Separation of concerns: a
web application architecture framework,‖ Journal of digital
information, vol. 6, no. 2, 2005, pp. 1-8.

[2] N. Flores and A. Aguiar, ―Understanding Frameworks
Collaboratively: Tool Requirements,‖ International Journal
On Advances in Software, vol. 3(1 and 2), 2010, pp. 114-135.

[3] D. Hou, ―Investigating the effects of framework design
knowledge in example-based framework learning,‖
Proceedings of 24th IEEE International Conference on
Software Maintenance, Beijing, China, 2008, pp. 37-46.

[4] J. An, A. Chaudhuri, and J. S. Foster. ―Static typing for Ruby
on Rails,‖ Proceedings of 24th IEEE/ACM International
Conference on Automated Software Engineering, Auckland,
New Zealand, 2009, pp. 590-594.

[5] R. E. Johnson, ―Documenting frameworks using patterns,‖
ACM Sigplan Notices, vol. 27, no. 10, pp. 63-76, 1992.

[6] F. Shull, F. Lanubile, and V.R. Basili, ―Investigating reading
techniques for object-oriented framework learning,‖ IEEE
Transactions on Software Engineering, vol. 26(11), pp. 1101-
1118, 2000.

[7] G. E. Krasner and S. T. Pope, ―A cookbook for using the
model-view-controller user interface paradigm in Smalltalk-
80,‖ Journal of Object-Oriented Programming, vol. 1(3),
1998, pp. 26–49.

[8] K. Jackson, R. Biddle, and E. Temper, ―Understanding
frameworks through visualisation,‖ Proceedings of 37th
International Conference on Technology of Object-Oriented
Languages and Systems, Sydney, Australia, 2000, pp. 304-
315.

[9] N. Flores and A. Aguiar, ―Patterns for understanding
frameworks,‖ Proceedings of 15th Conference on Pattern
Languages of Programs (PLoP), Nashville, TN, USA, 2008,
pp. 8.

[10] G. Kamble, ―Aop-Introduced Crosscutting Concerns,‖
Proceedings of International Symposium on Computing,
Communication, and Control (ISCCC), October. 2009, pp.
140-144.

[11] L. Rosenhainer, ―Identifying crosscutting concerns in
requirements specifications,‖ Proceedings of OOPSLA Early
Aspects 2004: Aspect-Oriented Requirements Engineering
and Architecture Design Workshop, Vancouver, Canada,
October. 2004.

[12] T. Elrad, M. Aksit, G. Kiczales, and K. J. Lieberherr,
―Discussing aspects of AOP,‖ Communications of the ACM,
vol. 44, no. 10, pp. 33-38, 2001.

[13] D. L. Parnas, ―On the Criteria To Be Used in Decomposing
Systems into Modules,‖ Communications of the ACM, vol
15, no. 12, pp. 1053–1058, 1972

[14] D. Correa, C. M. Zapata, and F. Arango, ―Learning of web
application frameworks components,‖ IADIS AC, October.
2013, pp. 155-162.

[15] G. Sousa, S. Soares, P. Borba, and J. Castro, ―Separation of
crosscutting concerns from requirements to design: Adapting
the use case driven approach,‖ EA, pp. 93-102, 2004.

[16] I. S. Brito, F. Vieira, A. Moreira, and R. A. Ribeiro,
―Handling conflicts in aspectual requirements compositions,‖
Transactions on aspect-oriented software development III,
Springer Berlin Heidelberg, pp. 144-166, 2007.

[17] P. Wang, ―Comparison of Four Popular Java Web Framework
Implementations: Struts1. X, WebWork2. 2X, Tapestry4,
JSF1. 2,‖ Doctoral dissertation, Master‘s Thesis, University of
Tampere, 2008.

[18] M. Canales, ―A Comparative Study of Rapid Development
Frameworks for the Creation of a Language Placement Exam
Template,‖ Doctoral dissertation, Texas A&M University,
2010.

[19] M. Marin, A. van Deursen, L. Moonen, and R. van der Rijst,
―An integrated crosscutting concern migration strategy and its
semi-automated application to JHotDraw,‖ Automated
Software Engineering, vol. 16, no. 2, pp. 323-356, 2009.

[20] C. M. Zapata, G. L. Giraldo, and S. Londoño, ―Esquemas
preconceptuales ejecutables,‖ Avances en Sistemas e
Informática, vol. 8, no. 1, p. 2, 2011.

[21] M. Kim, V. Sazawal, D. Notkin, and G. MurphyKim, ―An
empirical study of code clone genealogies,‖ ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 5, pp. 187-196,
2005.

[22] T. Hug, ―Didactics of microlearning: concepts, discourses and
examples,‖ Waxmann Verlag GmbH, Germany, 2007.

[23] X. Shi, K. Liu, and Y. Li, ―Integrated Architecture for Web
Application Development Based on Spring Framework and
Activiti Engine,‖ The International Conference on E-
Technologies and Business on the Web (EBW2013), The
Society of Digital Information and Wireless Communication,
May. 2013, pp. 52-56.

[24] J. Weinberger, P. Saxena, D. Akhawe, and M. Finifter, ―A
systematic analysis of xss sanitization in web application
frameworks,‖ Computer Security–ESORICS 2011, Springer
Berlin Heidelberg, pp. 150-171, 2011.

[25] N. Flores, ―Patterns and Tools for Improving Framework
Understanding: a Collaborative Approach,‖ Doctoral
dissertation, University of Porto, December 2012.

[26] Driving Learning Application. [Online]. Available from:
http://www.frameworkg.com/dl/.

82Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

