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Abstract— Dependability is an important attribute for 

heterogeneous computing environments and their applications. 

The growing complexity and dependency of heterogeneous 

computing environments makes fault tolerance an appealing 

research area. In this study, we discuss the inability to forecast 

faults in large-scale execution traces. In addition, we discuss 

research challenges in self-healing capabilities for autonomic, 

dynamically coordinated smart-environments based on the 

supervision of continuous monitoring of execution traces. To 

address such limitations and research challenges, we introduce 

a methodology, in which the state data coming from 

heterogeneous computing environments, such as Internet of 

Things (IoT) devices, is monitored for predictive maintenance, 

optimization and dynamic provisioning. 

Keywords-self-healing capabilities; fault tolerance; dynamic 

replication; provenance; heterogeneous; IoT 

I. INTRODUCTION 

IoT depends on self-configured smart objects that have 
limited storage and processing capacity. These small objects 
are dynamically coordinated in a large-scale environment 
[1]. Platforms for connected smart objects are built by 
plugging heterogeneous computational entities together in 
highly dynamic configurations. Orchestration, management 
and monitoring of such devices and smart objects are 
fundamental fields of research, as the number of 
interconnected objects is supposed to reach several hundred 
billion. This brings up the need for suitable approaches to 
adaptation, reconfiguration and self-healing systems, made 
of entities whose common characteristic is precisely their 
heterogeneity. The current state of the art in these 
applications lacks self-healing capability, which is 
commonly used to refer the capability of self-recovery of 
systems. To achieve this capability, there are number of 
coordinating nodes to perform a particular task, running on 
heterogeneously distributed computing platforms whenever 
an adaptation is required to an abnormal situation. 

In this paper, our first goal is to investigate research 
opportunities in self-healing capabilities of dynamically 
coordinated heterogeneous distributed computing 
environments based on the supervision of continuous 
monitoring of execution traces. To this end, we use 
provenance as the descriptor metadata of the execution traces 
taken from IoT application nodes. Our next goal is to 
propose a software architecture for fault 

forecasting/estimation on large-scale execution trace data. In 
order to address these goals, this paper identifies following 
concrete research objectives described as follows. 

Objective 1: To determine how to achieve fault tolerance 
to support self-healing capabilities in heterogeneous 
computing environments. 

Objective 2: To determine how to enable fault 
forecasting/estimation within the execution traces of 
activities happening among IoT application nodes. 

Objective 3: To determine how to optimize self-healing 
capabilities by taking into account both user involvement and 
computing environment in heterogeneous distributed 
computing environments [2].  

This paper introduces architectural guidelines for 
providing fault tolerance to heterogeneous computing 
environments, such as IoT application domains. To achieve 
fault tolerance, the use of provenance metadata is proposed.  

The rest of the paper is organized as follows. Section II 
presents the literature summary. Section III presents various 
application scenarios to describe the scope of this research. 
Section IV presents our proposed system architecture for 
developing fault tolerance in an IoT application domain. 
Finally, Section V presents conclusion and future work of 
our paper. 

II. LITERATURE SUMMARY 

In a typical IoT application, a smart object is a 

lightweight component that has a clear, software-defined 

API through, which it can be controlled and managed at 

runtime, and dynamically provisioned in an elastic way. 

Autonomous composition of these smart objects leads to 

complex software ecosystems. In autonomous 

heterogeneous computing environments, such as IoTs, there 

are different units that can potentially be provisioned at 

runtime. Currently, there is a lack of adequate solutions to 

achieve resilient, dynamically coordinated IoTs.  
The IoT components of these applications have end-to-

end links and data storage with read/write access. We argue 
that in the IoT domain, if a number of IoT devices or IoT 
services has faults, these faults will lead to complete failure 
of the entire IoT application. Since our study primarily 
focuses on fault tolerance mechanisms for heretogenous 
computing environments, such as the IoT, we only review 
background work on fault tolerance for these applications 
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running in heretogenous computing environments and 
consisting of different kinds of resource-limited devices. 
There are a number of previous studies that emphasize the 
importance of self-healing capability in IoT domains [3][4]. 
In light of this emphasis, we categorize and review the 
previous work as in the following paragraphs. 

Deployment of IoT devices can be challenging. Fault 
tolerance has been addressed in several studies in this 
domain. These studies require deployment and re-
configuration of the devices during the execution of IoT 
applications.  However, these deployments require human 
intervention and must be performed by experts. In our study, 
we are interested in providing fault tolerance mechanisms 
that can run applications continuously, even in the case of 
individual node failure. Our approach is designed to run 
applications without stalling them. In this scenario, an IoT 
application can degrade gracefully under individual faults, 
but it can continue its execution.  

In order to provide fault tolerance in the IoT domain, 
previous studies have used data replication techniques [5][6] 
[7]. These studies have utilized both predefined replication 
and dynamic replication techniques. However, apart from the 
previous work, in our study we only focus on providing fault 
tolerance for services (instead of data replication) that are 
taking place in IoT applications. 

Another approach for fault tolerance focused on service 
replication technique [8]. This was addressed for failover 
purposes. This approach only takes user requirements into 
consideration in deploying services onto multiple devices in 
order to recover failed services. In addition, this mechanism 
is tightly coupled with a middleware, and the number of 
replicated services is predefined. This approach does not 
support dynamic replication of services. In our solution, we 
introduce a loosely coupled fault tolerance mechanism to 
solve this problem. Our study aims at using a combination of 
both permanent and dynamic replication methods in order to 
optimize fault tolerance strategy in IoT domains. 

With the increasing number of security attacks in the IoT 
domain, developing detection and prevention systems to 
protect the components has become essential [9]. There are 
some studies on detecting security attacks in the context of 
IoT [10][11][12]. We, however, are interested in the 
continuity of the entire IoT application, even under the 
condition of failure of individual work items. We are not 
concerned with preventing failures that may happen in 
individual IoT devices due to security attacks. 

Arjun et al. proposed a framework for IoT devices in 
which these IoT devices can manage themselves with regard 
to their configuration and resource utilization [13]. However, 
this study focuses on a self-managing mechanism for 
individual IoT devices by controlling their behaviors. 
Additionally, this mechanism does not provide fault 
tolerance for entire IoT applications. Our study primarily 
focuses on fault tolerance for IoT applications, including 
multiple devices, which are coordinating with each other. 

Self-healing systems should have the ability to protect 
themselves from possible failures.  One of the methods of 
protecting systems from failures is to predict faults before 
they occur. There various types of fault prediction modeling 

techniques, such as Linear Regression, Naive Bayes Logistic 
Regression, Random Forests, Support Vector Machine and 
C4.5 are used in fault prediction [14][15][16]. These 
modeling techniques use different metrics, such as process 
metrics, source code text, socio-technical metrics, object 
oriented metrics, and line of code metrics [16][17][18]. In 
our study, we focus on existing machine learning algorithms 
that may lead to predicting/estimating fault incidents using 
provenance data. 

III. APPLICATION USE SCENARIOS 

In order to define the scope of the proposed research, we 

outline several application usage scenarios and various 

requirements of the desired self-healing system architecture. 

This section identifies several such scenarios, which differ in 

terms of the devices used, their number, granularity, and 

their interaction capabilities.  

A. Elderly surveillance 

This application aims at capturing important information 

from elderly people and sending it back to a central platform. 

It also serves as an agenda, reminder and telephone. Outside, 

it works as a global positioning system (GPS). The primary 

areas of application of the IoT in this scenario are shared 

with those in typical healthcare systems: tracking, 

identification and authentication, sensing and data gathering. 

This system works on a mobile platform, being dependent on 

availability of internet signal and energy. Moreover, it takes 

into consideration wearable sensors for acquiring vital 

information, which ship it to the mobile device via bluetooth, 

and from the device into the central, in real-time. Different 

sorts of services are coordinated with each other and 

composed to fulfill the system’s functional requirements. 

The computational resources and battery power of these 

systems are limited, while communication technologies 

consume considerable amounts of energy. In this particular 

scenario, the IoT application should be capable of 

proactively predicting problems and should have fault 

tolerance. In this sense, the system should act (and react) in 

accordance with self-healing mechanism when detecting and 

predicting problems.  

B. Smart Cities 

The primary issue here is the way smart objects and 

sensors interact and are orchestrated with the families of 

electronic public services (EPS) that structure the urban 

network. A smart city is often characterized as instrumented, 

interconnected, and intelligent. Instrumented refers to the 

capacity to acquire real-world data using different types of 

channels like sensors, personal devices, medical devices, 

social networks, etc. Interconnected refers to the integration 

of data in an interoperable platform and its provision to and 

usage on different city services. Intelligent relates to the use 

of complex computational tools to deliver public value to 

city inhabitants. Due to the embeddedness of digital 

technology, citizens are more and more used to interacting 
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with them on a daily basis, typically through mobile devices 

and wireless networks. Therefore, cities possess a wide range 

of digitally skilled users that are ready to use and benefit 

from the IoT to deliver EPS. However, the development of 

smart city initiatives faces some challenges, some of them 

falling clearly into the domain of applications of the 

heterogeneous computing platforms, such as IoT. In this 

scenario, we argue that these challenges in developing IoT 

applications are rooted in the lack of self-healing capabilities 

associated with such IoT applications. These capabilities are 

very beneficial, considering the growth of connected devices, 

as these applications are integrating many smart 

environments from different domains, such as transportation, 

health and e-participation.  

IV. SYSTEM ARCHITECTURE 

In this study, we present a self-healing mechanism for 

IoT application domain. Inspired by our application use 

scenarios, we argue that given an IoT application, if some 

devices or services failed, IoT application would be shut 

down. To this end, in this study, we introduce a failover 

mechanism to enable fault tolerance in IoT applications, so 

that the application can still continue its functioning (even in 

the case of few failed devices/services). This failover 

mechanism is introduced to address the aforementioned 

objective#1. We present a fault prediction/estimation 

mechanism that could estimate the present number and 

future incidences of faults. We refer the failover mechanism 

as the Self-Healing Mechanism Component. Within this 

component, we also take into account both user involvement 

and computing environment requirements to address the 

objective#3. In this study, we also introduce the use of 

existing solutions to a Provenance Service (i.e., Metadata 

Service for execution traces of activities) to enable fault 

tolerant IoT systems. This addresses the aforementioned 

objective#2. Figure 1 illustrates system architecture for fault 

tolerance. In this section, the components and their 

interdependencies are explained in detail, together with the 

employed research methods.  

A. Provenance Service 

Provenance is metadata, which is defined as the lineage 

of a piece of data or an activity. It keeps track of the lifecycle 

of an activity or data. In the presented self-healing 

methodology, provenance metadata will be used for 

providing fault tolerance. To this end, PROV-O 

Specification (W3C recommended data representation) will 

be utilized for provenance data representation [19]. In 

provenance data representation, ideal granularity of 

provenance and the types of information should be 

considered for self-healing purposes. 

 
Figure 1.  System Architecture 

B. Fault Detection and Prediction 

One of the aspects of a self-healing mechanism is to be 
able to protect itself from possible failures. To achieve this, 
we argue that the following research challenges should be 
taken into account. 

The first challenge is data conversion. Provenance is 
graph-based data expressing the execution traces of 
activities. Since provenance data is represented in XML 
format, it is not suitable for data mining tasks. Distributed 
provenance graphs should be converted to a small-scale 
provenance graphs should be converted to a small-scale 
representation without information loss, so that they can be 
processed for fault prediction/estimation. Such a data 
conversion can be done by utilizing statistical features for 
performing the data conversion, without information loss for 
tasks like clustering of scientific workflow execution traces 
[20][21]. 

The second challenge is fault prediction/estimation.  
Existing machine learning algorithms that could lead to 
predicting/estimating fault incidents will be utilized. Within 
this challenge, one of the sub-goals of this study is to identify 
all possible faults that might occur in the aforementioned 
application domains. There could also be a case in which the 
provenance data conversion will not lead to good 
prediction/estimation capabilities; hence, big data processing 
approaches (Map/Reduce programming model) that can 
enable application of prediction/estimation algorithms on 
large-scale provenance data should be considered.  

The third challenge is fault detection on runtime. To 
support accommodation to unexpected changes, change 
detection strategies should be carried out. Interdisciplinary 
research activities should be conducted, combining advanced 
data mining & knowledge discovery methodology with fault  
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detection strategies based on models including smart 
environment’ context and human-user factors.  Basic 
principles of fault detection imply the exploitation of 
redundancy in order to detect inconsistencies on real data. 
Such deviations are used to generate alarms associated to 
unexpected changes and signatures described by them are 
used in the identification and isolation of possible causes. 
Models used for this purpose can be obtained from either 
first principles (transient models) or learned from data 
(following data mining, knowledge discovery approaches).  
Complex event processing (CEP) has been one of the widely 
used method utilized to facilitate runtime fault detection for 
IoT. CEP is used for controlling operational rules for each 
device taking part in IoT separately. Here, we aim at 
monitoring the overall rules regarding the coordination of 
many systems within an IoT context.  

C. Self-Healing Mechanism   

In this study, we argue that self-healing systems handle 
fault tolerance for dynamic coordinated IoT devices taking 
part in IoT application. Self-healing mechanisms 
autonomously identify erroneous service and manage the 
means by which the system is repaired. Resilience is 
considered as a property of coordinated IoT to be deeply 
studied to progress towards completely automated self-
healing systems. Hereby, one can consider several strategies 
as follows: i) a failover mechanism by providing availability 
to facilitate failure recovery, ii) architectural adaptation and 
(automated) architecture reconfiguration, iii) manufacturing 
values and estimations to facilitate testing of the Self-
Healing Mechanism component, and iv) providing online 
feedback to operators in case of potential/foreseen errors. 
Our approach to resilience is to provide a failover 
mechanism. To this end, we identify following sub-
components of a self-healing mechanism: a) Failover 
mechanism, b) Messaging protocol and messaging bus, and 
c) Recovery. We describe each component as follows. 

Failover mechanism: We use replication to achieve fault 
tolerance. The technique of replication is generally used in 
order to increase the dependability level of data hosting 
environments. There are two types of replication methods: 
permanent replication and dynamic replication. Permanent 
replication stores the copies of data permanently. However, 
in the dynamic replication method, the copies of data are 
created temporarily [22][23]. In the proposed self-healing 
mechanism, we are interested in replicating services and 
providing service redundancy for fault tolerance. 
Employment of a combination of both permanent and 
dynamic replication in providing resilient IoT applications 
should be considered in order to provide a minimum level of 
replication of services (to meet with desired fault tolerance), 
as well as an adjustable level of replication of services (in 
case some services tend to be more fragile).  

Messaging protocol and messaging bus: In order to 
achieve a decentralized replication mechanism, messaging-
based replication protocols should be used. These protocols 
will include messages like: a) selection of replica IoT 
devices for replica service (both active and idle), b) selection 
of new active replica services, c) live-state of existing IoT 

devices, and d) introduction of a new IoT device into the 
system. The use of a topic-based publish/subscribe-based 
messaging paradigm, as for messaging bus, provides one-to-
one, one-to-many, and many-to-one communication channels 
among the IoT devices. In this approach, each participating 
IoT device will send a ping request (liveliness information) 
to the rest of the available network nodes through a publish-
subscribe system. Each node will keep a vector of 
information on existing nodes and will refresh it periodically. 
Whenever a fault is predicted, a self-healing system is 
expected to self-optimize itself for fault avoidance. Here, our 
approach will take inputs from the Fault Prediction 
mechanism and readjust the replica service configuration 
(e.g., selection of new active replica service, increasing the 
replica service numbers, etc.).  

Recovery: Recovery is another aspect of a self-healing 
mechanism. In our self-healing mechanism approach, a 
recovery mechanism will include actions to provide the 
system with one of the idle replica services (instead of the 
failed service) to bring the system to a known state of 
replication level. Here, we intend to use messaging-based 
protocols for recovery as well to achieve this. 

An ideal self-healing system should implement the fault-
tolerance related tasks, implicitly optimizing the use of 
resources of the system and the involvement of users. Users 
must be involved in the customization of recovery or 
tolerance of failures in the IoT applications that they 
generate. We argue that the proposed approach to model 
replication strategy should take into account the use of 
resources and involvement of users in the IoT environments.  

V. CONCLUSION AND FUTURE WORK 

We have discussed research challanges related to fault 
tolerance for IoT applications running in heretogenous 
computing environments. We reviewed background work on 
fault tolerance for these applications. We explained 
application use scenarios to define the scope of this study.  

The expected contributions of this research can be 
outlined as follows. This study presents a fault tolerance 
methodology that could address the resilience requirements 
of IoT applications. It defines architectural constraints for 
building fault tolerance in IoT application domains and 
proposes a self-healing mechanism for IoT application 
domains. This approach includes the use of replication of 
services and utilizes topic–based, publish-subscribe 
messaging protocols to achieve fault tolerance.  

In the future work, we will introduce a) a failover 
mechanism, b) machine learning algorithms to perform 
forecasting/estimations, c) a methodology to define the fault 
tolerance related tasks. Furthermore, we also plan on 
manufacturing values and estimations to facilitate testing of 
the Self-Healing Mechanism component and providing 
online feedback to operators in case of potential/foreseen 
errors.  
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