
A Comparative Study of Replication Schemes for Structured P2P Networks

Moufida Rahmani, Mahfoud Benchaı̈ba
University of Science and Technology Houari Boumediene

LSI, Computer-science Department
Algiers, Algeria

Emails: {morahmani, mbenchaiba@}usthb.dz

Abstract—Structured Peer to Peer (P2P) networks provide effi-
cient mechanisms for resource placement and lookup. However,
these systems deal with irregular and frequent arrival/departure
of nodes. Thus, these systems do not offer any guarantees about
data availability. A well-known technique for improving resources
availability and providing load balancing is replication. Many
replication methods are proposed for structured P2P networks,
with a specific main goal to achieve. This paper reviews and
compares various existing replication techniques for structured
P2P networks, which we classify based on their main objectives.

Keywords–Structured Peer-to-Peer; Replication; DHT; Avail-
ability; Load balancing; Performance; Churn.

I. INTRODUCTION

Since 1999, P2P networks have been in continuous de-
velopment. P2P networks are overlay distributed networks
composed of a large number of autonomous nodes, i.e., virtual
networks which may be totally unrelated to the physical
network that connects the different nodes. These nodes, called
peers, share a part of their own resources such as storage
capacity, files and processing power. They play the role of both
client and server. Communications between peers are direct,
without passing intermediary entities.

Napster [1], a popular music exchange system, was the first
to emerge as a P2P file sharing application. After that, several
file-sharing software have succeeded, we quote: Gnutella [2],
KaZaA [3], BitTorrent [4], Oceanstore [5], and PAST [6].

P2P networks can be classified as unstructured and struc-
tured, depending on the overlay structures. Unstructured P2P
systems do not impose any structure on the overlay network
and usually use flooding for searching objects. This method
is expensive in terms of bandwidth consumption and is not
efficient for locating unpopular files. Structured P2P systems,
in the other hand, impose particular structures on the overlay
networks (which are commonly referred to as Distributed
Hash Tables (DHTs)). Any file can be located in a small
number of overlay hops, which significantly reduces the search
cost as compared to unstructured systems. Unfortunately, if
connection/disconnection frequency is too high, data may be
lost. To deal with these problems, the replication can be used
as the efficient technique to improve resources availability and
to provide load balancing enhance.

Many replication methods are proposed for structured P2P
networks, with a specific main goal to achieve. Ktari et al.
[7] have presented a comparative analysis of some replication
algorithms for DHT architectures. Our paper’s prime objectives
are to:

• Highlight factors involved in replication, type of repli-
cation, and parameters affecting replication.

• Present the some existing replication techniques for
structured P2P networks with a new classification.
Each replication technique can be implemented for
several objectives such as: improving availability,
enhancing system performance, achieving load bal-
ancing. In this paper, we try to classify replication
strategies existing in the literature based on their main
objectives. Our classification lets to well study and
compare them.

This paper is organized as follows: In Section II, structured
P2P networks and examples of networks are presented. In
Section III, we highlight some replication basic notions as well
as factors and parameters involved in it. Section IV reviews,
classifies and compares existing replication strategies. Finally,
we conclude in Section V.

II. BACKGROUNDS: STRUCTURED P2P OVERLAY
NETWORKS

In structured P2P overlay networks, the topology is tightly
controlled and the data is placed at specific location which
makes queries more efficient [8]. Structured P2P systems use
DHT as a substrate, in which the location information of object
(value) is placed deterministically, at the peers with identifiers
corresponding to the data objects unique key. In DHT, a peer’s
identifier ID is chosen by hashing its IP address and objects’s
key is chosen by hashing its name for example. Both peers
and objects are identified in the same namespace. Each node
is responsible for some of the keys in the system and each
data object is stored on this node if the identifier of the object
belongs to the range which node is responsible. The main
operations used in DHT are: put(key, value) and lookup(key).

• put(key, value): This operation is used when the peer
wants to publish an object in the system. Peer com-
putes the key of the object and then sends a message
put(key, value) to the peer responsible for this key.

• lookup(key): This operation returns the value associ-
ated with the key, if any.

Several systems employing DHTs have been developed;
among the most well-known Pastry [9], Tapestry [10], CAN
[11], Kademlia [12] and Chord [13]. We present Chord as an
example of this category. Additionally, a drawing is added to
clarify the functioning of chord.

147Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

• Chord: Chord is based on a ring topology, a Chord
peer has knowledge of its predecessor and its suc-
cessor. A hash function (SHA-1) generates a regular
identifier, an m-bit for each peer from its IP address.
Then, each peer is placed in the ring so as to ar-
range the identifiers in ascending order. The successor
(respectively predecessor) of a peer n is the peer
whose identifier is immediately higher (respectively
lower) to identifier of peer n. Thus, each peer n with
identifier ID is responsible for the interval of keys]
predecessor (n), n]. For a given peer, mere knowledge
of its predecessor and its successor is not sufficient to
ensure good performance of the ring, particularly in
terms of number of hops per request. To overcome this
problem, for a key space in the range [0, 2m [, each
peer ID connects to other neighboring nodes, called
fingers, with ID successor(ID+ 2i-1) with 1 ≤ i ≤ m.
These fingers constitute its routing table. Thus, the
number of fingers per node is O(log N). Thus, the
maximum number of peers traveled to forward a query
is expressed in terms O(log (N)), where N is the
number of peers in the system.

Figure 1. Chord ring with identifier circle consisting of ten peers and five
data keys. It shows the path followed by a query originated from peer 8 for
the lookup of key 54 [13].

When a node wants to find data object (value) for
a key lookup(key), it uses the following algorithm: it
seeks among its fingers the peer whose identifier is
the greatest and is lower than the key, and sends it the
message. The node that receives the message, then in
turn executes this same algorithm (see Figure 1) until
the target node is found. Nodes are allowed to join
and leave the system causing churn. A Chord regularly
runs maintenance algorithms that detects failures and
repairs routing tables, allowing requests for a key to
be routed correctly to their owner despite node churn.

III. REPLICATION

The main idea of replication data is to maintain several
copies or replicas of the same data at various different sites.
Data replication is recognized as an effective way to increase
the availability and performance of distributed systems such as
P2P. Replication is a solution that offers several advantages:

• Increases availability: Replication removes single
points of failure (data is accessible from multiple
nodes), thus increasing availability and fault tolerance.

• Improves performance: Replication improves perfor-
mance of system in terms of response time. Data can
be located closer to their access points. Therefore,
the success rate will increase, the response time and
the overhead will decrease. The response time can be
constant for all the users if all the data are replicated
uniformly over the network.

• Achieves load balancing: Replication can provide
load balancing between the nodes, such as multi-
ple nodes can serve the same object simultaneously.
Therefore, it reduces load on the nodes that own the
original data.

As replication has advantages, it also has significant costs
such as the storage cost and consumption of bandwidth. To
control the cost of replication, there are important factors that
replication must take into consideration. These factors have a
direct impact on the performance of the system. In order to
avoid wastage of network and peer resources, the excessive
use of replication is not recommended.

A. Factors of replication

When designing a replication strategy, the following im-
portant aspects should be taken into consideration:

1) What should be replicated: Most strategies of repli-
cation choose the files to replicate based on their popularity
values. A general way of measuring the file popularity on a
peer is by counting the number of requests. Other strategies
prefer, for their part, to replicate all shared files or only
replicate the rare objects.

After choosing the file to replicate, there are important
point to decide: is it necessary to replicate the file or its
index (since the index size is smaller that the file’s)? Or is
it preferable to adopt erasure code to replicate file? This point
is related to the type of replication, which will be detailed in
Section ”III.B”.

2) Where should replica be placed: The second important
factor is selection of the best node to host a particular replica.
Replicated copies should be placed in proximity to peers
who are likely to request the resource in order to reduce
delays of search and downloading. Moreover, some peers’
characteristics, such as available storage space and availability,
should be taken into consideration. Each replication strategy
which aims to improve file availability must consider the peer
availability: If a new replica is hosted by a peer that has low
availability and may leave soon, we may need another replica
in order to maintain the required availability for the file.

3) When should be replicate: Replication can occur pe-
riodically or at event. For example, suppose that the peer
considers file’s popularity. When it receives a request for a file,
the peer increases file’s popularity value and checks whether
it exceeds some threshold. If so, it might decide to replicate
the file. Some strategies ignore this factor.

148Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

4) How much is the number of replicas per file: Each
replication strategy determines the number of replicas per file
according to its objectives and the system parameters which it
takes into account. For example, if the aim of the strategy
is to maintain a threshold level of availability, it needs to
consider the system’s parameters that affect availability and
performance such as online availability of the peers in the
system.

5) Replica replacement strategy: It is essential to deploy
replica replacement strategy because storage space is limited.
A replacement strategy consists on removing some less effi-
cient replicas to create space for new replicas. Least Recently
Used (LRU) is the most widely used in P2P networks.

B. Type of replication

In the context of P2P networks, the replication is redun-
dancy by creating copies of data, called replicas, which can be
stored in peers other than the source peer (which holds original
data). Replica can be a complete file, the index of the file or
bloc of the file.

1) Traditional replication: is called also data replication.
In this type, replica is a complete (entire) file.

2) Erasure code replication: An erasure code provides
redundancy as replication for achieving high availability and
reliability in storage and communication systems without im-
posing high bandwidth and storage overhead [14]. In erasure
code, a file is divided into b (equal size) blocks and recoded
into c blocks, where c > b (of same size as before). The
erasure-coded blocks are dependent each other. The key prop-
erty of erasure code replication is that any b out of c blocks is
enough to reassemble the original file. We call c/b the storage
overhead S which is sometimes stated as the stretch factor.

Lin et al. [15] provided a comparison between traditional
replication and erasure code replication. They came to an
important result: in erasure code replication with a storage
overhead of S, if a file is divided into b blocks, then each file
block is replicated S times. Therefore we have S*b number of
blocks in the system. They also pointed out that when b=1,
erasure code replication is equivalent to traditional replication.

3) Index replication: In some cases, it is best to replicate
the index of a file that is the pointer to the peer that holds the
file. This solution is recommended when the file size is very
large to avoid the problem of the data file coherence when the
original file is updated. The index replication consumes little
storage space and bandwidth.

4) Message replication: The idea of the message repli-
cation, introduced by Hassan and Ramaswamy [16], is to
replicate a message several times within the network to enable
a large query coverage in the network.

When we design a replication strategy for unstructured P2P,
we can use one of the four replication types. We can also
use two types in the same strategy for example traditional and
index replication as in [17]. In case of structured P2P network,
we can find all types of replication except message replication.
Additional, in few cases, routing tables or information about
neighbors are also replicated.

C. The parameters that affect replication

The parameters that affect the efficiency of the replication,
and must be taken into consideration are mainly: the file
popularity, the peer availability, rare objects, storage space and
data consistency.

1) The file popularity: Jacky et al. [18] present a study
of popularity measurements of P2P file systems in Gnutella
and Napster. They came to an important result: caching or
replicating the most popular files on the system is strongly
suggested in order to greatly improve system performance.
Some strategies presented in this article are based on popularity
in order to determine the candidate files for replication. The
file popularity can be calculated by keeping track of the
number of requests. This value is local and can change rapidly
and therefore increase the replication cost. To avoid this, the
system should calculate and predict the overall popularity
values (for all the network). Manel and Mahfoud [19] define
a way to calculate a global file popularity based on local
estimation of the peer and estimations done by the other peers
participating in the network. The simulation results show that
their measurement is closer to the real one.

2) The peer availability: In P2P networks, peers are
volatile: they join and leave the network unexpectedly. The
main consequence is that the files (original copy or replica) that
a peer stores might become unavailable. Accordingly, the peer
availability affects the file availability. Thus, the replication
strategy which aims to improve availability of resources must
take into account this parameter to calculate the number of the
file replicas. In [20], a study was made to understand the peer
availability.

3) Rare objects: Studies have shown for Gnutella that
18% of all queries return no responses even when results
are available [21]. That is due to search algorithms used in
unstructured P2P, the most typical query method is flooding.
This method is effective for locating highly replicated data
and is not suited for locating rare data (those with few
replicas). Two solutions are proposed in the literature to solve
this problem: hybrid search and replication. Hybrid search
combines two search methods, it uses flooding techniques for
locating popular items and structured (DHT) search techniques
for publishing and locating rare items. Replication is a well-
known technique for improving resource availability. To the
best of our knowledge, there are few works that propose
a replication technique in order to improve search for rare
objects ([22][23][24]). A key challenge for the hybrid search
and replication is how to identify rare items.

In our opinion, this last point is not satisfactorily addressed
in the case of replication, because some strategy as presented
by Ma et al. [24] are based only on the sampling technologies
and number of copies to determine if object is rare or not.
Therefore, before proposing a replication technique aiming to
improve search for rare objects, one must first define what is a
rare object, how one can identify it and at the end one discuss
the factors involved in replication. This parameter is only for
unstructured P2P network because in the case of structured
P2P network, any file can be located even for rare data if any.

4) Storage space: Each peer in a P2P network shares a part
of its storage capacity which will be used to store its shared
files and the replicas of files of others peers. Unfortunately, this

149Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

storage space is limited and can store only a limited number
of replicas. Therefore, replication strategy must consider this
parameter when it chooses the best node to host a replica
and it must deploy replica replacement strategy. However,
most replication strategies do not consider storage capacity
constraints thus the network and peer resources are abused.

5) Data consistency: Generally, we can not use data repli-
cation without evoking data consistency issue. It turns that
in P2P systems (such as PAST, Gnutella) [25], the replicated
resources often they are not subject to modification (static or
read-only), this explains in part why replication techniques
do not consider the consistency aspect. However, in case of
resources update, it is recommended to trait the two aspects
simultaneously. This can decrease the overhead of consistency
maintenance and ensure that a file requester receive up-to-date
files.

IV. REPLICATION TECHNIQUES FOR STRUCTURED P2P
NETWORKS

A. Replication in DHTs

The replication strategies, for the structured P2P networks
that employ DHTs, use two algorithms: Data replication algo-
rithm (or called Replica placement algorithm) and maintenance
algorithm. The choice of these algorithms can have significant
impact upon performance and reliability.

1) Data replication algorithm: In this kind of algorithm
the peers decide what should be replicated, how many replicas
should be created and where to replicate them in order to
realize a well-determined objective such load balancing or
improve availability of resources. There are three main basic
replica placement strategies, which are the basis of the most
replication strategies present in the section.

• Neighbor replication: Called also the simple replica-
tion method, each peer maintains a list of neighbors
such as successor-lists and predecessor-lists in Chord
[13] or leaf-sets in pastry [9]. In neighbor replication,
the data objects are stored not only in root peer but
also on its successor, or on its predecessor, or on
its leaf-sets and or on the nodes belonging to the
same group as it. The root is node that stores the
object location information and it can be different to
the owner which is the node that stores the master
copy of the object. Chord employs successors-lists
replication. Pastry and Kademlia DHTs employ leaf-
sets replication.

• Path replication: Path replication replicates a data
object along the search path that is traversed by the
lookup message, from the requester to the provider
node (root peer). Tapestry [10] employs path replica-
tion scheme.

• Multi Publication Key Replication : A key is mapped
into r points in the coordinate space and accordingly
replicated at r distinct nodes in the system. CAN
implements this solution by using Multiple hash func-
tions.

2) Maintenance protocols: For each data replication al-
gorithm, there is a special maintenance protocol. The idea is
that the maintenance protocols must maintain k copies of each
data objects without violating the initial placement strategy.
It means that the k copies of each data object have to be
stored on the root-peer neighbors in the case of the neighbors
replication scheme, on the root peers in the Multi Publication
Key Replication scheme and on all the peers that exist in the
search path in the case of path replication.

B. Classification of replication techniques for structured P2P
networks

A replication technique can be performed for several ob-
jectives such as: improving availability, enhancing system’s
performance, achieving load balancing. To fulfil these objec-
tives, a number of replication strategies have been proposed
for structured P2P networks. Each strategy is proposed for a
specific DHT, and employs different algorithms for placement
and maintenance. In this section, various existing replication
schemes are presented and classified into four categories
according to replication objectives as described above. Each
category defines a main replication objective to achieve (Figure
2). However, some techniques, which belong to one category,
may possess secondary properties of another category.

Category1: ”Achieve load balancing” Godfrey et al. [26]
say that the load unbalancing problem in structured P2P net-
work may result due to non-uniform distribution of objects in
the identifiers space. Therefore, some nodes having O(logN)
times as many objects as the average node, where N is the
number of peers in system. Additional, if a single node stores
a popular file, then all requests for this file are directed to
this node and this will make it and the path leading to it
overloaded. Category 1 includes proposed strategies that solve
load balancing issue by efficient data replication.

Category2: ”Increase availability of resources” This cat-
egory shows the replication strategies that seek to increase the
availability of resources caused by irregular departure of peers.

Category3: ”Enhance churn tolerance” When new peer
joins the system, if its identifier is closer to an object’s key
than the identifier of its current root, the data object needs to
be migrated on the new peer and the new peer will become
the root for this object. The migration process can be also
appeared in the case when the peer quits the network or when
neighbors list is changed. If a high churn rate arrived, then
maintenance algorithms must often be applied in order to adapt
to the new structure by migrating data objects, which generates
more traffic and consumes much bandwidth. In order to avoid
this issue, the replication strategy must be more tolerate under
higher churn rates.

Category4: ”Improve search performance” It includes
replication strategies that decrease the response time and the
overhead, thus the search performance is improved.

1) Achieve load balancing:

a) Lightweight Adaptive system-neutral Replication
protocol LAR [27]: LAR can efficiently deliver a good load
balance and low query latencies even when demand is heavily
skewed. LAR functions as follows:

150Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

Figure 2. Classification of replication techniques for structured P2P networks.

Each time the peer Pi receives a request for data item
from the peer Pj. It checks if its current load Li exceeds a
certain threshold. Load is redistributed according to a per-node
capacity Lmax, high-load Lhi and low-load Llo thresholds. The
node capacity is the number of queries that it can route or
handle per second, there are two different cases:

• if (Li > Lhi), it indicates that load redistribution is
necessary. In this case, Pi attempts to create new
replicas on Pj, if Li is greater than Lj by some fixed
value K. Pi then asks Pj to create replicas of the n
most highly loaded items in Pj, such that the sum of
the local loads due to these n items is greater than or
equal to K.

• if (Llo < Li < Lhi) then load is redistributed as above
on Pj only if (Li− Lj ≥ Llo).

If Pj has no space storage for hosting the new replica, it
then uses LRU algorithm, to choose a victim replica to leave
the space for the new replica.

The locations of the new replicas is then spread, by piggy-
backing them, on subsequent messages that contain requests
for the same items. The pointers to the replicas are cached
in the peers along the path traversed by requests for these
replicas. In the same way as for replicas, LRU policy is used:
the least recently used pointer is deleted.

The presence of pointers of the new replicas can then re-
spond more quickly to the subsequent requests and potentially
reduce the number of hops needed for routing. Indeed, if a
peer reaches a node with a pointer to a replica rather than the
node with the resource originally, it follows the pointer.

When a node that has a replica leaves the network, or
simply when LRU algorithm is applied to replace cache or
replicas, LAR does not apply maintenance protocol. Therefore,
the initial placement strategy is violated and it can find pointers
to inexistent content.

When adapting LAR to Chord, the finger list is the default
item of replication. LAR replicates the data item only if the
load on the server due to the data item is more than that due
to the finger list.

b) A Prediction-Based Fair Replication Algorithm [28]:
It aims to maintain an excellent system performance when the
query is highly skewed. Through the use of a simple prediction
method, it can foresee traffic surge and replicate beforehand.
The basic idea of the PFR algorithm is to create replicas for
the node whose predicted load or current load reaches certain
predefined threshold and adaptively adjusts the Replication
Speed (RS) for each replication process. RS can be measured
by the ratio of the number of nodes chosen to hold replicas
to the number of all nodes that have encountered along the
query path. The light-loaded nodes are always chosen to hold
replicas. For example, if RS equals to 3N/4, this means that
load should be redistributed to 3/4 amount of the total number
of nodes along the query path, where N is number of node in
the query path. PFR function as follows:

When query packet is routed through a node, it computes
and piggybacks its predicted load on the query packet. At the
same time, it checks the value of the predicted load Preload
and current load to determine whether the load rebalancing
is necessary or not. With respect to nodes’ predicted load
fraction, PFR defines 5 different replication levels, which
specify the RS for each query. There are two types of nodes
along a query path: query’s destination node and the nodes just
forwarding queries. For the first type of nodes, node replicates
according to these 5 levels. However, for the second type
of nodes, replication is necessary only when its Preload has
reached the level one of threshold. The first level threshold
indicates that a node is approaching its capacity and it is
in an emergency state to shed load in order to prevent itself
from overloading and consequent dropping queries. The node
capacity is the number of queries that it can route or handle per
second. If the replication is necessary based on Preload, the
node creates replicas of the n heaviest-loaded items on each
selected node, such that the sum of the local loads caused by
these n items will be greater than or equal to the difference in
loads between the two nodes. Else, the node checks whether
the replication is necessary or not based on the node’s current
load fraction. If yes, the node replicates in the same way, but
the corresponding replication level should be decreased by 1.
It means that value of RS when the replication is based on
current load is lower compared to the value of RS when the
replication is based on Preload. Whenever stored replicas reach

151Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

the nodes maximum storage size, the new replicas will replace
the old replicas using the LRU algorithm.

PFR algorithm also uses the replica location dissemination
method such as LAR. It helps replicas to be efficiently utilized
in shedding load. But, it does not apply maintenance protocol.
Therefore, we can find pointers to inexistent content.

When PFR is applied to Chord, the finger list is the default
item of replication. PFR replicates the data item only if the
load on the node caused by the actual data item is more than
that caused by the finger list.

c) Symmetric Replication [29]: Symmetric replication
can be used for load-balancing between the peers, end-to-end
fault tolerance and to increase the security. The advantage
of symmetric replication is that it can be applied to all
structured P2P systems. It is closer to the methods that use
several hashing functions for replication. The main idea behind
symmetric replication is that each identifer in the system is
associated with a set of f distinct identifers such that the
following always holds: if the identifer i is associated with the
set of identifers r1, ..., rf, then the identifer rx, for 1 ≤ x ≤ f ,
is associated with the identifers r1, ..., rf as well. The identifier
space is partitioned into N/f equivalence classes such that
identifiers in an equivalence class are all associated with each
other, where N is the size of the identifier space and f is
replication degree. The replication degree is number of replicas
made. The identifier i is associated to the f different identifiers
given by the function H; H(i,x)=i+(x - 1) N/f.

In symmetric replication there is no root node, a data item
with identifier i is stored on the f peers given by Sp(H(x, i)), for
all x (1 ≤ x ≤ f). Sp is pseudo-metric space as hash function
(SHA-1) in Chord. Thus, the responsible peer of identifer i
stores every data item with an identifer associated with i. This
implies that to find a data item with identifier i, a request can be
made for any of the identifiers associated with i. Each node
storing a data can easily calculate the keys of the different
replicas of this particular data item, it is sufficient that each
node knows about the replication scheme. Therefore, it can
achieve load-balancing between replicas by sending requests
to a random replica.

Symmetric replication has put a set of replication algo-
rithms, these algorithms are used for joins and leaves, inserting
and looking up items and failures. It can enhance performance
by sending multiple concurrent requests and picking the first
response that arrives. Unlike the other replication methods
that use multiple hash functions, successor-lists, or leaf-sets
to select replica nodes, symmetric replication needs only O(1)
messages for every join and leave operation to maintain any
replication degree. The replica node is a node that stores a
replica.

Every replica node cooperates to execute maintenance
algorithm. The node storing the replica i checks if the replica
i+1 is stored in the corresponding node. If not, it inserts a new
replica in that node. The node storing the replica i+1 do the
same with the replica i+2 an so on.

Discussion: The replication strategies presented in this
category use different replica placement algorithm to achieve
load balancing. The first technique, LAR, uses any type of
replica placement algorithms described in Section IV.A.1. It

resembles at owner replication, because only the requester
node keeps the copy, the others nodes on the query path contain
only the cache entries, pointers towards replicas. In the owner
replication [30], if a search for an object is successful, this
object is replicated on the requester node. The replicas can
be efficiently utilized due to the use of the replica location
dissemination method.

PFR is an improvement of LAR, because it uses the same
principle. The both use the load value to determine whether
load redistribution is necessary. After the replication, both use
the dissemination method to spread the information about new
replicas locations. In the case of LAR, RS value is always
equal 1. Moreover, there are some difference between the two:
First, in PFR not only the requester node keeps the copy,
but also some node in the query path according to the RS
value. Thus, PFR is a variety of replication path. Second,
all the nodes in the query path can check the load value to
determine whether load rebalancing is necessary or not. Unlike
LAR, only the peer that receives a request checks. Third, LAR
uses only the current load to check, but PFR uses two load
values predict and current. Therefore, PFR adaptively adjusts
the number of replicas created for each query process and can
be scattered before flash crowd happens. Symmetric replica-
tion based on multi publication key replication is completely
different compared to LAR and PFR, in different points:

First, symmetric replication replicates only data item, but in
PFR and LRA, data item is not the default item of replication.
Second, in symmetric replication, the replication degree is the
same for all the replicas, but in PFR and LRA the replication
degree is determined according to the load value. Third, only
the symmetric replication applies maintenance algorithm. The
maintenance protocol is applied in distributed manner and it
needs cooperation of all replica nodes. Therefore, it is complex
compared to the other techniques where the maintenance is
provided by the root node. Fourth, LAR and PFR employ the
replica location dissemination method in order to the replicas
can be used. In symmetric replication, it is sufficient that each
node knows about the replication scheme. Therefore, it can
easily calculate the keys of the different replicas.

2) Increase availability:

a) Quorum-based replication and Availability-based
replication [31]: Kim and Park have proposed efficient repli-
cation methods that can reduce network traffic enormously and
achieve high data availability in DHT based on P2P storage
system. In these methods, the replicas are loosely coupled
to the consistent set such as the leaf-set and the successor-
lists. Additionally, they are interleaved on the consistent set
to reduce the compulsory copies which occur under churn,
unlike the simple replication (neighbor replication) method that
directly uses the consistent set. This set is tightly coupled to
the current state of nodes and the traffic needed to support this
replication can be high and bursty under churns.

Tow types of replication methods are proposed: Quorum-
based replication and Availability-based replication.

The Quorum-based replication modifies the simple repli-
cation to prevent the compulsory copies which occur under
churn. When a new node joins, it gets not only routing infor-
mation such as DHT and consistent set, but also the replication
set. The replication set indicates which node replicates the

152Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

object among the consistent set. The size of the consistent
set is bigger than the number of replicas, the replication does
not occur frequently and the replication set can interleave
the replicas on the consistent set. This behavior increases the
chance to reduce the compulsory copies.

The replication only occurs when the number of replicas
is fewer than the target quorum. The quorum is the fixed
minimum number replicas necessary to archive an objective. In
this case, the number of replicas must be more than the target
quorum to achieve target data availability. When a node leaves
and it is not a member of the replication set of peers, there
is no need to replicate the data. Otherwise, if it is a member,
the selection of node among non-members of the replication
set of peers as a new replica (target node) is necessary. The
target node became among the replication set for this peer.
The Quorum-based replication considers that each node has
the same availability. However, if a new replica is assigned
by the node which has low availability, this node may leave
soon and we need another new replica. Therefore, Availability-
based replication takes into consideration the node availability
and guarantees the high data availability by selecting the more
available nodes as replicas. To do this, each node manages its
availability and advertises it to all members of the consistent
set by piggybacking it to the periodic ping message which
has been already used to detect node failures on the consistent
set. In this approach, the replication only occurs when the data
availability is below the target availability. When a node needs
a new replica, the most available node among non-members
of the replication set is selected as a new replica.

If all members of a consistent set have averagely low
availability, Availability-based replication needs more replicas
than the quorum based replication. Sometimes this behavior
takes more bandwidth, but when nodes leave, this subtle
replication can reduce much more bandwidth than the Quorum-
based replication.

When a node fails and its neighbor gets the lookup request,
this neighbor may not have the replicas for the requested
object. In this case, the neighbors must forward the request
to the replicas of the failed node for the routing correctness.
To do this, each node should have the replication sets of all
members of its consistent set by piggybacking this information
to the periodic ping message for its consistent set.

The both Quorum-based replication and Availability-based
replication used the same maintenance algorithm : When a new
node joins and a target node gets this join request, the object
ranges of the target node is divided into two object range and
the new node is responsible for one of them. In this case, the
new node simply copies the replication set and adds the target
node as a new replica because it already has the object for
this range. When a node leaves or fails, its neighbor node is
responsible for its object range. In this case, both replication
sets of the failed node and its neighbor node are merged.

b) DHT-based Self-adapting Replication Protocol [32]:
Knezevic et al. have presented a fully decentralized repli-
cation protocol suited for any DHT networks, that adjusts
autonomously the number of replicas to deliver a configured
data availability guarantee.

The main idea of this replication technique is to associate
for a given object many keys. The node that publishes the

object simply calculates different keys and then inserts the
object in the corresponding nodes. To calculate these keys,
it uses correlated hashing. The first replica key is generated
using a random number generator. All other replica keys are
correlated with the first one, i.e., they are derived from it by
using the following rule: replicaKey(1)=c, replicaKey(ron)=
H(replicaKey(1) + ron) if ron ≥ 2, where ron is a replica
ordinary number, c is a random byte array, H is a hash function
with a low collision probability. replicaKey is observed as byte
arrays, and + is an array concatenation function. To calculate
the key of the ronth replica, the peer requires access to the
first replica key and the replica ordinary number (ron). All
this information is wrapped in an instance of Entry class.
Additional, all the nodes use same H.

Every peer calculates the number of replicas R from
measured average peer online probability and the requested
data availability. During joining phase, a peer can get an initial
value for R from others peers, or can get assume an initial value
of R for it.

To meet the requested data availability in a DHT, the
number of replicas of stored data at each peer has to be
adjusted. Therefore, every peer measures the current average
peer online probability, knowing the requested data availability
and it calculates the new value for the number of replicas R.
By knowing the previous value R1, a peer removes the replicas
with ordinary number ron greater than R from its local storage
replicas. If (R < R1) higher number of replicas are needed, a
peer creates new replicas of the data in its local storage under
the keys replicaKey(j), j = R1 + 1, ..., R.

c) Predecessor replication [33]: Predecessor replica-
tion is a simple and an efficient data replication approach. It
ensures high data availability it can decrease the number of
hops needed to locate the requested data. The node replicated
each key whose it is responsible on its predecessor nodes in
the same number of copies. According to the query routing
mechanism used Chord, the lookup query can be routed to
replica node (predecessor node) before reaching the root node.
Therefore, the search path is minimized.

Two update strategies are used for the maintenance under
churn: the basic update and the periodic update. In the basic
update, when the node leaves the network, the data whose it
is responsible will be migrate to its predecessor. The periodic
update is periodically used to maintain the replication degree.
Each node contacts all its replica nodes to ensure that they
correctly maintain the appropriate replicas. Each replica node
contacts the root nodes of all replicated keys which stores in
order to keep the replicas up-to-date.

Discussion: Although the methods presented above are
proposed to achieve high data availability in a DHT based P2P
systems, there’s a difference between them, we quote: The first
and the third methods are based on neighbor replication and the
second method is based on multi publication key replication.

In order that nodes can access to the replicas in case of the
root node is failure, the information of the replication sets are
spread in the first methods, by piggybacking this information
to the periodic ping message. In case of the second method,
it is not needed to know the information about the replica
locations. When a peer wants to get a value, it is sufficient to
return any available replica. The basic DHT lookup operation

153Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

is applied until the data is retrieved. Like the second method,
the third method does not need to know the information about
the replica locations, the nodes can access to the replica before
reaching the root node.

In Quorum-based replication and predecessor replication,
the replication degree is fixed constant and the is same for
each data. They do not take into account some characteristics
such as the requested data availability and the node availability.
Therefore, the storage space can be abused by the data which
is not popular. Additionally, the bandwidth consumption is
increased by the migrating data and replication process to
maintain the replication degree, because the replicas can be
stored by the nodes which have low availability and can leave
the network soon.

Availability-based replication and DHT-based Self-
adapting Replication Protocol adjusts the number of replicas
according to the node availability and the requested data
availability. Thus, if the number of replicas is not sufficient
to ensure the requested data availability, new replicas will
be created. Additional in the second method, if there are
more replicas than needed, peers will remove some of them.
Therefore, the second method generates less storage costs.

3) Enhance churn tolerance:

a) RelaxDHT replication strategy [34]: Legtchenko et
al. have proposed RelaxDHT replication strategy that enhances
churn tolerance by building an efficient Replica placement and
maintenance mechanisms. The RelaxDHT strategy is based on
neighbor replication, exactly as the leaf-sets replication applied
in DHT pastry.

When the root peer receives put message for new data
block. In the case of the leaf-sets replication with the replica-
tion degree equals to R, the root peer stores a copy of the data
block for which it is the root. After, it sends the R-1 copies of
this data block for its replica-sets. The replicas sets of a root
peer are a subset of its leaf-sets.

In case of RelaxDHT replication strategy, the root peer
does not necessarily store a copy of the data blocks for which
it is the root. It maintains metadata describing the localization
of replica sets, the goal of using localization metadata allows
to be anywhere in the leaf-sets. Therefore, when a new peer
joins a leaf-sets, the application maintenance protocol is not
necessary. The replica sets are selected randomly among the R
peers around the center of the leaf-sets. This choice will reduce
the probability that a chosen peer quickly quits the leaf-sets
due to the arrival of new peers.

The root peer sends Store message for its replica sets peers
that contains in addition to the data block itself such as the
Leaf-sets replication, the identity of the peers in the replica set
and the identity of the root. A peer may be root for several
data blocks and a part of the replica set of other data blocks. In
the first case, the peer must store a list of data block identifiers
with their associated replica-set-peer list for blocks for which
it is the root. In the second case, peer stores a list of data
blocks for which it is a part of the replica set, additional it
stores the identifier of this data block, the associated replica
set peer-list and the identity of the root peer.

Periodically, each peer executes two maintenance proto-
cols. In the first protocol, it checks for each data block that it

stores if the root peer for this data block has changed. If so,
the peer sends massage for the future root peer. When the new
root of this data blocks receives the message, it adds the data
block identifier and the corresponding replica set in the list. In
the second, it checks for each block for which it is the root,
if all the replicas are placed in its leaf-sets around the center.
For a data block, if one of its replicas has changed, then the
root peer chooses randomly a new peer in the center of the
leaf-sets and changes the replica set. After, it sends a Store
massage with the replicas set for each peer in its replica set.
When the peer receives this message and already stores a copy
of the corresponding data block, it updates the corresponding
replica set if necessary. In other case, if the peer does not store
the associated data block because it is a new peer in the replica
set, it fetches everything necessary to store (data block) from
one of the peers mentioned in the received replicas set.

b) ID-Replication strategy [35]: ID-Replication can be
used in any structured overlay network, however Shafaat et
al. have adapted it to Chord for the sake of simplicity. ID-
Replication strategy is less sensitive to churn compared to
successor-list replication. In order to achieve this goal, ID-
Replication uses sets of nodes, called groups, instead of
individual nodes. Thus, each group like a node in Chord has
unique identifier and is responsible for some of the keys.

Within each group, the nodes that compose it possess two
identifiers. A global identifier that is the same identifier as the
group and a local identifier that is unique for each node. Each
group has successor list, predecessor and fingers as node in
Chord.

In successor-list replication, with the replication degree
equal to R, the root peer stores a copy of the data block for
which it is the responsible, the R-1 copies of this data objects
are replicated in its successor-list. In ID-Replication, there are
not the root peer, and all the nodes within group store a copy of
data blocks which the group is the responsible for. Therefore,
a request can be routed to a random node in the group
thereby load balancing between the replica nodes. Moreover,
in successor-list replication, a request is first routed to the root
peer. ID-Replication can send out multiple concurrent requests
and picking the first response that arrives.

The replication degree is not fixed, it is between two
parameters Rmin and Rmax. Thus, the number of the nodes
within group is specified by these parameters. To allow more
copies for popular data objects than other data objects, Rmin
and Rmax must have higher values.

Periodically, each node p checks if the size of its group is
smaller then Rmin because a node is failed, then p searches
for a standby node by gossiping or contraction a directory and
tries to include it in this p’s group. If a standby node cannot
be found, p triggers a merge p’s group members with others
group such that the size of merged group must be less than
Rmax. If the size of a group is more than Rmin, then standby
nodes are (size of group - Rmin) nodes. If size of a group is
larger than Rmax, p initiates the split operation by dividing the
group into two groups.

Discussion: The two strategies mentioned above are pro-
posed to be less sensitive under the churn compared to the
leaf-sets replication and successor-list replication respectively.
There are some differences between them, we quote: In the

154Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

first, the root peer chooses randomly the replicas sets peers
in the center of the leaf-sets then, it is necessary to main-
tain metadata describing the localization of its replicas set.
Additional, each peer maintains information about replica set
peer-list which it is part.

Unlike the first, in the second there is no root node and
replicas set. Soon as a peer joins a group, it stores a copy
of data blocks that the group is responsible for. Like the first,
each peer can have information about the others replicas node.
In order to realize this, the nodes in the group use gossiping
between them.

The ID-Replication gives different replication degree, thus
allowing popular data to have more copies, but in RelaxDHT
replication strategy it is not mentioned.

The maintenance protocol in RelaxDHT strategy is more
complicated then ID-Replication strategy, but the maintenance
cost in the both is still moderate compared to the leaf-sets
replication and successor-list replication. The maintenance cost
is in term of generated overhead and bandwidth consummated
by maintenance protocol.

4) Improve search performance:

a) Proactive Low-Overhead File Replication Scheme
Plover [36]: Proactive Low-Overhead File Replication
Scheme achieves high efficiency in file replication and supports
low-cost and consistency maintenance, because it replicates
files among physically close nodes based on node available
capacities. Plover also includes an efficient file query redirec-
tion algorithm for load balancing between replica nodes.

In order to achieve efficient file replication, Plover uses
clustering, the physically close nodes are grouped in clus-
ters. Each cluster has a supernode, which is node with high
capacity and fast connections. The others nodes are called
regular nodes, which are nodes with lower capacity and slower
connections.

Periodically, each lightly loaded node reports its informa-
tion of available capacity. A node’s capacity is presented by
the number of bits it can transfer in responding file queries per
second, and each heavily loaded node reports the information
of its popular files to its super node. The lightly loaded node
is the node whose actual load is no larger than its capacity,
otherwise a it is heavily loaded node. The load caused by file
access is determined by the file size and visit rate (popularity),
which visit rate or popularity is measured by the number of
visits during time unit (second). The super node collects all
this information and arranges the file replication between them
(among the clusters). The supernode notifies overloaded nodes
to replicate popular files to lightly loaded nodes.

Plover addresses the problem of file consistency mainte-
nance and tries to facilitate efficient file consistency mainte-
nance with low-cost. When the node updates a file, it sends
update message to its supernode.The super node forwards the
message to the replica nodes following a predefined method
instead to broadcast it.

When an overloaded node receives a file request, it should
forward the request to one of the file’s replica nodes. In
order to load balancing between replica nodes, the overloaded

node chooses the replica node according to Lottery scheduling
method adopted by Plover.

b) An On-line Pointer Replication (OPR) algorithm
[37]: It can efficiently reduce the query search latency. In
order to realize this, OPR replicates the pointers of an object
in multiple peers in the network. Therefore, the query for an
object is forwarded to the nearest root among the others to
fetch the location pointer, that reduces the query search latency
as well as improves data availability. Latency incurred by a
query is denoted by the number of hops it takes to route to
the root.

OPR addresses two problems: Placement of Replicas and
Extent of Replication. In Placement of Replicas, it decides
how to place the replication pointers in the network to achieve
the best performance. To find the best replica placement,
OPR uses an heuristic approach called Greedy approach to
select the roots. It bases on topologies hypercube to construct
overlay topology of the network, because Greedy approach
needs complete knowledge about the network layout. In a static
network, hypercube can be easily embedded by connecting any
two nodes that are one Hamming distance apart. In this article,
Hamming distance of two nodes is the number of bits that are
different in IDs of two nodes.

Using the greedy approach, the node with the largest
distance to the nearest existing roots is selected as the next
root and so until all roots will be selected. As the hamming
distance represents a metric distance, OPR can easily identify
the farthest node in the system.

In extent of Replication, it decides how to determine the
replication degree for each object to achieve the best per-
formance. OPR concludes that the optimal replication degree
(number of pointers) is directly proportional to the query
arrival rate and inversely proportional to the system churn rate.

Each root peer applies the maintenance protocol as follow:
When a node wants to leave the network, it sends a message
to its neighbors to inform them of its intention. Each neighbor
receives this message should update its routing entries. The
pointers kept on node leaving the network are pushed to the
neighbor which has the ID numerically nearest to it.

Discussion: Plover strategy is different from all the strate-
gies presented for structured P2P in different points:

Plover uses geographical clustering, such as making file
replicas among physically close nodes based on nodes avail-
able capacities. By considering node available capacity and
locality, plover achieves not only high efficiency in file repli-
cation but also facilitates efficient file consistency maintenance.

The consistency maintenance is an important issue. To
the best of our knowledge, Plover is the only strategy which
addressed this issue together with file replication relative to
others strategies presented in this paper. It uses efficient file
consistency maintenance with low-cost.

Additional, plover adopts lottery scheduling method to
efficient achieve file query load balance between replica
nodes, unlike symmetric and ID-Replication which use ran-
dom method. In random load balancing, file query is routed
randomly to a replica node. The random method is not efficient

155Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

TABLE I. COMPARISON BETWEEN DIFFERENT REPLICATION STRATEGIES IN STRUCTURED P2P NETWORKS.

Replication Technique Type of Replica Replication Proximity Replica nodes Feature
and goal replica maintenance degree location

placement
algorithm

A
ch

ie
ve

lo
ad

ba
la

nc
in

g

Lightweight Adaptive owner not mentioned is one copy likely to find a piggybacking replica uses LRU as the replica
system-neutral replication whenever the replica preceding nodes location on replacement strategy
replication protocol [27] replication the root destination messages

algorithm is applied
A Prediction-Based path not mentioned is adjusted according likely to find a piggybacking replicas uses LRU as the replica
Fair replication replication to the load value replica preceding nodes location on replacement strategy
algorithm [28] for each replication the root destination messages

process
Symmetric multi more theory is the same choose the each node can can achieve load
replication [29] publication complex for each item numerically calculate the key balancing between

key maintenance closet replica ID of the different replica by sending
replication replicas requests to a random

replica.
can be applied to
all DHTs

In
cr

ea
se

av
ai

la
bi

lit
y

of
re

so
ur

ce
s

Quorum-based neighbor provided by number of replicas request can be piggybacking replicas reduces the maintenance
replication [31] replication the root node can not exceed the routed to the root node (replication sets) traffic under churn

neighbor list node or to the replica location on ping comparing the simple
node message replication

Availability-based neighbor provided by is adjusted according request can be piggybacking replicas reduces the maintenance
replication [31] replication the root node to the node routed to the root node (replication sets) traffic under churn

availability and the node or to the replica location on ping comparing the
request data availability node message simple replication

DHT-based self- multi not mentioned is adjusted according choose the each node can generates less storage
adapting replication publication to average peer online numerically calculate the key costs comparing
protocol [32] key probability and the closest replica ID of the different to Availability based

replication request data availability replicas replication
Predecessor neighbor provided by can not exceed the can find a root node maintains can reduce the number
replication [33] replication the root node predecessor-lists replica node the localization of of hops needed to

and by replica size and is the same preceding the replica nodes locate the requested
nodes for each item root node data compared to

neighbor, symmetric,

E
nh

an
ce

ch
ur

n
to

le
ra

nc
e RelaxDHT neighbor provided by number of replicas can find a replica each node maintains the root peer does

replication [34] replication the root node can not exceed the node preceding metadata describing not necessarily
and by neighbor list the root node the localization of store a copy
replica size replicas sets
nodes

ID-Replication neighbor provided by is between two request can be it not necessary to can allows more
strategy [35] replication replica parameters Rmin routed to maintain the copies for popular

nodes and Rmax random replica information about data objects.
node in the group the location of

replica nodes

Im
pr

ov
e

se
ar

ch
pe

rf
or

m
an

ce

Proactive Low- neighbor not mentioned is based on node request is routed super node maintains adopts lottery
Overhead File replication available capacities to the root node metadata describing scheduling method to
replication scheme [36] first the localization of achieve file query

replica nodes for load balance uses
each replication file efficient file consistency

maintenance with
low-cost

An On-line Pointer multi provided by is directly proportional choose the each node can uses an heuristic
replication publication replica to the query arrival numerically calculate the keys called Greedy
algorithm [37] key node rate and inversely closest replica ID of the different approach to select

replication proportional to the replicas the roots
system churn rate

and it can choose the same replica node. Thus, the replica node
can become overloaded.

Plover has not clearly stated how the peer applies the
maintenance protocol. Unlike the others strategies which based
on Multi Publication Key, OPR uses an heuristic approach
called Greedy approach to select the roots. This method is
simple to use and allows OPR to reduce the query search
latency.

5) Summary: In this article, we explored all the techniques
that have a significant scientific contribution. Each technique
has a main replication objective to achieve and should take
into consideration important factors and parameters. The latter
have a direct impact on the system performance. Therefore,
it is necessary to use the heuristics performing compromise
between these factors and parameters proves to be necessary,

in order to reduce the cost of replication without compromising
its efficiency.

After this study, we try to draw some useful recommenda-
tions to take into consideration in replication strategies:

• Replication degree must not be the same for each data,
because some of them are popular and others are not.
Unpopular data must have less replicas than popular
data. Thus, it decreases overhead of the maintenance
protocol for unpopular data. Further, replication de-
gree must be minimized as much as possible without
compromising its efficiency. Therefore, it decreases
the overhead of maintenance protocol and consistency
maintenance.

• The search request must not be routed to the root node

156Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

first in order to not overcome it. This case can appear
in the neighbor replication. Additional, it is necessary
to increase the utilization of the replica nodes and to
apply a mechanism of load balancing between replica
nodes when it is possible.

• The consistency maintenance is an important issue,
and it must be addressed together with the replica-
tion technique in order to reduce its overhead and
to facilitate its execution. The replication technique
must be designed to ease consistency maintenance
like for example in neighbor replication, the root peer
maintains the localization of replica nodes. Therefore,
the root peer can easily forward the update message to
the replica nodes if there is update. In path replication,
it is very difficult to maintain the localization of all
replica nodes. Then, not all data can be up-to-date.

• If P2P application requires mutual consistency, in
our opinion the replication strategy which is based
on multi publication key replication can facilitate
mutual consistency. Each peer can calculate the key
of different replica nodes. In this case, a replica peer
can forward update message to other replica nodes.
When a peer rejoins the network later, it contacts
online replica nodes to recuperate updated data.

• Storage capacity constraint must not be ignored while
the choice of suitable replica node and the replica
placement strategy must applied when is necessary.

Table I summarizes the comparison of replication strategies
for structured P2P networks presented above in function of
some criteria: replica placement algorithm, replica mainte-
nance, replication degree, proximity [7] (selecting a ’nearby’
replica (in the ID space)), replica nodes location (existence
of meta-information of the localization of replica nodes) and
feature (other characteristics).

V. CONCLUSION AND FUTURE WORK

Replication techniques are widely employed to improve the
availability of data, enhancing performance of query latency
and load balancing, in content distribution systems such as
P2P. In this paper, a state of the art of the various replication
techniques for structured P2P networks is presented. There-
after, a new classification for these techniques is introduced,
a detailed comparison is done. In our future work, we try to
develop simultaneously data replication and data consistency
maintenance methods and take into consideration recommen-
dations that we presented in order to achieve high efficiency
at a significantly lower cost.

REFERENCES

[1] “Napster,” [retreived: May, 2014]. [Online]. Available:
http://www.napster.co.uk

[2] “Gnutella,” [retreived: May, 2014]. [Online]. Available:
http://www.gnutella.com

[3] “Kazaa,” [retreived: May, 2014]. [Online]. Available:
http://www.kazaa.com

[4] “Bittorrent,” [retreived: May, 2014]. [Online]. Available:
http://www.bittorrent.com

[5] J. Kubiatowicz et al., “Oceanstore: an architecture for global-scale
persistent storage,” SIGPLAN Not., vol. 35, no. 11, 2000, pp. 190–
201.

[6] P. Druschel and A. I. T. Rowstron, “Past: A large-scale, persistent peer-
to-peer storage utility,” in HotOS, 2001, pp. 75–80.

[7] S. Ktari, M. Zoubert, A. Hecker, and H. Labiod, “Performance evalu-
ation of replication strategies in dhts under churn,” in Proceedings of
the 6th international conference on Mobile and ubiquitous multimedia.
ACM, 2007, pp. 90–97.

[8] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys and Tutorials, vol. 7, 2005, pp. 72–93.

[9] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems,” in Middleware
’01: Proc. IFIP/ACM international conference on Distributed Systems
Platforms. Springer Berlin / Heidelberg, 2001, pp. 329–350.

[10] B. Y. Zhao et al., “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, 2004, pp. 41–53.

[11] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker, “A
scalable content-addressable network,” in SIGCOMM, 2001, pp. 161–
172.

[12] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” Peer-to-Peer Systems, 2002, pp.
53–65.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: a scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM ’01: Proc. 2001 conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications.
ACM, 2001, pp. 149–160.

[14] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication:
A quantitative comparison,” in IPTPS, 2002, pp. 328–338.

[15] W. K. Lin, D. M. Chiu, and Y. B. Lee, “Erasure code replication
revisited,” in In PTP04: 4th International Conference on Peer-to-Peer
Computing. IEEE, 2004, pp. 90–97.

[16] O. A.-H. Hassan and L. Ramaswamy, “Message replication in unstruc-
tured peer-to-peer network.” in CollaborateCom. IEEE, 2007, pp. 337–
344.

[17] S. Mohammadi, H. Pedram, S. Abdi, and A. Farrokhian, “An enhanced
data replication method in p2p systems,” Journal of computing, vol. 2,
2010, pp. 1–5.

[18] C. Jacky, L. Kevin, and N. L. Brian, “Availability
and popularity measurements of peer-to-peer file sys-
tems,” 2004, [retreived: May, 2014]. [Online]. Available:
http://forensics.umass.edu/pubs/chu.labonte.p2pjournal.pdf

[19] S. Manel and B. Mahfoud, “Toward a global file popularity estimation in
unstructured p2p networks,” in ICSNC 2013, The Eighth International
Conference on Systems and Networks Communications, 2013, pp. 77–
81.

[20] R. Bhagwan, S. Savage, and G. M. Voelker, “Understanding availabil-
ity.” in IPTPS, ser. Lecture Notes in Computer Science, M. F. Kaashoek
and I. Stoica, Eds., vol. 2735. Springer, 2003, pp. 256–267.

[21] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein, “The case for
a hybrid p2p search infrastructure,” in IPTPS, 2004, pp. 141–150.

[22] G. Gao, R. Li, K. Wen, and X. Gu, “Proactive replication for rare
objects in unstructured peer-to-peer networks,” Network and Computer
Applications, 2012, pp. 85–96.

[23] K. Puttaswamy, A. Sala, and B. Y. Zhao, “Searching for rare objects
using index replication,” in INFOCOM 2008. 27th IEEE International
Conference on Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, 13-18 April 2008,
Phoenix, AZ, USA. IEEE, 2008, pp. 1723–1731.

[24] W. Ma, Y. Zhang, and X. Meng, “Distribution aware collaborative
spread replication for rare objects in unstructured peer-to-peer net-
works,” Journal of Networks, vol. 8, no. 5, 2013, pp. 991–998.

[25] L. A. Sung, N. Ahmed, R. Blanco, H. Li, M. A. Soliman, and
D. Hadaller, “A survey of data management in peer-to-peer systems,”
School of Computer Science, University of Waterloo, 2005.

[26] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load balancing in dynamic structured p2p systems,” in INFOCOM
2004. Twenty-third AnnualJoint Conference of the IEEE Computer and
Communications Societies, vol. 4, 2004, pp. 2253–2262.

157Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

[27] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher, “Adap-
tive replication in peer-to-peer systems,” 24th International Conference
on Distributed Computing Systems 2004 Proceedings, 2004, pp. 360–
369.

[28] X. Zhu, D. Zhang, W. Li, and K. Huang, “A prediction-based fair
replication algorithm in structured p2p systems,” in ATC, 2007, pp.
499–508.

[29] A. Ghodsi, L. O. Alima, and S. Haridi, “Symmetric replication for
structured peer-to-peer systems,” in DBISP2P, 2005, pp. 74–85.

[30] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks.” in SIGMETRICS. ACM, 2002,
pp. 258–259.

[31] K. Kim and D. Park, “Reducing replication overhead for data durability
in dht based p2p system,” IEICE Transactions, vol. 90, no. 9, 2007, pp.
1452–1455.

[32] P. Knezevic, A. Wombacher, and T. Risse, “Dht-based self-adapting
replication protocol for achieving high data availability,” in Advanced
Internet Based Systems and Applications. Springer, 2009, pp. 201–210.

[33] F. Ben Guirat and I. Filali, “An efficient data replication approach for
structured peer-to-peer systems,” in Telecommunications (ICT), 2013
20th International Conference on. IEEE, 2013, pp. 1–5.

[34] S. Legtchenko, S. Monnet, P. Sens, and G. Muller, “Relaxdht: A churn-
resilient replication strategy for peer-to-peer distributed hash-tables,”
TAAS, vol. 7, no. 2, 2012, p. 28.

[35] T. M. Shafaat, B. Ahmad, and S. Haridi, “Id-replication for structured
peer-to-peer systems.” Euro-Par’12 Proceedings of the 18th interna-
tional conference on Parallel Processing, 2012, pp. 364–376.

[36] H. Shen and Y. Zhu, “Plover: A proactive low-overhead file replication
scheme for structured p2p systems,” in Proceedings of IEEE Interna-
tional Conference on Communications, ICC 2008, Beijing, China, 19-23
May 2008. IEEE, 2008, pp. 5619–5623.

[37] J. Zhou, L. N. Bhuyan, and A. Banerjee, “An effective pointer replica-
tion algorithm in p2p networks,” in 22nd IEEE International Symposium
on Parallel and Distributed Processing, IPDPS 2008, Miami, Florida
USA, April 14-18, 2008. IEEE, 2008, pp. 1–11.

158Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

