
Increasing Security of Nodes of a Blockchain by Simple Web Application Firewalls
Marc Jansen

Computer Science Institute
University of Applied Sciences Ruhr West

marc.jansen@hs-ruhrwest.de

Abstract— In recent times, a lot of attacks against central
server infrastructures have been recognized. Those
infrastructures have seen attacks ranging from attacks against
Internt of Things (IoT) infrastructures, via attacks against public
infrastructure to attacks against cryptocurrency exchanges and
blockchain based infrastructures themselves, e.g., the already
almost legendary Decentralized Autonomous Organization
(DAO) hack. Measured by press coverage, attacks against
cryptocurrency exchanges and infrastructures seem to be among
the most prominently reported attacks, probably due to the large
amount of money that is stolen during those attacks and the great
(but obviously still quite risky) potential (and financial
involvement) of the blockchain technology. Naturally, attacks
like the ones we have seen recently increase the notion of
uncertainty of blockchain technologies among the people,
reflected in lower values of cryptocurrencies in general.
Obviously, this demands for an overall increase of security of
cryptocurrency based technologies. Therefore, this paper
provides an architectural approach, based on a proxy, to increase
security of publicly available nodes of a blockchain based
technology. Furthermore, it provides a first evaluation of the
approach based on the results of an extensive community test of a
new cryptocurrency.

Keywords—blockchain; security; Web application firewall;
proxy

I. INTRODUCTION
When Satoshi Nakamoto published his famous paper about

a potential peer-to-peer payment system [1], the overall success
of the proposed system could hardly be estimated. In 2016,
bitcoin itself is dominating the cryptocurrency world by a
market cap of about 12 billion $, while the overall market cap
of cryptocurrencies is about 14 billion. Already those figures
demand for a high security of blockchain based installations
and scenarios. Blockchains are a general approach that allows
to store transactional data in an audit proved way. Furthermore,
there are a number of approaches that utilize blockchain
technology beyond the usage of cryptocurrencies, among
others, e.g., for securing intellectual property rights [2].

Nevertheless, cryptocurrencies and blockchain based
technologies in general have not been widely accepted by
users. Even those users already working and investing in
blockchains seem to be quite suspicious, e.g., the Ethererum
blockchain lost about 25% of its market cap right after the hack
of the DAO platform1. This also supports the demand for an
increase in the security of blockchain based solutions, while at
the same time, blockchain based solutions provide quite easy
entry points via publicly available API’s in form ReST-ful
Web Services [4].

1 http://www.coindesk.com/understanding-dao-hack-journalists/

In order to provide a reasonable description of the
presented approach, two terms from the domain of IT-Service
Management need to be introduced here, in order to properly
understand what the approach allows to do and what its
(natural) barriers are. Traditionally, security flaws in
distributed systems could be referred to as issues. In IT-Service
Management issues are further differentiated into incidents and
problems. In the IT Infrastructure Library (ITIL) framework,
an incident is defined as “An unplanned interruption to an IT
service or reduction in the quality of an IT service.” [5], while
furthermore, a problem is described as “The unknown root
cause of one or more existing or potential incidents.” [5]. The
approach described in this paper will, according to those
definitions, mostly tackle incidents and it does not try to solve
the underlying problems.

The remainder of this paper is organized as follows: First,
an overview of the current state of the art in the domain of
securing Web applications is provided. Afterwards, the
architecture developed in order to control and increase the
security of blockchain based applications is described,
followed by a description of the implementation done for an
example blockchain, the Waves Platform. Waves provides a
relatively new blockchain based technology, that allows to
easily create one’s own tokens. It is based on the Scorex
framework, developed especially for research purposes in the
blockchain domain. Additionally, an evaluation of the
developed approach is presented. Finally, this paper concludes
with a section that provides an outlook on future work.

II. STATE OF THE ART
A number of projects currently concentrate on the security

of Web based applications. First of all, the Open Web
Application Security Project (OWASP) [6] needs to be
mentioned here. This project continously scans the Web for
traditional and new attack vectors in order to provide a list of
prominent attack vectors, even ranked by their appearance.
Furthermore, the project also provides schemes and patterns for
the recognized attack vectors that allow to identify malicious
request and to filter those malicious requests out before they
actually hit the target. Prominent examples of such attack
vectors are SQL (Structured Querying Language) injections,
directory traversal attacks, XSS (Cross-Site-Scripting) and/or
CSRF (Cross-Site-Request-Forgery)´ attacks.

In order to provide security against identified attack
vectors, different architectural approaches like WAFs (Web
Application Firewalls) or proxy technologies are usually
deployed. Here, e.g., NGINX as a lightweight Web Service
instance has made its name in the community for being an easy
to configure proxy that allows some basic filtering

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-563-0

ICIW 2017 : The Twelfth International Conference on Internet and Web Applications and Services

functionality for fiddling with attack vectors as mentioned
above.

A proper proxy configuration, as necessary, e.g., for
NGINX, is not easy to achieve and does not provide enough
flexibility to actually filter with more specialized
configurations, e.g., depending on the source of the request in
connection with the target endpoint. Furthermore, it does not
provide rich functionalities that allow to handle possibly
recognized attacks, e.g., by blocking the attacking host for a
given period of time.

Additionally, using a simple WAF does also not allow
filtering the access to certain Web Service endpoints in relation
to the source address of a given request.

Therefore, in order to overcome the shortcomings of the
mentioned approaches, this paper provides an approach that
allows both, filtering access to certain endpoints, e.g., by
source address, and (at the same time) allowing to also filter for
known and well documented attack vectors.

III. ARCHITECTURE
In order to understand the architectural improvements

implemented by the presented approach, we first have to have a
look at the standard architecture of modern blockchain based
implementations. Figure 1 presents an overview of an usual
blockchain based architecture, consisting of an usual Peer-to-
Peer (P2P) based blockchain architecture on the right-hand side
in which the different nodes that participate in the network are
connected with each other. On the left hand-side, the
connection of a number of different clients to the nodes of the
blockchain are visualized. In the upper part of the figure, a
zoom to one node is presented, showing that each node actually
provides two different ports to the network, one for the
connection to the other nodes in the P2P network and one
mainly for the connection of clients. While the port for the
connection to the P2P network usually communicates over
internal protocols, mostly proprietary to the blockchain, the
port for the connection to the clients usually provides a
ReSTful interface for the communication with the clients.

Figure 1: Basic blockchain architecture

It is important to understand that Waves uses a PoS (Proof-

of-Stake) based approach, providing significant advantages

above PoW (Proof-of-Work) based approaches like Bitcoin [7],
especially with respect to power consumption and network
fairness.

The presented approach now tackles the problem that a
malicious client could try to make use of the Web Service
endpoints of the node in order to enter malicious code or try to
exploit issues in the node. Therefore, a proxy (according to the
proxy or façade design pattern [8]) instance could be installed
in front of the port for the communication with the clients in
order for being able to filter against certain patterns of
malicious code or restrict the access to a limited number of
Web Service endpoints, e.g., necessary for the administration
of the node. Figure 2 provides an overview of a node that is
secured by a proxy instance.

Figure 2: Architecture after the inclusion of the proxy

Internally, the proxy basically performs two different tasks.

On one hand, it filters the access for different endpoints and
decides if the request to a certain endpoint should be allowed
or forbidden, potentially also by taking the source address of
the request into account. As an additional task, the proxy could
also filter for malicious code inside the request. Together, the
internal architecture of the proxy could be visualized as in
figure 3.

Figure 3: Internal architecture of the proxy

IV. IMPLEMENTATION
The description of the implementation first provides

changes necessary to the usual configuration of a node of the

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-563-0

ICIW 2017 : The Twelfth International Conference on Internet and Web Applications and Services

blockchain, followed by a description of the implementation of
the implementation of the proxy.

A. Configuration of the blockchain nodes
In order to implement the above described architecture

efficiently, some configurations on the side of the node are
necessary. First of all, it needs to be ensured that the node just
listens for local connections. This could usually be achieved by
different means, depending on the possibilities provided by the
node. With some technologies, the nodes may just be
configured (via a configuration file) to listen just to the
loopback interface, other node technologies might provide
something like a whitelist for addresses that are allowed to
connect to the node. Also, a combination of both approaches
might be possible. Furthermore, it is often helpful to change
the default port of the node to a different port in order to allow
the proxy to bind on the default port, and, by this, to allow the
node to be reachable for the clients via the standard nodes port.

B. Implementation of the proxy
The first example implementation was based on NodeJS as

a server side JavaScript framework. Although any other server
side programming language and environment would also be
suitable, NodeJS seemed to be a quite natural choice due
powerful APIs (e.g., ExpressJS [9]) for Web based solutions.
Furthermore, a couple of Web Application Firewall
frameworks already exist that implement the latest findings
from OWASP. Therefore, the decision was made to rely on
those frameworks in order to capture standard attacks like
CSRF (Cross Site Request Forgery) [10], XSS (Cross Site
Scripting) [11] and alike. Also, other attacks that are not
necessarily possible against a blockchain node, e.g., SQL
injection or directory traversal is reasonable to check in order
to take countermeasures against attackers that just randomly
scan networks and try to apply random attacks. Also, Web
Applications Firewall usually provide certain countermeasures
against attack, e.g., by putting the address of a malicious
attacker on a blacklist so that further attempts of attacks are no
longer possible from listed addresses. Prominent examples for
these kinds of Web Application Firewall APIs that are
available for the ExpressJS Web framework are ExpressWAF
[12] and/or lusca [13].

In addition to the filtering for standard attacks, also filtering
for specific endpoints should be possible. For this, an easy to
describe JSON based configuration file allows to configure the
endpoints that are allowed to access, the source address that is
allowed to access the endpoint (if defined, otherwise the
endpoint is openly available) and the type of HTTP request
allowed to those endpoints. The following JSON file shows an
example for the configuration file.

[

 {

 "method": "GET",

 "source": "134.91.",

 "path": "/blocks/height"

 },

 {

 "method": "GET",

 "path": "/node/version"

 }

]

Here, the first entry describes that the /blocks/height
endpoint is accessible from IPs in the 134.91.0.0/16 network
via HTTP GET requests, while the second entry permits HTTP
GET requests to the /node/version endpoint globally.

This configuration file is parsed in at startup of the Web
Application Firewall, configures itself properly and instantiates
a filter method as follows:

var filter = function(req, res) {

 var path = req.url;

 var source = req.connection.remoteAddress;

 var method = req.method;

 filterConfig.forEach(function(filter) {

 if (source.startsWith(filter.source) &&

 path.startsWith(filter.path) &&

 filter.method === method) {

 return true;

 }

 });

 return false;

};

This method was integrated in the express-http-proxy
module, and by this enables the proper filtering according to
the rules defined in the JSON configuration file.

V. EVALUATION
In order to evaluate if the presented approach provides an

added value in the sense of increased security, the approach
was implemented for securing Nodes of the Waves Platform
network.

A. Scenario description
The Waves network is a relatively new blockchain that was

launched in the first quarter of 2016, having an easy to use
token creation process in mind. The Initial Coin Offering
(ICO) started in March 2016, ending by collecting about
30.000 Bitcoin, making it the sixth ever most successful
crowdfunding campaign. After this successful ICO, the team
provided the code for running nodes of the network, so that
investors and other interested parties could participate in
stabilizing the network. At the same time, especially investors
have been very concerned by the question of the security of the
nodes and because of that, the Waves Platform team
announced a hackathon for finding bugs in the system. This led
to a tremendous effort of the community for finding bugs and
reporting those via GitHub [14] to the development team.

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-563-0

ICIW 2017 : The Twelfth International Conference on Internet and Web Applications and Services

Therefore, this github repository provides a rich resource for
evaluations.

B. Analysis
The major idea for the evaluation presented here is to

evaluate the presented approach with respect to the reported
issues.

In total, 54 issues have been identified and been
documented in the issues section of the Waves platform github
account. These are divided into 39 issues directly in the Waves
Platform software and 15 issues in the underlying Scorex
framework, used by the Waves Platform developers. From
these 54 issues, 19 (13 in the Waves code, 6 in Scorex code)
have been security related. From those 19 reported security
related issues, 11 could have been solved by using the
presented approach. It is important to stress here, that in IT-
Service Management terms, not the underlying problem would
have been resolved, but the incident of potential execution of
malicious code would have disabled. Overall, this results in
57.89% of potential attacks that would have been prevented.

The low amount of reported security related issues mainly
comes from the short testing period, which seemed to be
appropriate due to the fact that the underlying framework was
already well tested. Later evaluations can rely on larger
samples.

Having a closer look, a major difference between issues
found in the underlying Scorex framework and issues in the
Waves Platform code become obvious. From the 6 identified
issues in the underlying Scores framework, only two would
have been prevented by the usage of the presented approach,
resulting in 33% of potential attacks that would have been
prevented. Having a look at the Waves Platform code on top of
the Scorex Framework, from the 13 identified issues, 9 would
have been resolved by using the presented approach,
calculating to a prevention of 69.23% of possible attacks. This
clearly significant difference leads to the hypothesis that issues
in more basic functionalities are harder to prevent by the
presented approach than issues providing more abstract
functionalities.

VI. CONCLUSION & OUTLOOK
The paper presented an architectural approach for

increasing the security of peer-to-peer nodes of a blockchain
technology where the functionality of the nodes is at least
partially made available via Web Service endpoints. Those
functionalities could be made available in a more secure way

by providing a simple Web Application Firewall, allowing for
filtering the access to certain endpoints by different aspects. As
a result, it was shown that a large number of problems at higher
level of abstraction could be eliminated by the approach,
whereas the security of lower level functionalites could not be
improved that dramatically.

Therefore, in future work, a possible aspect could be to also
improve security of lower level functionalities by
implementing a similar architectural approach directly on the
protocol level of the peer-to-peer protocol in addition to the
security increase on the higher-level Web Service endpoints.
By this, similar results should also be achievable as for the
Web Service endpoints. This, of course, needs to be evaluated
in more detail. Another goal would be to integrate the
described approach directly in the nodes in order to ensure that
the security measures are taken by all nodes of the network and
to decrease architectural complexity.

REFERENCES
[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.

https://bitcoin.org/bitcoin.pdf”, last visited: 28.11.2016
[2] B. Gipp, N. Meuschke, and A. Gernandt, “Decentralized Trusted

Timestamping using the Crypto Currency Bitcoin”, in Proceedings of
the iConference 2015, Newport Beach, California, 2015.

[3] http://www.coindesk.com/understanding-dao-hack-journalists/, last
visited 15th of June, 2017

[4] R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures”.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm, last visited:
01.12.2016

[5] ITIL Service Strategy, “Office of Government Commerce”, TSO,
London, 2007.

[6] https://www.owasp.org/index.php/Main_Page, last visited 15th of June,
2017

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Pattern –
Elements of Reusable Object-Oriented Software”, pp. 185-195,
Addison-Wesley, 1999.

[8] https://bitcoin.org/bitcoin.pdf, last visited 15th of June, 2017
[9] https://www.owasp.org/index.php/CrossSite_Request_Forgery_(CSRF),

last visited 15th of June, 2017
[10] https://www.owasp.org/index.php/Cross-site_Scripting_(XSS), last

visited 15th of June, 2017
[11] http://expressjs.com, last visited 15th of June, 2017
[12] https://github.com/ToMMApps/express-waf, last visited 15th of June,

2017
[13] https://github.com/krakenjs/lusca, last visited 15th of June, 2017
[14] http://www.github.com, last visited 15th of June, 2017

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-563-0

ICIW 2017 : The Twelfth International Conference on Internet and Web Applications and Services

