
A Method to Achieve Automation in the Development of Web-Based Software
Projects

María Consuelo Franky
Department of Systems Engineering

Pontificia Universidad Javeriana
Bogotá, Colombia

lfranky@javeriana.edu.co

Jaime A. Pavlich-Mariscal
Department of Systems Engineering

Pontificia Universidad Javeriana
Bogotá, Colombia

jpavlich@javeriana.edu.co

Abstract— This paper proposes a method to achieve a high
degree of automation in the development of Web software
projects. This method is based on the experience of two
consecutive university-industry projects that have received
funding from the Colombian government. These projects aim
to improve the software development tools of a large-scale
software company, applying techniques based on Model
Driven Engineering (MDE) and software building tools to
achieve a high level of automation in generating new Java
Platform, Enterprise Edition (Java EE) projects and in
integrating existing components developed by the company.
The tools developed in the first project significantly improved
the development speed in the company. In the final state of the
second (ongoing) project, we expect that MDE transformers
will improve flexibility in generating Java EE proj ects with
different architectures and different types of user interfaces,
such as JavaServer Faces (JSF) or Java FX2. We believe that
the steps performed during those two projects can serve as a
guide for other software organizations to effectively automate
their development for large scale projects.

Keywords- Web technologies; Frameworks; Web applications
development; Software Reuse; Automatic Software Generation;
Model-driven development of Web applications.

I. INTRODUCTION

Competition and market requirements lead to companies
developing large software projects to find higher
competitiveness through shorter development cycles and
lower costs. One way to achieve these goals is through better
automation in the development of software projects and also
through higher reuse of software components that are useful
for multiple projects [1].

This paper proposes a method comprising a series of
stages with associated techniques for achieving a high degree
of automation and reuse in the development of Web software
projects. The steps and techniques described in this paper
have been applied to the specific case of Heinsohn Business
Technology (HBT) [2], a large-scale Colombian software
development company that develops Java EE [3]
applications for governmental and financial organizations.

This method was developed as part of two joint projects
between the Pontificia Universidad Javeriana [26] (the
university of the authors) and HBT, which were funded by
the Colombian government. In these projects, we have
applied techniques based on MDE [8] and software tools

[13] to achieve a high level of automation in generating new
Java EE projects and effectively integrating and reusing
components developed by the company. As a result, the
company has been able to reduce significantly the initial
stages of development of Java EE projects.

We are currently working on a second project to further
improve these tools and processes. This new project will
develop MDE transformers that will increase flexibility in
generating Java EE projects with different architectures and
different types of user interfaces (JSF [5] or Java FX2[29]).

Standardize
Architecture

Realize
Architecture in

a Software
Building Tool

Refactor and
Adapt Existing
Components

Automate
Integration

Develop a
Domain
Specific

Language to
Organize
Assets

Create
Transformers

to
Automatically

Generate
Code from

Models

Figure 1. Proposed Method.

Figure 1 is an overview of the proposed method. First, it
is necessary to standardize a multilayer architecture for the
organization of new projects. Software building tools are
used to materialize that architecture when creating the
codebase of these projects. It is also necessary to refactor and
adapt existing components in the organization, so they can be
efficiently integrated into new projects. The next step is to
automate the integration of such components into new
software projects. A domain specific language (DSL) [27] is
developed to create models that effectively reference and
organize all of the above assets with the structure and
behavior of a web application. Code generators
automatically transform those models into working software
applications.

The remainder of this paper details the proposed method
for achieving high automation in the development of Web
software projects in a company. Section II describes the
initial stage of defining and standardizing a multilayer

83Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

architecture for a company. Section III describes the
materialization of such architecture through a software
building tool (Maven [4]). Section IV describes the refactor
of the company reusable components in order to be
compatible with the architecture. Section V describes the
automated integration of components in Java EE projects.
Section VI describes how to incorporate DSL to allow the
modeling of web applications (including reusable
components) independently of technology. Section VII
describes the construction of MDE transformers in order to
automatically generate Java EE projects that integrate the
reusable components and with different types of user
interfaces (JSF or Java FX2). Section VIII analyzes related
work, and Section IX presents the conclusions and future
work.

II. STANDARDIZING ARCHITECTURE

The company that participated in our two research
projects (HBT) develops large-scale software, with a focus
on Java EE. During the development of several software
applications, HBT determined the necessity of adopting a
standard reference architecture to organize the application
code.

Presentation layerJSF

web pages

Application layerbacking
beans

Service layerbusiness
session beans

Domain layerpersistent
entities

generic business delegate

data locator

databases

Figure 2. Multilayer Architecture adopted at HBT.

Based on this experience, the first stage of our proposed
method is the standardization of the software architecture
utilized by the organization in its projects. An important
premise for this stage is that the software projects developed
by the organization must be of a similar nature and should be
effectively addressed by a standard architecture.

Figure 2 depicts the standard architecture adopted by
HBT. The architecture effectively separates the application
into several decoupled layers. For instance, web pages are
supported by backing beans that manage the displayed
information. These beans are decoupled from business
session beans and entity beans that are in the lower layers.

III. MATERIALIZING THE ARCHITECTURE THROUGH A

SOFTWARE BUILDING TOOL

To properly adopt the architecture, it is very important to
materialize it in the software building tools that are used to
create, integrate, and build software projects. In the case of
HBT, since its focus is on Java EE projects, the chosen tool
was Maven [4]. Maven is a tool to automate the building
lifecycle of a software application, dependency management,
and software variants. Maven defines a Project Object Model
(POM) file, an Extensible Markup Language (XML) file that
stores all of the above information about a software project.
A detailed discussion of the reasons for choosing this tool in
HBT can be found in [28].

In the context of HBT, Maven was used to materialize
the adopted architecture. Each Java EE project is described
as a Maven project with the following sub-modules:

• Presentation Layer. JSF [5] web pages realizing
CRUD ("Create, Read, Update, and Delete") and
business operations.

• Application Layer. Descriptors and backing beans
[6] to support the JSF pages.

• Service Layer. Session Beans that realize all of the
functionality of use cases.

• Domain Layer. Descriptors and persistent entities
[6].

• Persistence Layer. Structured Query Language
(SQL) scripts to populate tables with initialization
data.

Each of the above sub-modules has a POM file that
describes the library dependencies of each sub-module
(including dependencies to other sub-modules), the type of
artifact that yields after building and packaging (e.g., a Java
Archive – JAR – or Web Application Archive – WAR - file
[3]), and the identification of each sub-module in a Maven
component repository of the organization.

To provide an adequate flexibility in the creation of the
codebase of new projects, a useful tool is Maven Archetypes
[4], templates based in Maven to instantiate the adopted
architecture into new projects that are parameterized by
specific design decisions.

Our joint project with HBT created an archetype that
includes several profiles that parameterize new projects
according to different database engines (Oracle [15],
Postgresql [16], MySQL [17], and SQLServer [18]), and
different application servers (JBoss [19], Glassfish [20],
WebLogic [21], and Websphere [22]).

IV. REFACTORING AND ADAPTATION OF EXISTING

COMPONENTS

The next step in the process is to refactor existing
software components in the organization, to adapt them to
the adopted architecture. Section A explains the existing
components at HBT and Section B describes the process to
adapt them into the chosen architecture.

84Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

A. Description of company reusable components

Software development organizations usually create
several software components in order to reduce costs and
capitalize the knowledge of previous solutions. In the context
of HBT, these components address requirements, such as
security (originally based on [34]), audit, notifications, batch
data processing, text files processing, etc., or improve
functionality of existing COTS (commercial off-the-shelf)
components [28].

Component reuse may be complex, since a component
may span several layers of the architecture, to provide a
complete solution to programmers. Components also include
several different types of files, each one associated with
specific layers in the architecture. For instance, JSF pages in
the presentation, session beans for the business logic,
persistent entities, SQL scripts to populate databases, etc.

To properly reuse a component in a new project, many of
the above elements need to be adapted to the specific project
requirements. This task could be made easier by using
automation techniques.

B. Component Refactoring to a Maven Multi-Module
Structure

To properly incorporate existing components into the
adopted architecture, it is necessary to convert them to the
format of the software build tool. For our project with HBT,
the existing component had to be converted to Maven multi-
module components [13], to facilitate reuse and integration
with the Maven-based architecture. Particularly, the
conversion to Maven facilitated the identification of the
parts of each component that are associated with each layer
of the architecture.

produces a
jar artifact
with the
beans to

support the
JSF web

pages

produces a
jar with the
business

beans

produces a jar
with the

persistent
entities

produces a
war artifact
with all the
JSF web

pages

auxiliary
modules

Super
POM

parent
module

Web
sub-module

Hot
sub-module

Main
sub-module

WebPages
sub-module

Figure 3. Maven-based Structure of Refactored Components.

Figure 3 depicts the general structure of each refactored
component. A refactored component has a root module that
contains a sub-module for each layer in the architecture;
Figure 3 shows the "Super POM" that is the root module
that sets the standards for any Maven hierarchy.

Figure 4 depicts the folder structure of one of the
refactored components (in this case, the security component).
Each folder corresponds to a Maven sub-module, each one
with its own POM file. The pom.xml descriptor at the root
folder of the component denotes dependencies on third-party

libraries and on other components. These dependencies are
inherited by the modules inside the component.

Figure 4. Maven Multi-Module Structure of a Refactored Component.

Each sub-module yields a small artifact that can be
indexed and stored in a Maven repository of the company.
This facilitates the integration of new multi-module
components in the future.

V. AUTOMATING THE INTEGRATION

Although refactoring components to adapt them to the
chosen architecture may reduce development times, there
are other tasks that can be performed to further improve this
process. Particularly, an adequate automation of the
component integration process may speed up the creation of
a project codebase.

In the context of our projects with HBT, component
integration was automated through a tool called
LionWizard. This tool automatically generates a new Java
EE codebase utilizing a Maven archetype. The tool further
transforms that codebase to automatically integrate all of the
components selected by the user, effectively eliminating
most of the manual tasks.

Figure 5 is the main window of the wizard. This tool
receives as input a series of properties given by the
programmer to parameterize the new Java EE project:
project folder, Maven project name, group, and version to
identify the artifacts of the project, the database engine, the
application server to deploy to, etc.

With the above information, LionWizard generates a
Maven multi-module Java EE project, based on an
archetype.

In addition, LionWizard lets the programmer select
specific components to be integrated into the generated
codebase. The wizard automatically integrates those
components by transforming the POM files of the required
sub-modules and root. That transformation incorporates new
dependencies to other Maven artifacts and to the sub-

85Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

modules of the selected components. The wizard also
modifies the required configuration files to effectively
integrate the components into the codebase.

Figure 5. LionWizard's Main Window.

The wizard was designed with sufficient flexibility to
seamlessly integrate components that could be developed in
the future. To achieve that flexibility, each component has a
special configuration file that describes the way to integrate
that component into the codebase, originally based on, all of
the tasks required to transform the component and the
codebase (file modifications, file creations, and properties
insertions) to effectively compose them together. Another
paper submitted by the authors [28] illustrates the XML
configuration file that is used to integrate some components
into the codebase of new generated projects.

The automation provided by LionWizard is almost
complete. A few tasks are still manual, such as a few SQL
script executions and security realms configuration through
the console of an application server.

Before the creation of LionWizard, HBT had developed
several components. However, their reutilization was
hindered by the difficulty to manually integrate them into
new codebases. Typically, such integration could take up to
three weeks at the beginning of the project. After the creation
of the wizard, integration times were reduced to just a few
hours, which comprise the time to execute the automatic
integration, plus the time to execute a few manual tasks.
Another paper submitted by the authors [28] quantifies the
benefits of the proposed technology automation through an
evaluation of the framework.

VI. DEVELOPING A DOMAIN SPECIFIC LANGUAGE

After executing the previous stages, the integration
process of a new codebase can be significantly accelerated.
However, the benefits obtained by this automation can be
hindered when the codebase evolves during the project, since
changes performed to the code may make it harder to
automatically integrate new components. Furthermore, as
new projects demand the utilization of more recent
technologies (e.g., from Java EE 5 to Java EE 6 or 7), make
it necessary to modify the wizard to reflect these changes in
technology.

Our second joint project with HBT is performing a
further step in automation by relying on Model Driven
Engineering (MDE) [8] to utilize models as the main
development artifact in a software Project.

Figure 6. Fragment of the DSL's Meta-Model.

MDE aims to utilize models for every stage in the
software engineering process (requirements, design, etc.). In
particular, MDE's intent is to utilize transformation tools to
automatically generate the source code from models. As a
result, a set of models of an application can be used to
generate software for different platforms and frameworks.
An adequate utilization of MDE may facilitate the evolution
and seamless integration of components across the entire
development lifecycle and also provide a degree of
independence over the technology used to implement the
software applications.

In the context of our project with HBT, ongoing work is
creating a DSL [27] with an aim to model concepts [32]
associated to the structure and behavior of large-scale web
applications, while adhering to the adopted multilayer
architecture (see Section II). In addition, this language aims
to provide clear abstractions of the available components and

86Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

their integration mechanisms. The implementation of that
language is based on Eclipse EMF [9] and Xtext [33].

Figure 6 depicts a Unified Modeling Language (UML)
diagram with the main elements of the language’s meta-
model, such as the following:

• A web application is composed of multiple web
pages and works on multiple persistent entities.

• A web page can contain multiple forms and
tables.

• Each form or each table may contain different
widgets (basic elements) to depict attributes of
the entities.

• Each form or table may also contain links and
buttons to connect to other pages after executing
some business action.

• Abstractions to model reusable components and
their mechanisms of integration.

VII. CREATE MDE TRANSFORMERS

The last stage towards automation is the creation of
transformers that can automatically generate application code
and integrate components from the information provided by
the models specified by the DSL.

In our experience, to create effective transformers it is
necessary to capitalize good practices of previous
development efforts and also in the previous stages of the
proposed method, so that the generated code can include the
best strategies for implementation.

Our ongoing work with HBT is creating a transformer
that generates Java EE code with the following elements:

• A Maven multi-module web application codebase
with the same structure as described in the previous
sections of this paper.

• Automatic integration of the existing components.
To achieve this, the generator utilizes the
information provided by the models (based in the
DSL) and the automatic integration code of
LionWizard.

• CRUD operations and user interfaces for each
entity of the application

• A set of JSF web pages, their backing beans, and a
configuration file that describes the page flow
(faces-conFigurexml) based in the transitions
expressed in the model.

The transformer is based on EMF [9] and Acceleo [7].
Future work is to create transformers for other user interfaces
different from JSF, such as Java FX2 [29]. In all of those
cases, the models will stay independent of the specific
implementation technology.

VIII. RELATED WORK

Maven [13] is widely used to manage the building
process in software projects. The evidence of this is the high
amount of projects stored in public Maven repositories [12].
The common way to utilize Maven is to automate the
compilation and packaging process. Our contribution is the
utilization of Maven and its enhancement with additional

programs to automate the component integration process,
based on a standardized architecture.

There are some tools based in Maven that create
codebases from archetypes and generate CRUD operations
for entities, such as JBoss Forge [23] and AppFuse [24].
However, these tools do not address the automatic
integration of complex components.

There are several strategies for automatic reuse and
integration in software projects. Some of the strategies are
code generation and program transformation, software
product lines, and web services (see a description of these
strategies in [28]). Our approach can be classified as a
simpler, scope-bounded code transformation approach.
Because of its simplicity, it is more maintainable while being
adequate for the integration of components into the codebase
of software projects.

There are several tools to apply MDE principles for the
development of web-based applications, such as Web Ratio
[31], Magic [10], and Integranova M.E.S. However, these
environments have a high licensing cost, which makes
adoption difficult. Moreover, they lack the flexibility to
seamlessly adapt their language and transformers to the
specific architectures required by a software development
organization. The MDE environment that we are building is
based on open source software tools that allow HBT to
further enrich the DSL modeling language and add new
transformers for other technologies.

IX. CONCLUSION AND FUTURE WORK

This paper proposed a method to achieve automation in
the development of large web-based applications and the
integration of existing components in an organization. This
proposal is based on the experience of executing two joint
projects with HBT in order to automate their development
tools.

The increment in productivity obtained by the first
project was promising, since it significantly reduced the
times to create new codebases. The ongoing work is
expected to yield similar improvements.

Overall, these joint projects have improved the synergy
between the University and a software development
organization. Future work is to enhance the MDE tools to
incorporate additional transformers to other technologies,
such as .NET and mobile applications, platforms for which
HBT also have components that could be reused. In addition,
all of the above will be integrated into the existing product
line framework that is being developed in a parallel project
[14].

X. ACKNOWLEDGMENTS

Contract/grant sponsor: This article is part of the projects
Lion and Lion2, executed by the SIDRe research group of
the Pontificia Universidad Javeriana and Heinsohn Business
Technology, co-financed by Colciencias (Colombian
Administrative Department of Science, Technology and
Innovation).

We thank Colciencias [25] for funding the projects
described in this paper. We also thank all of the other
participants in both joint projects with HBT:

87Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

• From HBT: Alvaro Javier Infante, María Catalina
Acero, Leonardo Giral, Angee Zambrano, Cristián
Fernández, Rubén Darío Betancur, Carlos Díaz,
Jorge Camargo.

• From the Pontificia Universidad Javeriana: Andrea
Barraza-Urbina, Luisa Barrera, John Carlos Olarte,
Francisco Mora.

REFERENCES
[1] C. Larman, "Agile and Iterative Development: A Manager’s Guide",

Addison-Wesley Professional, 2003.

[2] Heinsohn Business Technology, URL http://www.heinsohn.com.co
01.03.2014.

[3] Oracle, "Java EE at a Glance", URL
http://www.oracle.com/technetwork/java/javaee/overview/index.html
01.03.2014.

[4] Foundation A. Maven, "Introduction to Archetypes", URL
http://maven.apache.org/guides/introduction/introduction-to-
archetypes.html 01.03.2014.

[5] D. Geary and CS. Horstmann, "Core JavaServer Faces", Prentice Hall
3 edn., 2010.

[6] M. Keith and M. Schincariol, "Pro EJB 3: Java Persistence API",
Apress, 2006.

[7] Obeo, "Acceleo", URL http://www.eclipse.org/acceleo/ 01.03.2014.

[8] S. Kent, "Model driven engineering", Springer Berlin / Heidelberg,
2002, p. 286–298, URL
http://www.springerlink.com/content/9vuqb4hp8fyg2adv/abstract/
01.03.2014.

[9] The Eclipse Foundation, "Eclipse modeling framework (EMF)", URL
http://www.eclipse.org/modeling/emf/ 01.03.2014.

[10] No Magic, "MagicDraw", URL
http://www.nomagic.com/products/magicdraw.html 01.03.2014.

[11] Integranova, "Integranova M.E.S.", URL
http://www.integranova.com/integranova-m-e-s/ 01.03.2014.

[12] Foundation A. Maven, "The Central Repository", URL
http://search.maven.org/#browse%7C47 01.03.2014.

[13] Sonatype Company, "Maven: The Definitive Guide", O'Reilly Media,
2008.

[14] C. Parra, L. Giral, A. Infante, and C. Cortés, "Extractive SPL
adoption using multi-level variability modeling", Proceedings of the
16th International Software Product Line Conference - Volume 2,
SPLC ’12, ACM:New York, NY, USA, 2012, p. 99–106, URL
http://doi.acm.org/10.1145/2364412.2364429 01.03.2014.

[15] Oracle, "Oracle Database: Introducing Oracle Database 12c: Plug into
the Cloud", URL
http://www.oracle.com/us/products/database/overview/index.html
01.03.2014.

[16] Group PGD, "PostgreSQL", URL http://www.postgresql.org/
01.03.2014.

[17] Oracle, "MySQL", URL http://www.mysql.com/ 01.03.2014.

[18] Microsoft, "Microsoft SQL server", URL
http://www.microsoft.com/en-us/sqlserver/default.aspx 01.03.2014.

[19] JBoss Community, "JBoss application server 7" , URL
http://www.jboss.org/jbossas 01.03.2014.

[20] Oracle, "GlassFish", open source application server - project kenai,
URL https://glassfish.java.net/ 01.03.2014.

[21] Oracle, "Oracle WebLogic Server", URL
http://www.oracle.com/technetwork/middleware/weblogic/overview/i
ndex.html 01.03.2014.

[22] IBM software, "WebSphere software", URL http://www-
01.ibm.com/software/websphere/ 01.03.2014.

[23] JBoss, "JBoss Forge", URL http://forge.jboss.org/ 01.03.2014.

[24] Atlassian, "AppFuse", URL http://appfuse.org/display/APF/Home
01.03.2014.

[25] Colciencias: Departamento administrativo de Ciencia, Tecnología e
Innovación,. URL http://www.colciencias.gov.co/ 01.03.2014.

[26] Pontificia Universidad Javeriana, Department of Systems
Engineering, URL http://puj-
portal.javeriana.edu.co/portal/page/portal/Facultad%20de%20Ingenie
ria/dpto_sist_presentacion 01.03.2014.

[27] M. Fowler, "Domain Specific Languages", Addison-Wesley
Professional, Firts Edit., 2011, p. 413.

[28] M. C. Franky et al., "Achieving Software Reuse and Integration in a
Large-scale Software Development Company: Practical Experience
of the Lion Project", submitted to IET Software in July- 2013.

[29] J. Weaver, G. Weiqi, S. Chin, D. Iverson , and J. Vos, "Pro JavaFX
2: A Definitive Guide to Rich Clients with Java Technology", Apress,
2012.

[30] G. Booch, J. Rumbaugh, and I, Jacobson, "The Unified Modeling
Language User Guide", Addison-Wesley, 2006.

[31] WebRatio, "The New Business-IT Equation", URL
http://www.webratio.com/ 01.03.2014.

[32] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling
Full Code Generation, 1st ed. Wiley-IEEE Computer Society Pr,
2008.

[33] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in Proceedings of the ACM
international conference companion on Object oriented programming
systems languages and applications companion, 2010, pp. 307–309.

[34] M. C. Franky and V. M. Toro, “CincoSecurity: Automating the
Security of Java EE Applications with Fine-Grained Roles and
Security Profiles”, International Journal On Advances in Security
(IARIA Journal), vol. no 3&4, 2011, URL
http://www.thinkmind.org/index.php?view=article&articleid=sec_v4_
n34_2011_10 01.03.2014.

88Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

