
About a Decentralized 2FA Mechanism
Marc Jansen

Computer Science Institute
University of Applied Sciences Ruhr West

Bottrop, Germany
marc.jansen@hs-ruhrwest.de

Abstract— Web based security applications have become
increasingly important in the past years. Especially in times of
blockchain based crypto currencies, user authentication is a
critical aspect for the overall security, integrity and acceptance of
such systems. While blockchain technologies provide a
decentralized approach, the client side still largely relies on
centralized security approaches. Those centralized approaches are
easier to implement, but at the same time bear the risk of usual
security flaws. Therefore, this paper presents a decentralized
approach for increasing the security by adding a decentralized
two-factor authentication mechanism to the execution of
operations.

Keywords—blockchain, multi-factor authentication,
decentralization

I. INTRODUCTION
Usually, nowadays the security of a certain application

(especially blockchain based technologies, like Bitcoin [1]) that
deals with security relevant data is protected not only by single
passwords but multi-factor authentication mechanisms. Here,
the most prominent implementations use two-factor
authentications (2FA) in which a certain user of a system has to
identify himself with two components, e.g., things only the user
knows, possesses or something that is inseparable from the user
[2].

Here, a well accepted pattern is that a user first authenticates
with his username and a corresponding password and, in a
second step, the second authentication mechanism is used in
order to finally authenticate the user for the task in question. In
common implementations, the second step of authentication
needs a central repository, e.g., a central database that stores the
necessary information in order to authenticate the user.

Although two-factor authentication already increases the
security of a given system, it still encounters the drawback of the
centralized database storing a secret only the user who wants to
authenticate knows. This database could potentially be
corrupted by different means. Therefore, in this paper, we
describe a decentralized approach for the implementation of a
two-factor authentication mechanism that does not need a
centralized repository for storing certain information necessary
for user authentication. First, we describe the fundamental idea
of the approach, followed by different ways of implementation,
depending on different business cases and functionalities that
the underlying blockchain provides.

Therefore, the following parts of the paper are organized as
follows: Section 2 provides an overview about the current state
of the art. Afterwards, Section 3 describes a reference
architecture in order to introduce some terms in the context of
this paper, followed by a description of the implementation of

the approach in general terms in Section 4 in order to motivate
the descriptions of the algorithms. Section 5 concludes the paper
by a discussion and an outlook for future work.

II. STATE OF THE ART
Blockchain based technologies are used in a large number.

While digital currencies are still, by far, the most used scenario
for blockchains, other scenarios have also become more and
more prominent. At the same time, security of such systems
needs to be improved in order to increase the broad acceptance.
Since the blockchain is in itself a decentralized approach, all
other related parts should preferably also be decentralized.
Recent hacks in the blockchain community have shown that
there is a tremendous need for securing blockchain technologies
not only by a usual username / password based approach, but,
additionally, to provide at least a two-factor authentication
mechanism. Preferably, all parts that are related to the security
of the approach should be implemented in a decentralized way.
Therefore, in general, the need for decentralized user
authentication mechanism, including 2FA is given.

Looking at different approaches currently implemented
based on blockchain technologies, there are already
implementations far beyond simple currencies, e.g., for securing
intellectual property rights, that make use of blockchain
technologies, e.g., OriginStamp [3]. This is, to some extent
similar, because, for a decentralized 2FA mechanism, someone
has to prove that he is the only one (and therefore also the first)
who knows a certain secret. Furthermore, decentralized naming
service also exist already, e.g., Blockstack [4] and Namecoin [5].

Additionally, there are a couple of 2FA implementations
based on the Time-based One-Time Password algorithm
(TOTP) [6]. Here, a number of different clients exist that allow
to easily integrate 2FA at the client side, e.g.,
GoogleAuthenticator [7] or 1Password [8].

An approach for 2FA authentication on the Bitcoin protocol
is presented in [9]. This approach uses a two party-party
signature scheme compatible with ECDSA (Elliptic Curve
Digital Signature Algorithm) [10]. Here, a mobile device is used
in order to provide the second authentication factor. One
problem that occurs with this approach is that the mobile device
that generates the second factor needs to directly communicate
with the PC that generates the transaction. This is not possible
in general, depending on the current network configuration
especially of the PC that generates the transaction, e.g., there
could be communication problems in usual NAT (Network
Address Translation) networks. Therefore, another solution
needs to be chosen in order to allow a general approach.

Therefore, currently, an approach does not exist that allows
to have a decentralized 2FA process that does not need to store

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-563-0

ICIW 2017 : The Twelfth International Conference on Internet and Web Applications and Services

the secret centrally, as it is necessary for the TOTP
implementation, for example. Therefore, in this paper, we
provide such an approach, that utilizes TOTP and different other
approaches (depending on the business case and the
functionalities of the underlying blockchain) in order to achieve
the goal of a 2FA process without the central storage of the
necessary secret. At the same time, we of course ensure that the
secret is only known by the user who wants to get authenticated.

III. ARCHITECTURE
The following two subsections provide an overview of some

terms with respect to the architecture that are important to be
clarified in order to provide access to the presented approach.
On one hand, a description of the reference architecture of a
modern blockchain based approach, along with corresponding
terms, and on the other hand fundamental aspects of a TOTP
architecture are introduced.

A. Description of the reference architecture for the presented
approach
The remaining part of the section makes some assumptions

related to the underlying architecture of the blockchain network
and how users interact with this network. This reference
architecture is shown in Figure 1.

Figure 1: Reference architecture for the communication between clients and

the peers of a blockchain network

As it could be seen, the clients are directly communicating
with the peers of the blockchain network, which we will denote
as nodes in the remaining part of the paper. It is important to
state here that this reference architecture is not something
special nor a limiting factor for the universality of the presented
approach. It is rather a very common architecture for modern
blockchain based systems.

B. Some words on a general TOTP architecture
The general idea of the TOTP protocol is that a client and an

authentication provider agree on a secret. On the client side, this
secret could be stored on different devices, e.g., the smartphone
of the user, the tablet and/or his PC/Laptop. In order for the user
to get authenticated, the agreed secret is used later on for the
creation of the time based on-time password, e.g., a passwords
that is only valid for a certain period of time. The general
architecture for this is shown in figure 2.

Figure 2: Architectural overview of usual TOTP implementations

Here, it is important to note that the secret shared between

different devices of the user and the secret stored for that user in
the centralized system are identical. At the same time, the central
database is of course capable of storing secrets for other users
also. As the database stores secrets for an increasing number of
users, it becomes a more interesting target for potential attacker.

IV. IMPLEMENTATION
The following two subsections first describe the idea of

the implementation and then the necessary algorithms for the
implementation.

A. Approach
In usual 2FA implementations that make use of the TOTP

protocol, the secret that is used for the creation of the one-time
password is stored in some central repository. In order to
overcome the necessity of the central repository, while at the
same time not making the secret available to everybody, the
basic idea we are following here, is to make the secret a one-
time pad that is securely stored in a blockchain, allowing
someone who knows the secret at a certain point in time to
get authenticated towards the decentralized system. With this, in
contrast with the usual TOTP implementations, not only is the
generated one-time password a one-time pad as well, but also
the secret that is used in order to generate the one-time password
becomes a one-time pad.

Imagine a user of a certain system wants to perform a certain
operation, e.g., a crypto currency transaction, then the user first
needs to login to the system (by using his/her credentials). For
each security related operation that the user performs in the
system, the user sends the necessary information for the
operation, including a TOTP based password along with the
secret that is necessary in order to generate the TOTP. In order
to prevent an attacker from reusing this secret and trying to get
authenticated as the original user, the secret needs to be
destroyed after the first usage. Additionally, by providing the
secret, the user can prove that he/she already knew the secret
beforehand. In order to be able to perform additional operations,
also secured by the 2FA mechanism, the user has to generate a
new secret with the last trusted operation he/she performed in
the system, and, by this, creating a chain of trust. Here, different
scenarios might be possible depending on the functionality of
the underlying blockchain technology:

Scenario 1: If the underlying blockchains supports some
means of attachments to an operation, the newly generated

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-563-0

ICIW 2017 : The Twelfth International Conference on Internet and Web Applications and Services

secret could be hashed and stored as an attachment to the last
accepted operation.

Scenario 2: If we just have a very basic blockchain that does
not allow for attachments nor sidechains or assets, the secret
could be stored in the blockchain itself, secured by a Distributed
Trusted Timestamp (DTT) approach [11]. Therefore, within the
last trusted operation, the user generates a new secret, hashes
this secret and creates a blockchain address from the hash of the
secret. In order to timestamp the secret, the user transfers the
minimum number of tokens to this newly created blockchain
address and by this registers the secret in the system.

Scenario 3: If the underlying blockchains supports
sidechains or additional assets, a security sidechain/asset could
be developed in the blockchain, that stores the newly created
secret. This approach also has an additional business case: Here,
the security tokens could be commercialized in order to allow
users to “buy” additional security (in terms of 2FA) for their
operations. Basically, this implementation follows the same
ideas as scenario 2 for the implementation of a DTT based
approach, but without the problem of polluting the main
blockchain with a large number of addresses holding just the
minimal amounts of tokens, e.g., of a cryptocurrency, just for
authentication, without a possibility of getting these tokens back
active in the system.

Independent of which of the three scenarios are chosen, in
order for the system to trust the next operation of the user, the
system receives the secret sent by the user and can verify it. This
verification is again a little bit different, depending on which of
the above described scenarios is chosen:

Verification in scenario 1: The node that receives the
operation extracts the secret of the user from the operation,
hashes it and checks if the hash fits the hash of the attachment
from the last accepted operation of the user.

Verification in scenarios 2 and 3: Again, the node that
receives the operation extracts the secret of the user from the
operation and creates the corresponding
blockchain/sidechain/asset address for the hash of the secret. If
the first transaction to this address came from the user who
currently wants to get authenticated, the system will accept the
current secret.

After accepting the secret, the node can calculate the TOTP
password from the accepted secret and compare it with the
TOTP password of the user that was sent within the latest
operation, the system can successfully authenticate the user and
accept the operation.

Figure 3: The chain of trust in which every last transaction creates a new

secret

As shown in figure 3, by this, a chain of trust for the user will
be created that allows to accept the (n+1)th-operation as long as
the system has trusted the n-th operation.

B. Algorithms
Basically, the described approach needs two algorithms, one

on the client side and one for the system that receives the
operations of the client, referred to as a node in the following.
First of all, the algorithm (figure 4) for the client side could be
described as:

Figure 4: Client side operation in case of scenarios 2 and 3

The following algorithm (figure 5) describes the
functionality necessary on a node in order to trust the transaction
sent by the client:

Figure 5: Node operation

By this, the node can trust the client and perform the
provided transaction. This trust is built not only on the
asynchronously signed transaction data (that still needs to be
checked by the above used executeTransaction()
method, since it is not reflected in the above code), as usual in,
e.g., blockchain technologies, but also on the second factor
authentication via the TOTP protocol in a decentralized way.

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-563-0

ICIW 2017 : The Twelfth International Conference on Internet and Web Applications and Services

V. CONCLUSION & OUTLOOK
The described approach currently lacks the possibility to

check that a certain secret is really only used once. In order to
achieve this, the tokens transferred to the newly generated
blockchain address could be interpreted as semaphores. By
adding a certain functionality to the above presented algorithm
2 that sends the tokens from the address back to the original
sender, the characteristic of a one-time-pad could be achieved.
It is ensured that the node can actually perform this operation,
since it will generate the corresponding public and private key
of the blockchain address along with the generation of the
address itself from the hashed secret received by the client.

Also, another drawback would be solved by the above
mentioned interpretation of the tokens as semaphores: the used
blockchain would not be polluted by a large number of address
holding the minimal number of tokens.

Possible next steps include the implementation of the
proposed approach on top of an existing blockchain technology.
Here, the blockchain that is used for the DTT does not
necessarily need to be the same as the blockchain that the
operations are performed on. Furthermore, a detailled discussion
about possible drawbacks of the presented approach are
necessary.

REFERENCES
[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”,

https://Bitcoin.org/Bitcoin.pdf, last visited: 28.11.2016
[2] "How to extract data from an iCloud account with two-factor

authentication activated". iphonebackupextractor.com. Retrieved 2016-
06-08.

[3] https://www.originstamp.org, last visited: 08th of June 2017
[4] https://www.blockstack.org, last visited: 08th of June 2017
[5] https://www.namecoin.info, last visited: 08th of June 2017
[6] "RFC 6238 - TOTP: Time-Based One-Time Password Algorithm".

Retrieved July 04, 2016.
[7] https://play.google.com/store/apps/details?id=com.google.android.apps.a

uthenticator2&hl=de, last visited: 08th of June 2017
[8] https://1password.com, last visited: 08th of June 2017
[9] C. Mann, D. Loebenberger, “Two-factor authentication for the Bitcoin

protocol. In: International Journal of Information Security", 2016, p. 1--
14", doi: 10.1007/s10207-016-0325-1

[10] J. López, R. Dahab, “An Overview of Elliptic Curve Cryptography,”
Technical Report IC-00-10, State University of Campinas, 2000.

[11] B. Gipp, N. Meuschke, A. Gernandt, “Decentralized trusted timestamping
using the crypto currency Bitcoin”, Proceedings of iConference 2015,
2015.

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-563-0

ICIW 2017 : The Twelfth International Conference on Internet and Web Applications and Services

