ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

A Method to Achieve Automation in the Development bWeb-Based Software
Projects

Maria Consuelo Franky

Department of Systems Engineering
Pontificia Universidad Javeriana
Bogot4, Colombia
Ifranky@javeriana.edu.co

Abstract— This paper proposes a method to achieve a high
degree of automation in the development of Web seifare
projects. This method is based on the experience dfvo
consecutive university-industry projects that havereceived
funding from the Colombian government. These projets aim
to improve the software development tools of a laegscale
software company, applying techniques based on Mobe
Driven Engineering (MDE) and software building took to
achieve a high level of automation in generating me Java
Platform, Enterprise Edition (Java EE) projects ard in
integrating existing components developed by the omany.
The tools developed in the first project significatly improved
the development speed in the company. In the finatate of the
second (ongoing) project, we expect that MDE tranefmers
will improve flexibility in generating Java EE projects with
different architectures and different types of userinterfaces,
such as JavaServer Faces (JSF) or Java FX2. We lesie that
the steps performed during those two projects canesve as a
guide for other software organizations to effectiviy automate
their development for large scale projects.

Keywords- Web technologies; Frameworks; Web applications

development; Software Reuse; Automatic Software Generation;
Model-driven development of Web applications.

l. INTRODUCTION

Competition and market requirements lead to congzani
find higher

developing large software projects to
competitiveness through shorter development cyeled
lower costs. One way to achieve these goals isigirdetter
automation in the development of software projects also
through higher reuse of software components trauaeful
for multiple projects [1].

Jaime A. Pavlich-Mariscal

Department of Systems Engineering
Pontificia Universidad Javeriana
Bogot4, Colombia
jpavlich@javeriana.edu.co

[13] to achieve a high level of automation in gextielg new
Java EE projects and effectively integrating andsirgy
components developed by the company. As a redt, t
company has been able to reduce significantly titali
stages of development of Java EE projects.

We are currently working on a second project tahier
improve these tools and processes. This new projiktt
develop MDE transformers that will increase flekipiin
generating Java EE projects with different architexs and
different types of user interfaces (JSF [5] or JBX2[29]).

Realize
Architecture in
a Software
Building Tool

Refactor and

» Adapt Existing

Components

Standardize

Architecture

Create
Transformers
to

Develop a
Domain
Specific

Language to

Organize

Assets

Automate

Automatically Integration

Generate
Code from
Models

Figure 1. Proposed Method.

Figure 1 is an overview of the proposed methodstFir
is necessary to standardize a multilayer architeckor the
organization of new projects. Software building Isoare
used to materialize that architecture when creating
codebase of these projects. It is also necessaefeotor and

This paper proposes a method comprising a series @dapt existing components in the organizationhey tan be

stages with associated techniques for achievirigradegree
of automation and reuse in the development of V\éétware
projects. The steps and techniques described & paper
have been applied to the specific case of Heinglsiness
Technology (HBT) [2], a large-scale Colombian saitev
development company that develops Java EE
applications for governmental and financial orgatians.
This method was developed as part of two jointqoiy
between the Pontificia Universidad Javeriana [28e (
university of the authors) and HBT, which were faddy

[3pehavior of

efficiently integrated into new projects. The neip is to
automate the integration of such components inta ne
software projects. A domain specific language (DRI is
developed to create models that effectively refezeand
organize all of the above assets with the structamd
a web application. Code generators
automatically transform those models into workiodtwsare
applications.

The remainder of this paper details the proposeithade
for achieving high automation in the developmentVééb

the Colombian government. In these projects, weehavsoftware projects in a company. Section Il dessritiee
applied techniques based on MDE [8] and softwamdsto initial stage of defining and standardizing a nayer

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2 83

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

architecture for a company. Section 1l describé® t

materialization of such architecture through a vsafe
building tool (Maven [4]). Section IV describes trefactor
of the company reusable components in order to
compatible with the architecture. Section V dessilihe
automated integration of components in Java EEept®)j
Section VI describes how to incorporate DSL to walithe
modeling of web applications (including

describes the construction of MDE transformers ritep to
automatically generate Java EE projects that iategthe

reusable components and with different types ofr use

interfaces (JSF or Java FX2). Section VIII analyzsdated
work, and Section IX presents the conclusions aridré
work.

Il. STANDARDIZING ARCHITECTURE

The company that participated in our two research

projects (HBT) develops large-scale software, waitfocus
on Java EE. During the development of several swéw
applications, HBT determined the necessity of adgpa
standard reference architecture to organize thdicatipn
code.

JSF
web pages
backing
beans

business
session beans
i J
N R)
persistent Domain layer
entities
1 J

v

[I data Iocator]

databases

Presentation Iayer]

l€ |—

N
Application layer

J

I<|—

generic business delegate]

|-

N
Service layer

¢ = = = = = = = 4

Figure 2. Multilayer Architecture adopted at HBT.

Based on this experience, the first stage of copgsed
method is the standardization of the software &chire
utilized by the organization in its projects. An partant
premise for this stage is that the software prejeetveloped
by the organization must be of a similar nature stmalild be
effectively addressed by a standard architecture.

Figure 2 depicts the standard architecture adopted
HBT. The architecture effectively separates thelieafion
into several decoupled layers. For instance, welepare

reusable
components) independently of technology. Sectiorl VI

lll. MATERIALIZING THE ARCHITECTURE THROUGH A

SOFTWARE BUILDING ToOL

b To properly adopt the architecture, it is very imtpat to

fhaterialize it in the software building tools traae used to

create, integrate, and build software projectshi case of

HBT, since its focus is on Java EE projects, theseh tool

was Maven [4]. Maven is a tool to automate the ding

lifecycle of a software application, dependency agament,
and software variants. Maven defines a Project @ijdel

(POM) file, an Extensible Markup Language (XML)filhat

stores all of the above information about a soféwaioject.

A detailed discussion of the reasons for choodiigytbol in

HBT can be found in [28].

In the context of HBT, Maven was used to matergaliz
the adopted architecture. Each Java EE projecessribed
as a Maven project with the following sub-modules:

e Presentation Layer. JSF [5] web pages realizing
CRUD ("Create, Read, Update, and Delete") and
business operations.

e Application Layer. Descriptors and backing beans
[6] to support the JSF pages.

e Service Layer. Session Beans that realize all ef th
functionality of use cases.

« Domain Layer. Descriptors and persistent entities
[6].

e Persistence Layer. Structured Query Language
(SQL) scripts to populate tables with initializatio
data.

Each of the above sub-modules has a POM file that

describes the library dependencies of each sub-lmodu

(including dependencies to other sub-modules),type of

artifact that yields after building and packagiegg(, a Java

Archive — JAR — or Web Application Archive — WARile

[3]), and the identification of each sub-moduleaifMaven

component repository of the organization.

To provide an adequate flexibility in the creatioihthe
codebase of new projects, a useful tool is Maverhétypes
[4], templates based in Maven to instantiate theptatl
architecture into new projects that are parameddriby
specific design decisions.

Our joint project with HBT created an archetypettha
includes several profiles that parameterize newjepts
according to different database engines (Oracle], [15
Postgresql [16], MySQL [17], and SQLServer [18]pda
different application servers (JBoss [19], Gla$sfig0],
WebLogic [21], and Websphere [22]).

IV. REFACTORING ANDADAPTATION OF EXISTING

COMPONENTS

The next step in the process is to refactor exjstin
software components in the organization, to adapmtto
the adopted architecture. Section A explains thistiag

supported by backing beans that manage the displaygomponents at HBT and Section B describes the psote
information. These beans are decoupled from bus'ne%daptthem into the chosen architecture.

session beans and entity beans that are in the layers.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2 84

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

A. Description of company reusable components

libraries and on other components. These depereeiace

Software development organizations usually creatdnherited by the modules inside the component.

several software components in order to reduces castl
capitalize the knowledge of previous solutionsthie context
of HBT, these components address requirements, aach
security (originally based on [34]), audit, notiftons, batch
data processing, text files processing, etc., oprave
functionality of existing COTS (commercial off-tisielf)
components [28].

Component reuse may be complex, since a component

may span several layers of the architecture, twigeoa
complete solution to programmers. Components alslode
several different types of files, each one assediawith
specific layers in the architecture. For instard&f; pages in
the presentation, session beans for the businegs, lo
persistent entities, SQL scripts to populate datedeaetc.

To properly reuse a component in a new project,ynadn
the above elements need to be adapted to the ispgacifect
requirements. This task could be made easier bggusi
automation techniques.

B. Component Refactoring to a Maven Multi-Module
Structure

To properly incorporate existing components inte th
adopted architecture, it is necessary to convenintto the
format of the software build tool. For our projedth HBT,
the existing component had to be converted to Mawetti-
module components [13], to facilitate reuse andgration
with the Maven-based architecture. Particularly,e th
conversion to Maven facilitated the identificatiaf the
parts of each component that are associated with leger
of the architecture.

mo?ule

[WebPages } [Web } [Hot } Main auxiliary

sub-module) {_sub-module sub-ri)dule sub-module /] modules

produces a produces a produces a produces a jar

war artifact jar artifact Jar with the with the

with all the with the business persistent

JSF web beans to beans entities
pages support the
JSF web
pages

Figure 3. Maven-based Structure of Refactored Corapis.

Figure 3 depicts the general structure of eachctefad
component. A refactored component has a root maithale
contains a sub-module for each layer in the archite;
Figure 3 shows the "Super POM" that is the root umhed
that sets the standards for any Maven hierarchy.

Figure 4 depicts the folder structure of one of the

refactored components (in this case, the securityponent).
Each folder corresponds to a Maven sub-module, eaeh
with its own POM file. The pom.xml descriptor aethoot
folder of the component denotes dependencies ooh-phirty

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

= security
. = .settings
. [= lion-securityConnector
4 [= lion-securityHot
» = settings
- [site
4 [~ src
4 [= main
4 [= java
4 = com
4 = heinsohn
4 [~ lion
4 [= security
. = gb
- = loaders
> |~ resources
| .classpath
K| .project
K| pom.xml

Figure 4. Maven Multi-Module Structure of a Refaetb Component.

Each sub-module yields a small artifact that can be
indexed and stored in a Maven repository of the pamy.
This facilitates the integration of new multi-modul
components in the future.

V. AUTOMATING THE INTEGRATION

Although refactoring components to adapt them t® th
chosen architecture may reduce development tinese t
are other tasks that can be performed to furtherane this
process. Particularly, an adequate automation o th
component integration process may speed up théamneat
a project codebase.

In the context of our projects with HBT, component
integration was automated through a tool called
LionWizard. This tool automatically generates a néava
EE codebase utilizing a Maven archetype. The toghér
transforms that codebase to automatically integathtef the
components selected by the user, effectively elitimg
most of the manual tasks.

Figure 5 is the main window of the wizard. This Itoo
receives as input a series of properties given by t
programmer to parameterize the new Java EE project:
project folder, Maven project name, group, and ieerto
identify the artifacts of the project, the databasgine, the
application server to deploy to, etc.

With the above information, LionWizard generates a
Maven multi-module Java EE project, based on an
archetype.

In addition, LionWizard lets the programmer select
specific components to be integrated into the geadr
codebase. The wizard automatically integrates those
components by transforming the POM files of theuresg
sub-modules and root. That transformation incorgsraew
dependencies to other Maven artifacts and to the su

85

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

modules of the selected components. The wizard also

modifies the required configuration files to effgety
integrate the components into the codebase.

LION WIZARD (1)HENsonN

Cofipanciacidn Colciencias

s JAVERIANA

2012

Option

Set Properties ﬁ
Edit Properties ﬁ
GeapsPioli e

Muitimodule Maven Project Java JEES - Seam 2. Integrated
with lionCommon, lionFacelets y lionCache

LION Component Coupling

Any component installed before Security or Menu will not appear on the menu
provided by the wizard. For these components an in-house menu solution must be

developed,

Menu a

Audit

Security

Batch Processing

Entity Matic

Figure 5. LionWizard's Main Window.

The wizard was designed with sufficient flexibilitg
seamlessly integrate components that could be oleeélin
the future. To achieve that flexibility, each compat has a
special configuration file that describes the wayntegrate
that component into the codebase, originally basedll of
the tasks required to transform the component dred t
codebase (file modifications, file creations, andperties
insertions) to effectively compose them togethenother
paper submitted by the authors [28] illustrates XidL
configuration file that is used to integrate soroenponents
into the codebase of new generated projects.

The automation provided by LionWizard is almost
complete. A few tasks are still manual, such asva $QL
script executions and security realms configuratimough
the console of an application server.

Before the creation of LionWizard, HBT had develdpe
several components. However, their reutilization swa
hindered by the difficulty to manually integratesth into
new codebases. Typically, such integration couke tap to
three weeks at the beginning of the project. Atftercreation
of the wizard, integration times were reduced &t p few
hours, which comprise the time to execute the aatam
integration, plus the time to execute a few martaaks.
Another paper submitted by the authors [28] quimstithe
benefits of the proposed technology automationuiginoan
evaluation of the framework.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

VI. DEVELOPING ADOMAIN SPECIFICLANGUAGE

After executing the previous stages, the integnatio
process of a new codebase can be significantlyleated.
However, the benefits obtained by this automatian be
hindered when the codebase evolves during theqiygjace
changes performed to the code may make it harder to
automatically integrate new components. Furthermaise
new projects demand the utilization of more recent
technologies (e.g., from Java EE 5 to Java EE B),omake
it necessary to modify the wizard to reflect thebanges in
technology.

Our second joint project with HBT is performing a
further step in automation by relying on Model [@riv
Engineering (MDE) [8] to utilize models as the main
development artifact in a software Project.

WebApplication |

7 T
1 1

. 1
WebPage | 4

1

ReusableComponent
 —

1
Transition
action : string

1

1
ButtonLink

BasicElement

e
— E——
I

RadioButton

DateField
I

Figure 6. Fragment of the DSL's Meta-Model.

MDE aims to utilize models for every stage in the
software engineering process (requirements, desigt), In
particular, MDE's intent is to utilize transfornwti tools to
automatically generate the source code from modesa
result, a set of models of an application can bedu®
generate software for different platforms and frewoweks.
An adequate utilization of MDE may facilitate theokution
and seamless integration of components across ntiee e
development lifecycle and also provide a degree of
independence over the technology used to implerttent
software applications.

In the context of our project with HBT, ongoing \kds
creating a DSL [27] with an aim to model conceBg][
associated to the structure and behavior of lacgiesweb
applications, while adhering to the adopted muléta
architecture (see Section Il). In addition, thisgaage aims
to provide clear abstractions of the available congmts and

86

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

their integration mechanisms. The implementationtha@t programs to automate the component integration ess)c
language is based on Eclipse EMF [9] and Xtext.[33] based on a standardized architecture.

Figure 6 depicts a Unified Modeling Language (UML) There are some tools based in Maven that create
diagram with the main elements of the language’same codebases from archetypes and generate CRUD aperati
model, such as the following: for entities, such as JBoss Forge [23] and AppHQadg

« A web application is composed of multiple web However, these tools do not address the automatic
pages and works on multiple persistent entities. integration of complex components.

« A web page can contain multiple forms and There are several strategies for automatic reuse an
tables. integration in software projects. Some of the sgis are

« Each form or each table may contain differentcode generation and program transformation, soétwar
widgets (basic elements) to depict attributes ofProduct lines, and web services (see a descriptfothese
the entities. strategies in [28]). Our approach can be classifisda

- Each form or table may also contain links andSimpler, scope-bounded code transformation approach
buttons to connect to other pages after executingecause of its simplicity, it is more maintainatleile being

some business action. adequate for the integration of components intoctidebase
. Abstractions to model reusable components an@ software projects. o
their mechanisms of integration. There are several tools to apply MDE principles tfoe
development of web-based applications, such as Régio
VIl. CREATE MDE TRANSFORMERS [31], Magic [10], and Integranova M.E.S. Howevdiege

The last stage towards automation is the creatibn Oenvironments have a high licensing cost, which make

transformers that can automatically generate agijdic code adoption difficult. Moreover, they lack the flexity to

: d ; ; lessly adapt their language and transformerthdéo
and integrate components from the information plediby seamx ; .
the models specified by the DSL. specific architectures required by a software dgwelent

In our experience, to create effective transfornitiis orgar:jlzatlon. The MDE enwfrionment tTat \r/]ve arﬁ bogds
necessary to capitalize good practices of previou?af;]a on .Oﬂe',:h solgrScE SO dwle_lre tloos that a gw gﬁfT
development efforts and also in the previous stagethe tur efr enncf eth t hmo lel_ng anguage and adw ne
proposed method, so that the generated code cllénthe ranstormers for other technologies.

best strategies for implementation. _ IX. CONCLUSION AND FUTURE WORK
Our ongoing work with HBT is creating a transformer _ . L
that generates Java EE code with the following efém This paper proposed a method to achieve automation

. A Maven multi-module web application codebasef[he development of large web-based applications thed

with the same structure as described in the previodMegration of existing components in an organerati his
. . proposal is based on the experience of executimgjdimt
sections of this paper.

. . . projects with HBT in order to automate their depatent
« Automatic integration of the existing components.;;ois.
To achieve this, the generator utilizes the The increment in productivity obtained by the first
information provided by the models (based in theproject was promising, since it significantly reddcthe
DSL) and the automatic integration code oftimes to create new codebases. The ongoing work is

LionWizard. expected to yield similar improvements.
* CRUD operations and user interfaces for each Overall, these joint projects have improved theesgp
entity of the application between the University and a software development

« A set of JSF web pages, their backing beans, and @ganization. Future work is to enhance the MDHstdo

configuration file that describes the page flowincorporate additional transformers to other tetbgies,
(faces-conFigurexml) based in the transitionsSUch as .NET and mobile applications, platformsvibich

expressed in the model. HBT also have components that co_uId be reus_ed_jdi‘[ian,

The transformer is based on EMF [9] and Acceleo [7] qll of the above Wlll_be mtegrated into the emg‘uproduct

Future work is to create transformers for other isterfaces lin€ framework that is being developed in a pafaiteject
different from JSF, such as Java FX2 [29]. In dlittmse [14].

cases, the models will stay independent of the ifipec X.

. . ACKNOWLEDGMENTS
implementation technology. . o .
Contract/grant sponsor: This article is part of phgjects
VIIl. RELATED WORK Lion and Lion2, executed by the SIDRe research mgrofu

Maven [13] is widely used to manage the buildingthe Pontificia Universidad Javeriana and Heinsobsiiess
process in software projects. The evidence ofishike high Technology, co-financed by Colciencias (Colombian
amount of projects stored in public Maven repo&tf12]. Administrative Department of Science, Technologyd an
The common way to utiize Maven is to automate thdnnovation). o . .
compilation and packaging process. Our contribut®the We thank Colciencias [25] for funding the projects

utilization of Maven and its enhancement with aodil described in this paper. We also thank all of thkeio
participants in both joint projects with HBT:

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2 87

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

(1
(2]
(3]

(4]

(5]
6l

(7]
(8]

19

[10]
[11]
[12]
[13]

[14]

[15]

Copyright (c) IARIA, 2014.

From HBT: Alvaro Javier Infante, Maria Catalina [16]
Acero, Leonardo Giral, Angee Zambrano, Cristian
Fernandez, Rubén Dario Betancur, Carlos Diazl"]
Jorge Camargo. (18]
From the Pontificia Universidad Javeriana: Andrea,

Barraza-Urbina, Luisa Barrera, John Carlos Olarteglg]

Francisco Mora.

[20]

REFERENCES 21]
C. Larman, "Agile and lterative Development: A Mgeds Guide",
Addison-Wesley Professional, 2003.
Heinsohn Business Technology, URL http://www.helmsoom.co [22]
01.03.2014.
Oracle, "Java EE at a Glance", URL [23]
http://www.oracle.com/technetwork/java/javaee/oi@mindex.html [24]
01.03.2014.
Foundation A. Maven, ‘"Introduction to Archetypes'JRL [25]
http://maven.apache.org/guides/introduction/intaitun-to-
archetypes.html 01.03.2014. 26
D. Geary and CS. Horstmann, "Core JavaServer Faesitice Hall [26]
3 edn., 2010.
M. Keith and M. Schincariol, "Pro EJB 3: Java Psrsice API",
Apress, 2006. [27]
Obeo, "Acceleo"”, URL http://www.eclipse.org/accélea.03.2014.
S. Kent, "Model driven engineering”, Springer Berli Heidelberg, [28]
2002, p. 286-298, URL
http://www.springerlink.com/content/9vugb4hp8fyg2&abstract/
01.03.2014. [29]
The Eclipse Foundation, "Eclipse modeling framew@&MF)", URL
http://www.eclipse.org/modeling/emf/ 01.03.2014.
No Magic, "MagicDraw", URL [30]
http://www.nomagic.com/products/magicdraw.html| GL2014.
Integranova, "Integranova M.E.S.", URL [31]
http://www.integranova.com/integranova-m-e-s/ 012034.
Foundation A. Maven, "The Central Repository”, URL [32]
http://search.maven.org/#browse%7C47 01.03.2014.
Sonatype Company, "Maven: The Definitive Guide'Rélly Media,
2008. [33]
C. Parra, L. Giral, A. Infante, and C. Cortés, 'fBetive SPL
adoption using multi-level variability modeling"rdeeedings of the
16th International Software Product Line Conferencéolume 2,
SPLC '12, ACM:New York, NY, USA, 2012, p. 99-106,RU [34]

http://doi.acm.org/10.1145/2364412.2364429 020B4.

Oracle, "Oracle Database: Introducing Oracle Dateli2c: Plug into
the Cloud", URL
http://www.oracle.com/us/products/database/overfirelex.html
01.03.2014.

ISBN: 978-1-61208-361-2

Group PGD,
01.03.2014.

Oracle, "MySQL", URL http://www.mysql.com/ 01.0824.

Microsoft, "Microsoft SQL server", URL
http://www.microsoft.com/en-us/sqlserver/defaulha81.03.2014.

JBoss Community, "JBoss application server 7"
http://www.jboss.org/jbossas 01.03.2014.

Oracle, "GlassFish", open source application servamject kenai,
URL https://glassfish.java.net/ 01.03.2014.

Oracle, "Oracle WebLogic Server", URL
http://www.oracle.com/technetwork/middleware/weltdgverview/i
ndex.html 01.03.2014.

IBM software, "WebSphere software",
01.ibm.com/software/websphere/ 01.03.2014.

JBoss, "JBoss Forge", URL http://forge.jboss.ofig08.2014.

Atlassian, "AppFuse", URL http://appfuse.org/digpheP F/Home
01.03.2014.

Colciencias: Departamento administrativo de Cien€rcnologia e
Innovacion,. URL http://www.colciencias.gov.co/ 03.2014.

Pontificia Universidad Javeriana, Department of t8ys
Engineering, URL http://puj-
portal.javeriana.edu.co/portal/page/portal/Facétadde%20Ingenie
ria/dpto_sist_presentacion 01.03.2014.

M. Fowler, "Domain Specific Languages",
Professional, Firts Edit., 2011, p. 413.

M. C. Franky et al., "Achieving Software Reuse amegration in a
Large-scale Software Development Company: Practioglerience
of the Lion Project", submitted to IET SoftwareJuly- 2013.

J. Weaver, G. Weiqi, S. Chin, D. Iverson , and ds,V"Pro JavaFX
2: A Definitive Guide to Rich Clients with Java Tewmlogy", Apress,
2012.

G. Booch, J. Rumbaugh, and |, Jacobson, "The Uhifitodeling
Language User Guide", Addison-Wesley, 2006.

WebRatio, "The New Business-IT Equation”,
http://www.webratio.com/ 01.03.2014.

S. Kelly and J.-P. Tolvanen, Domain-Specific Modgli Enabling
Full Code Generation, 1st ed. Wiley-IEEE Computeci&y Pr,
2008.

M. Eysholdt and H. Behrens, “Xtext: implement yéamguage faster
than the quick and dirty way,” in Proceedings ofe tACM
international conference companion on Object ogémntrogramming
systems languages and applications companion, pp1307-309.

M. C. Franky and V. M. Toro, “CincoSecurity: Autotity the
Security of Java EE Applications with Fine-Grain&bles and
Security Profiles”, International Journal On Advascin Security
(IARIA Journal), vol. no 384, 2011, URL
http://www.thinkmind.org/index.php?view=article&ateid=sec_v4_
n34_2011_10 01.03.2014.

"PostgreSQL", URL http://www.postgresag/

URL

URL http://www-

Addison-\égs

URL

88

