ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

Online Client-Side Bottleneck Identification on HTTP Server Infrastructures

Ricardo Filipe, Serhiy Boychenko, Filipe Araujo

CISUC, Dept. of Informatics Engineering
University of Coimbra
Coimbra, Portugal
{rafilipe, serhiy}@dei.uc.pt, filipius@uc.pt

Abstract—Ensuring short response times is a major concern
for all web site administrators. To keep these times under
control, they usually resort to monitoring tools that collect a
large spectrum of system metrics, such as CPU and memory
occupation, network traffic, number of processes, etc. Despite
providing a reasonably accurate picture of the server, the times
that really matter are those experienced by the user. However, not
surprisingly, system administrators will usually not have access
to these end-to-end figures, due to their lack of control over
web browsers. To overcome this problem, we follow the opposite
approach of monitoring a site based on times collected from
browsers. We use two browser-side metrics for this: 7) the time it
takes for the first byte of the response to reach the user (request
time) and ¢i) the time it takes for the entire response to arrive
(response time). We conjecture that an appropriate choice of the
resources to control, more precisely, one or two URLs, suffices
to detect CPU, network and I/O bottlenecks. In support of this
conjecture, we run periodical evaluations of request and response
times on some very popular web sites to detect bottlenecks.
Our experiments suggest that collecting data from the browsers
can indeed contribute for better monitoring tools that provide
a deeper understanding of the system, thus helping to maintain
faster, more interactive web sites.

Keywords—Cloud computing; Bottleneck; Virtualization.

I. INTRODUCTION

In the operation of a Hypertext Transfer Protocol (HTTP)
server [1], bottlenecks may emerge at different points of
the system often with negative consequences for the quality
of interaction with users. To control this problem, system
administrators must keep a watchful eye on a large range of
system parameters, like CPU, disk and memory occupation,
network interface utilization, among an endless number of
other metrics, some of them specifically related to HTTP, such
as response times or sizes of waiting queues. Despite being
very powerful, these mechanisms cannot provide a completely
accurate picture of the HTTP protocol performance. Indeed,
the network latency and transfer times can only be seen from
the client, not to mention that some server metrics might not
translate easily to the quality of the interaction with users.
Moreover, increasing the number of metrics involved in mon-
itoring adds complexity to the system and makes monitoring
more intrusive.

We hypothesize that a simpler mechanism, based on client-
side monitoring, can fulfill the task of detecting and identifying
an HTTP server bottleneck from a list of three: CPU, network,
or disk input/output (simply I/O hereafter). The arguments in
favor of this idea are quite powerful: client-side monitoring
provides the most relevant performance numbers, while, at the

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

same time, requiring no modifications to the server, which,
additionally, can run on any technology. This approach can
provide a very effective option to complement available mon-
itoring tools.

To achieve this goal, we require two metrics taken from the
web browser: ¢) the time it takes from requesting an object to
receiving the first byte (request time), and 77) the time it takes
from the first byte of the response, to the last byte of data
(response time). We need to collect time series of these metrics
for, at least, one or two carefully chosen URLs. These URLs
should be selected according to the resources they use, either
I/O or CPU. The main idea is that each kind of bottleneck
exposes itself with a different signature in the request and
response time series.

To try our conjecture, and create such time series, we
resorted to experiments on real web sites, by automatically
requesting one or two URLs with a browser every minute, and
collecting the correspondent request and response times. With
these experiments, we managed to discover a case of network
bottleneck and another one of I/O bottleneck. We believe
that this simple mechanism can improve the web browsing
experience, by providing web site developers with qualitative
results that add to the purely quantitative metrics they already
own.

The rest of the paper is organized as follows. Section II
presents the related work in this field and provides a com-
parison of different methods. Section III describes the online
method to detect and identify the HTTP server bottlenecks.
In Section IV we try a specific approach to show monitoring
results from popular web sites, thus exposing different types
of bottlenecks. Finally, in Section V we discuss the results and
conclude the paper.

II. RELATED WORK

In the literature, we can find a large body of work focused
on timely scaling resources up or down, usually in N-tier HTTP
server systems, [2-7]. We divide these efforts into three main
categories: (i) analytic models that collect multiple metrics to
ensure detection or prediction of bottlenecks; (ii) rule-based
approaches, which change resources depending on utilization
thresholds, like network or CPU; (iii) system configuration
analysis to ensure correct functionality against bottlenecks and
peak period operations.

First, regarding analytic models, authors usually resort
to queues and respective theories to represent N-tier sys-
tems [8][9]. Malkowski et al. [10] try to satisfy service level
objectives (SLOs), by keeping low service response times.

22

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

They collect a large number of system metrics, like CPU and
memory utilization, cache, pool sizes and so on, to correlate
these metrics with system performance. This should expose
the metrics responsible for bottlenecks. However, the analytic
model uses more than two hundred application and system
level metrics. In [11], Malkowski et al. studied bottlenecks
in N-tier systems even further, to expose the phenomenon of
multi-bottlenecks, which are not due to a single resource that
reaches saturation. Furthermore, they managed to show that
lightly loaded resources may be responsible for such multi-
bottlenecks. As in their previous work, the framework resorts
to system metrics that require full access to the infrastructure.
The number of system metrics to collect is not clear. Wang et
al. continued this line of reasoning in [7], to detect transient
bottlenecks with durations as low as 50 milliseconds. The
transient anomalies are detected recurring to depth analysis of
metrics in each component of the system. Although functional,
this approach is so fine-grained that it is closely tied to a
specific hardware and software architecture.

In [2], authors try to discover bottlenecks in data flow
programs running in the cloud. In [6], Bodik et al. try to
predict bottlenecks to provide automatic elasticity. [5] presents
a dynamic allocation of VMs based on SLA restrictions. The
framework consists of a continuous “loop” that monitors the
cloud system, to detect and predict component saturation.
The paper does not address questions related to resource
consumption of the monitoring approach or scalability to large
cloud providers. Unlike other approaches that try to detect
bottlenecks, [12] uses heuristic models to achieve optimal
resource management. Authors use a database rule set that,
for a given workload, returns the optimal configuration of the
system. [13] presents a technique to analyze workloads using
k-means clustering. This approach also uses a queuing model
to predict the server capacity for a given workload for each
tier of the system.

Other researchers have focused on rule-based schemes to
control resource utilization. Igbal er al. [3][14] propose an
algorithm that processes proxy logs and, at a second layer, all
CPU metrics of web servers. The goal is to increase or decrease
the number of instances of the saturated component. [15] also
scales up or down servers based on CPU and network metrics
of the server components. If a component resource saturation
is observed, then, the user will be migrated to a new virtual
machine through IP dynamic configuration. This approach uses
simpler criteria to scale up or down compared to bottleneck-
based approaches, because it uses static performance-based
rules.

Table I illustrates the kind of resource problem detected by
the mentioned papers. The second column concerns the need
to increase CPU resources or VM instances. The third column
is associated to I/O, normally an access to a database. The
network column represents delays inside the server network or
to the client — normally browser or web services. It is relevant
to mention that several articles [16][2][11] only consider CPU
(or instantiated VM) and I/O bottleneck, thus not considering
internal (between the several components) or external (client-
server connection) bandwidth.

Finally, some techniques scan the system looking for mis-
configurations that may cause inconsistencies or performance
issues. Attariyan et al. [17] elaborated a tool that scans the
system in real time to discover root cause errors in configu-

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

TABLE I. BOTTLENECK DETECTION IN RELATED WORK.

Article | CPU/Threads/VM [T/O [Network |

[2] X X

[3] X

[10] X X

[4] X

[71 X X Internal
[11] X X Internal
[15] X X

ration. In [18], authors use previous correct configurations to
eliminate unwanted or mistaken operator configuration.

Our work is different from the previously mentioned liter-
ature in at least two aspects: we are not tied to any specific
architecture and we try to evaluate the bottlenecks from the
client’s perspective. This point of view provides a better insight
on the quality of the response, offering a much more accurate
picture regarding the quality of the service. While our method
could replace some server-side mechanisms, we believe that it
serves better as a complementary mechanism.

It is also worth mentioning client-side tools like
HTTPerf [19] or JMeter [20], which serve to test HTTP
servers, frequently under stress, by running a large number
of simultaneous invocations of a service. However, these tools
work better for benchmarking a site before it goes online.

III. A CONJECTURE ON CLIENT-SIDE MONITORING OF
HTTP SERVERS

We now evaluate the possibility of detecting bottlenecks
based on the download times of web pages, as seen by a client.
We conjecture that we can, not only, detect the presence of a
bottleneck, something that would be relatively simple to do, but
actually determine the kind of resource causing the bottleneck,
CPU, I/O or network. CPU limitations may be due to thread
pool constraints of the HTTP Server (specially the front-end
machines), or CPU machine exhaustion, e.g., due to bad code
design that causes unnecessary processing. I/O bottlenecks will
probably be related to the database (DB) operation, which
clearly depend on query complexity, DB configuration and DB
access patterns. Network bottlenecks are related to network
congestion.

To illustrate this possibility, we propose to systematically
collect timing information of one or two web pages from a
given server, using the browser side JavaScript Navigation
Timing API [21]. Figure 1 depicts the different metrics that
are available to this JavaScript library, as defined by the World
Wide Web (W3) Consortium. Of these, we will use the most
relevant ones for network and server performance: the request
time (computed as the time that goes from the request start to
the response start) and the response time (which is the time that
goes from the response start to the response end). We chose
these, because the request and response times are directly
related to the request and involve server actions, which is not
the case of browser processing times, occurring afterwards, or
TCP connection times, happening before.

Consider now the following decomposition of the times of
interest for us:

e Request Time: client-to-server network transfer time
+ server processing time + server-to-client network
latency.

23

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

navigationStart

redirectStart

redirectEnd
fetchStart

d

connectStart

(secureCi i art)

connectEnd

requestStart
responseStart

responseEnd

Prompt
for redirect
unload

ars pns || Tcp

R t
cache s

Response Processing onload

unload

\ /IoadEventEnd
loadEventStart
domComplete
domContentLoaded

dominteractive

domLoading
unloadEnd

unloadStart

Figure 1. Navigation Timing metrics (figure from [21])

e Response Time: server-to-client network transfer time.

To make use of these times, we must assume that the server
actions, once the server has the first byte of the response ready,
do not delay the network transfer of the response. In practice,
our analysis depends on the server not causing any delays due
to CPU or (disk) I/O, once it starts responding. Note that this
is compatible with chunked transfer encoding: the server might
compress or sign the next chunk, while delivering the previous
one.

We argue that identifying network bottlenecks, and their
cause, with time series of these two metrics is actually possible,
whenever congestion occurs in both directions of traffic. In this
case, the request and response times will correlate strongly. If
no network congestion exists, but the response is still slow,
the correlation of request and response times will be small,
as processing time on the server dominates. Small correlation
points to a bottleneck in the server, whereas high correlation
points toward the network. Hence, repeated requests to a
single resource of the system, such as the entry page can
help to identify network congestion, although we cannot tell
exactly where in the network does this congestion occur. To
this correlation-based evaluation of the request and response
time series from a single URL, we call “single-page request”
analysis.

Separating CPU from I/O bottlenecks is a much more
difficult problem. We resort to a further assumption here: the
CPU tasks share a single pool of resources, possibly with
several (virtual) machines, while I/O is often partitioned. This,
we believe, reflects the conditions of many large systems,
as load balancers forward requests to a single pool of ma-
chines, whereas data requests may end up in separate DB
tables, served by different machines, depending on the items
requested. Since scarce CPU resources affect all requests, this
type of bottleneck synchronizes all the delays (i.e., different
parallel requests tend to be simultaneously slow or fast). Thus,
logically, unsynchronized delays must point to I/O bottlenecks.
On the other hand, one cannot immediately conclude anything,

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

TABLE II. SOFTWARE USED AND DISTRIBUTION.

[Component | Observations [Version |
Selenium selenium-server-standalone jar 2.43.0
Firefox browser 23.0
Xvfb Xorg-server 1.13.3

with respect to the type of bottleneck, if the delays are
synchronized (requests might be suffering either from CPU
or similar I/O limitations).

The challenge is, therefore, to identify pairs of URLs
showing unsynchronized delays, to pinpoint I/O bottlenecks.
Ensuring that a request for an URL has I/O is usually simple,
as most have. In a news site, fetching a specific news item will
most likely access I/0O. To have a request using only CPU or, at
least, using some different I/O resource, one might fetch non-
existing resources, preferably using a path outside the logic of
the site. We call “independent requests” to this mechanism of
using two URLSs requesting different types of resources.

One should notice that responses must occupy more than a
single TCP [22] segment. Otherwise, one cannot compute any
meaningful correlation between request and response times, as
this would always be very small.

We will now experimentally try the ‘“single-page re-

quest” and the “independent requests” mechanisms, to observe
whether they can actually spot bottlenecks in real web sites.

IV. EXPERIMENTAL EVALUATION

In this section we present the results of our experimental
evaluation.

A. Experimental Setup

For the sake of doing an online analysis, we used a software
testing framework for web applications, called Selenium [23].
The Selenium framework emulates clients accessing web
pages using the Firefox browser, thus retaining access to the
Javascript Navigation Timing API [21]. We use this API to

24

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

read the request and response times necessary for the “single-
page request” and “independent requests” mechanisms. We
used a UNIX client machine, with a crontab process, to request
a page each minute [24]. The scheduler launched the Selenium
process (with the corresponding Firefox browser) each minute.
We emulated a virtual display for the client machine using
Xvfb [25]. Table II lists the software and versions used.

One of the criteria we used to choose the pages to monitor
was their popularity. However, to conserve space, we only
show results of pages that provided interesting results, thus
omitting sites that displayed excellent performance during
the entire course of the days we tested (e.g., CNN [26] or
Amazon [27]) — these latter experiments would have little to
show regarding bottlenecks. On the other hand, we could find
some bottlenecks in a number of other real web sites:

e Akamai/Facebook photo repository — We kept
downloading the same 46 KiloBytes (KiB) Facebook
photo, which was actually delivered by the Akamai
Content Delivery Network (CDN). During the time of
this test, the CDN was retrieving the photo from Ire-
land. This experiment displays network performance
problems.

e SAPO [28] — this webpage is the 5™ most used
portal in Portugal (only behind Google — domain .pt
and .com, Facebook and Youtube) and the 1% page of
Portuguese language in Portugal [29]. This web page
shows considerable performance perturbations on the
server side, especially during the wake up hours.

e Record sports news [30] — This is an online sports
newspaper. We downloaded an old 129 KiB news
item [31] and an inexistent one [32] for several days.
The old news item certainly involves I/O, to retrieve
the item from a DB, whereas the inexistent may
or may not use I/O, we cannot tell for sure. We
ensured a separation of 10 seconds between both
requests. One should notice that having a resource
URL involving only CPU would be a better choice
to separate bottlenecks. However, since we could not
find such resource, a non-existing one actually helped
us to identify an I/O bottleneck.

B. Results

We start by analyzing the results of Facebook/Akamai and
SAPO, in Figures 2, 3 and 4. These figures show the normal
behavior of the systems and allow us to identify periods where
response times fall out of the ordinary.

Figure 2 shows the response of the Akamai site for a
lapse of several days. We can clearly observe a pattern in the
response that is directly associated to the hour of the day.
During working hours and evening in Europe, we observed
a degradation in the request and response times (see, for
example, the left area of the blue dashed line on September 19,
2014, a Friday). The green and the red lines (respectively, the
response and the request times), clearly follow similar patterns,
a sign that they are strongly correlated. Computing the corre-
lation coefficient of these variables, r(Req, Res), for the left
side of the dashed line we have r(Req, Res) = 0.89881, this
showing that the correlation exists indeed. However, for the
period where the platform is more “stable” (between the first
peak periods) we have r(Req, Res) = —0.06728. In normal

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

Akamai Bottleneck

i B B
Response Time
Request Time

%]

=]

[S)
T

S
o
S

Time (msec)
w
o
o

N
o
S

-
o
S

o

09/20 09/20 09/21 09/21 09/22 09/22 09/23
00:00 12:00 00:00 12:00 00:00 12:00 00:00

Date Time

Figure 2. Akamai/Facebook bottleneck.

Akamai WebPage - end of the bottleneck

N
o
S

P I IR
Response Time
Request Time —

w

a

o
T

N W

a o

o o
T T
1 1

Time (msec)
nN
o
o
T
1

E
-
[

s

i

—

o

S
1

%]
o
T
L

0 L L L L L L L L L
09/25 09/26 09/26 09/27 09/27 09/28 09/28 09/29 09/29 09/30 09/30
12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

Date Time

Figure 3. Akamai/Facebook - end of the bottleneck.

Sapo - WebPage

1000 T T T

L Response Time

900 Request Time
800 -

700 -
600 -
500 -
400 -
300 -
200 -

10 www MMWM M Mﬁ %‘JW«M%
0 n L L 1 n 1 L 1 L

12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/14
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Date Time

Time (msec)

o

%

Figure 4. SAPO bottleneck.

conditions the correlation between these two parameters is low.
This allows us to conclude that in the former (peak) period
we found a network bottleneck that does not exist in the latter.
However, our method cannot determine where in the network is
the bottleneck. Interestingly, in Figure 3, we can observe that
the bottleneck disappeared after a few days. On September
29%" we can no longer see any sign of it.

Regarding Figure 4, which shows request and response
times of the main SAPO page, we can make the same analysis

for two distinct periods: before and after 9 AM (consider
the blue dashed line) of December 13, 2013 (also a Friday).

25

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

Visually, we can easily see the different profiles of the two
areas. The correlation for these two areas are:

b T(Re(L Res)beforegAM = 0.36621
e r(Req, Res)afreroans = 0.08887

The correlation is low, especially during the peak period,
where the response time is more irregular. This case is there-
fore quite different from the previous one, and suggests that
no network bottleneck exists in the system, during periods of
intense usage. With the “single-page request” method only,
and without having any further data of the site, it is difficult
to precisely determine the source of the bottleneck (CPU or
1/0).

To separate the CPU from the I/O bottleneck, we need
to resort to the “independent requests” approach, which we
followed in the Record case. Figures 5, 6, 7 and 8 show time
series starting on February 18", up to February 21°¢ 2015.
We do not show the response times of the inexistent page as
these are always O or 1, thus having very little information
of interest for us. In all these figures, we add a plot of the
moving average with a period of 100, as the moving average
is extremely helpful to identify tendencies.

Figures 5 and 6 show the request time of the old 129
KiB page request. The former figure shows the actual times
we got, whereas in the latter we deleted the highest peaks
(those above average), to get a clearer picture of the request
times. A daily pattern emerges in these figures, as woken
hours have longer delays in the response than sleeping hours.
To exclude the network as a bottleneck, we can visually
see that the response times of Figure 7 do not exhibit this
pattern, which suggests a low correlation between request and
response times (which is indeed low). Next, we observe that
the request times of the existent and inexistent pages (refer
to Figure 8) are out of sync. The latter seems to have much
smaller cycles along the day, although (different) daily patterns
seem to exist as well. For the reasons we mentioned before, in
Section III, under the assumption that processing bottlenecks
would simultaneously affect both plots, we conclude that the
main source of bottlenecks in the existent page is 1/O. This
also suggests the impossibility of having the request time
dominated by access to a cache on the server, as this would
impact processing, thus causing synchronized delays. A final
word for the peaks that affect the request time: they are weakly
correlated to the response times. Hence, their source is also
likely to be 1/0.

V. DISCUSSION AND CONCLUSION

We proposed to detect bottlenecks of HTTP servers using
client-side observations of request and response times. A
comparison of these signals either over the same or a small
number of resources enables the identification of CPU, network
and I/O bottlenecks. We did this work having no access to
internal server data and mostly resorting to visual inspection
of the request and response times. If run by the owners of the
site, we see a number of additional options:

e Simply follow our approach of periodically invoking
URLs in one or more clients, as a means to comple-
ment current server-side monitoring tools. This may
help to reply to questions such as “what is the impact
of a CPU occupation of 80% for interactivity?”.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

Time (msec)

Time (msec)

Time (msec)

Time (msec)

Record old WebPage
1000 T
900
800
700
600
500 ‘ 1ie A
400 ’ I} v
300 ‘
200 "

100 e e e e e e e
02/18 02/18 02/19 02/19 02/20 02/20 02/21
00:00 12:00 00:00 12:00 00:00 12:00 00:00

Date Time

Request Time — Moving Average (period 100) —

Figure 5. Record old page — request times.

Record old WebPage - cut

380 ‘ ‘ I ‘
360
340
it H‘ i

[il "ll' '

‘ | .m

280

260
02/18 02/18 02/19 02/19 02/20 02/20 02/21
00:00 12:00 00:00 12:00 00:00 12:00 00:00

240
Date Time

220 |
200

Request Time Moving Average (period 100) —

Figure 6. Record old page — response times with peaks cut.

Record old WebPage

- S S S S R U |
02/18 02/18 02/19 02/19 02/20 02/20 02/21
00:00 12:00 00:00 12:00 00:00 12:00 00:00

i
b

Date Time

Response Time — Moving Average (period 100) —

Figure 7. Record old page — response times.

Record Inexistent WebPage

A

H“I‘I\IV ‘IHM ‘I \I \m Ll ‘ }1 Il HH \IHHIWM

02/18 02/18 02/19 02/19 02/20 02/20 02/21
00:00 12:00 00:00 12:00 00:00 12:00 00:00

Date Time

Request Time — Moving Average (period 100) —

Figure 8. Record inexistent page — request times.

26

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

e A hybrid approach, with client-side and server-side
data is also possible. L.e., the server may add some
internal data to each request, like the time the request
takes on the CPU or waiting for the database. Al-
though much more elaborate and dependent on the
architecture, instrumenting the client and the server
sides is, indeed, the only way to achieve a fully
decomposition of request timings.

e To improve the quality of the analysis we did in
Section IV, site owners could also add a number of
very specific resources, like a page that has known
access time to the DB, or known computation time.

e It is also possible to automatically collect timing
information from real user browsers, as in Google
Analytics [33], to do subsequent analysis of the system
performance. In other words, instead of setting up
clients for monitoring, site owners might use their real
clients, with the help of some Javascript and AJAX.

In summary, we collected evidence in support of the idea
of identifying bottlenecks from the user side. Nonetheless, to
unambiguously demonstrate the results we found, we recognize
the need for further evidence, from a larger number of sites,
and from supplementary monitoring data from the server.

REFERENCES

[1] RFC 2616 - Hypertext Transfer Protocol — HTTP/1.1, Internet
Engineering Task Force (IETF), Internet Engineering Task Force
(IETF) Std., June 1999. [Online]. Available: http://www.fags.org/rfcs/
rfc2616.html

[2] D. Battre, M. Hovestadt, B. Lohrmann, A. Stanik, and D. Warneke,
“Detecting bottlenecks in parallel dag-based data flow programs,” in
Many-Task Computing on Grids and Supercomputers (MTAGS), 2010
IEEE Workshop on, 2010, pp. 1-10.

[3] W. Igbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, 2011, pp. 871—
879.

[4] Y. Shoaib and O. Das, “Using layered bottlenecks for virtual machine
provisioning in the clouds,” in Utility and Cloud Computing (UCC),
2012 IEEE Fifth International Conference on, 2012, pp. 109-116.

[5] N. Huber, F. Brosig, and S. Kounev, “Model-based self-adaptive
resource allocation in virtualized environments,” in Proceedings
of the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, ser. SEAMS ’11. New
York, NY, USA: ACM, 2011, pp. 90-99. [Online]. Available:
http://doi.acm.org/10.1145/1988008.1988021

[6] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan, and
D. Patterson, “Statistical machine learning makes automatic control
practical for internet datacenters,” in Proceedings of the 2009
conference on Hot topics in cloud computing, ser. HotCloud’ 09.
Berkeley, CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855533.1855545

[71 Q. W. et al., “Detecting transient bottlenecks in n-tier applications
through fine-grained analysis,” in ICDCS. IEEE Computer Society,
2013, pp. 31-40. [Online]. Available: http://dblp.uni-trier.de/db/conf/
icdes/icdes2013.html#WangKLISMKP13

[8] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based analytic
model for dynamic resource provisioning of multi-tier applications,” in
Autonomic Computing, 2007. ICAC ’07. Fourth International Confer-
ence on, June 2007, pp. 27-27.

[9]1 G. Franks, D. Petriu, M. Woodside, J. Xu, and P. Tregunno, “Layered
bottlenecks and their mitigation,” in Quantitative Evaluation of Systems,
2006. QEST 2006. Third International Conference on, Sept 2006, pp.
103-114.
[10] S. Malkowski, M. Hedwig, J. Parekh, C. Pu, and A. Sahai, “Bottleneck
detection using statistical intervention analysis,” in Managing Virtual-
ization of Networks and Services. Springer, 2007, pp. 122-134.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

(28]
[29]

[30]
[31]

[32]
[33]

S. Malkowski, M. Hedwig, and C. Pu, “Experimental evaluation of
n-tier systems: Observation and analysis of multi-bottlenecks,” in
Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. IEEE, 2009, pp. 118-127.

R. Chi, Z. Qian, and S. Lu, “A heuristic approach for scalability of
multi-tiers web application in clouds,” in Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2011 Fifth International
Conference on, 2011, pp. 28-35.

R. Singh, U. Sharma, E. Cecchet, and P. Shenoy, “Autonomic mix-aware
provisioning for non-stationary data center workloads,” in Proceedings
of the 7th international conference on Autonomic computing, ser.
ICAC ’10. New York, NY, USA: ACM, 2010, pp. 21-30. [Online].
Available: http://doi.acm.org/10.1145/1809049.1809053

W. Igbal, M. N. Dailey, D. Carrera, and P. Janecek, “Sla-driven
automatic bottleneck detection and resolution for read intensive multi-
tier applications hosted on a cloud,” in Advances in Grid and Pervasive
Computing. Springer, 2010, pp. 37-46.

H. Liu and S. Wee, “Web server farm in the cloud: Performance
evaluation and dynamic architecture,” in Proceedings of the Ist
International Conference on Cloud Computing, ser. CloudCom ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 369-380. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-10665-1_34

B. Singh and P. Nain, “Article: Bottleneck occurrence in cloud com-
puting,” IJICA Proceedings on National Conference on Advances in
Computer Science and Applications (NCACSA 2012), vol. NCACSA,
no. 5, May 2012, pp. 1-4, published by Foundation of Computer
Science, New York, USA.

M. Attariyan, M. Chow, and J. Flinn, “X-ray: automating root-
cause diagnosis of performance anomalies in production software,”
in Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation, ser. OSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 307-320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387910

F. Oliveira, A. Tjang, R. Bianchini, R. P. Martin, and T. D.
Nguyen, “Barricade: defending systems against operator mistakes,” in
Proceedings of the 5th European conference on Computer systems,
ser. EuroSys '10. New York, NY, USA: ACM, 2010, pp. 83-96.
[Online]. Available: http://doi.acm.org/10.1145/1755913.1755924

“Papers — HP Web server performance tool,” http://www.hpl.hp.com/
research/linux/httperf/, retrieved: May, 2015.

“Performance tools — Apache IMeterTM J

retrieved: May, 2015.

“Papers — Navigation Timing,” https://dvcs.w3.org/hg/webperf/
raw-file/tip/specs/NavigationTiming/Overview.html, retrieved: May,
2015.

J. Postel, “Transmission Control Protocol,” RFC 793 (Standard),
Internet Engineering Task Force, Sep. 1981, updated by RFCs 1122,
3168. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt

“Papers — Selenium Browser automation,” http://www.seleniumhq.org/,
retrieved: May, 2015.

“Crontab - quick reference — admin’s choice - choice of
unix and linux administrators,” http://www.adminschoice.com/
crontab-quick-reference, retrieved: May, 2015.

“Xvib,” http://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.
xhtml, retrieved: May, 2015.

“Breaking news, u.s., world, weather, entertainment & video news -
cnn.com,” http://edition.cnn.com, retrieved: May, 2015.

http://jmeter.apache.org/,

“Amazon.com: Online shopping for electronics, apparel, computers,
books, dvds & more,” http://www.amazon.com, retrieved: May, 2015.

“SAPO,” http://www.sapo.pt, retrieved: May, 2015.

“Alexa — Top Sites in Portugal,” http://www.alexa.com/topsites/
countries/PT, retrieved: May, 2015.

“:.:Jornal Record:.:,” http://www.record.xl.pt, retrieved: May, 2015.

“:.: Albiol: Relagdo arrefeceu entre Casillas e Arbeloa - Entrevistas
- Jornal Record :.:” http://www.record.xl.pt/Entrevistas/interior.aspx?
content_id=826333, retrieved: May, 2015.

“Inexistent record page,” http://www.record.xl.pt/naoexiste.
B. Clifton, Advanced Web Metrics with Google Analytics. Alameda,

CA, USA: SYBEX Inc., 2008.

27

