
MO2MD: Message-Oriented Middleware for Dynamic Management of IoT Devices

Imen Ben Ida
Electronic systems and

communications networks laboratory
(SERCOM),

Polytechnic School of Tunisia,
Carthage University

Tunis, Tunisia
Email: Imen.benida@gmail.com

Takoua Abdellatif
Electronic systems and

communications networks laboratory
(SERCOM),

Polytechnic School of Tunisia,
Carthage University

Tunis, Tunisia
Email: takoua.abdellatif@ept.rnu.tn

Abderrazek Jemai
Electronic systems and

communications networks laboratory
(SERCOM),

Polytechnic School of Tunisia,
INSAT, Carthage University

Tunis, Tunisia
Email: Abderrazek.Jemai@insat.rnu.tn

Abstract— Middleware are fundamental components for
Internet of Things (IoT) solutions. They provide general and
specific abstractions through which smart devices and their
related applications can be easily interconnected. However,
due to the wide variety of software and hardware technologies
of IoT solutions, the management of the connected devices is
still a challenging task, especially for Cloud-Edge based
solutions. In this paper, we take advantage of message-oriented
computing and Web technologies to propose a solution for
devices management without having to worry about the
underlying infrastructures or implementation details. In
particular, we describe a Web-based middleware that enables
configurability and manageability of connected devices in a
dynamic manner at the Cloud level.

Keywords-Message-Oriented Middleware; IoT; Cloud
comuting; Edge computing; Devices Management.

I. INTRODUCTION

IoT devices, also known as smart objects, are projected to
grow exponentially both in terms of quantity as well as
variety [1]. Some examples include wireless body sensors,
smart vehicles, and surveillance cameras. By connecting
devices in an Internet-like structure, a variety of data can be
collected, which is of great benefit in industry and daily life.
To support such data streams, the Cloud infrastructure
provides several services namely, Software as a Service
(SaaS), Platform as a Service (PaaS) and Infrastructure as a
Service (IaaS) for massive-scale and complex data
computing. It takes advantage of virtualized resources,
parallel processing and data service integration [1].

However, due to the explosive growth of connected
lightweight devices, Cloud computing is facing increasing
challenges, especially in managing and reconfiguring IoT
devices. The challenge of flexible devices configuration from
the Cloud layer is due to several domain requirements, such
as context-awareness and delay-sensitive control [2]. In
addition, designing and implementing an appropriate
mechanism that can dynamically manage resources across
the Cloud-IoT spectrum is a challenging task to resolve due
to the highly dynamic behaviors of the devices [1].

As response to this challenge, the Edge computing
paradigm enables the Cloud resources to move closer to the
devices network by offering localized devices configuration.
The Edge layer is exploited by reinforcing edges, such as

gateways, with sufficient processing power, intelligence, and
communication capabilities to integrate efficiently the Cloud
layer with the sensors layer and to provide efficient
configuration. It provides not only local data processing and
data storage, but also it ensures local management of the IoT
devices [3].

In this paper, we explore the Edge computing paradigm
to implement a distributed solution for a dynamic
management of IoT devices. In particular, we propose a
Message-Oriented Middleware for Dynamic Management of
IoT Devices (MO2MD). Middleware are widely used in
distributed systems and they are considered as fundamental
tools that provide general and specific abstractions for the
design and the implementation of smart environment
applications [4]. A middleware can ease the development
process by integrating heterogeneous computing and
communications devices and by supporting the
interoperability within the diverse applications and services
[5].

More specifically, our proposed middleware MO2MD
offers a flexible configuration of IoT devices to support a
dynamic management of the Edge layer. The remainder of
this paper is organized as follows. In Section 2, we describe
the message-oriented approach for IoT middleware and the
challenges of IoT devices. Some related works are
highlighted in Section 3. Our proposed solution is detailed in
Section 4. Section 5 presents concluding remarks and future
work.

II. BACKGROUND

A. Message-oriented Middleware for Internet of Things

A middleware is a software component that allows
programming IoT solutions with a higher level of
abstraction. It provides a simpler interface to ensure
appropriate abstractions and mechanisms for dealing with the
heterogeneity of IoT devices. It simplifies the development
and execution of distributed applications and hides their
complexity. In particular, middleware removes the
programmer from the complex aspects of IoT, such as the
handling of wireless communications, power management
and hardware programming.

In event-based middleware, components, applications,
and all the other participants interact through events. Each
event has a type, as well as a set of typed parameters whose

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

specific values describe the change to the producer’s state
[5]. Events are propagated from the sending application
components (producers) to the receiving application
components (consumers).

Message-Oriented Middleware (MOM) is a type of
event-based middleware. In this model, the communication
is based on messages. Generally, messages carry publisher
and subscriber addresses and they are delivered by a
particular subset of participants, whereas events are
broadcast to all participants.

B. Challenges of IoT Devices Management

We present in the following paragraphs the main
challenges of implementing middleware components to
manage IoT devices [2][3][5]-[7]:
1) Heterogeneity:

Device heterogeneity emerges from different
characteristics, such as differences in capacity, features, and
application requirements. Added to that, the emergence of
new protocols as an important lightweight support for the
IoT devices communication requires appropriate
communication mechanisms for the delivery, support and
management of the different types of resources.
2) Dynamic behaviors:

In an IoT environment, thousands of devices may
interact with each other even in one local place (e.g., in a
building, supermarket, and hospital), which is much larger
scale than most conventional networking systems. The
interactions among a large number of devices will produce
an enormous number of events. This may cause problems,
such as event congestion and reduced event processing
capability. Consequently, any predefined and fixed set
resource management policies will be rendered useless for a
dynamic management of devices.
3) Scalability:

Scalability is a significant challenge for current IoT
platforms, where lightweight IoT devices can hardly extend
their functionalities by adding new hardware modules. For
example, it is very difficult to integrate a temperature
detection service on an IoT device by simply attaching a
temperature sensor. Added to that, other components, such as
resource discovery and data analytics of IoT solutions need
to be scalable to achieve system-wide scalability.
4) Resource Constrains:

With smaller, more compact sensors, the available
battery power is always limited. The IoT systems must be
designed to manage limited power by designing efficient
processes and capabilities of the sensors. Mechanisms to
ensure efficient power consumption are necessary for IoT-
based services.

III. RELATED WORK

Numerous middleware proposals have been put forward
for IoT-based applications. They provide abstractions
through which connected devices and their related
applications can be easily built up and managed.

In database-oriented middleware, the devices are
considered as virtual objects in a relational database, so that
an application can perform queries using a syntax in SQL

language, allowing complex queries to be performed. For
example, Global Sensor Net-works (GSN) [8] is an IoT
middleware that aims to provide flexible management of
heterogeneous IoT devices. It enables developers to specify
XML-based deployment descriptors to deploy a sensor. An
implementation of the wrapper in Java is required in order to
add a new type of sensor to the middleware.

In event-driven middleware, components, applications,
and other participants interact through events. In [9], the
authors present an event-driven user-centric middleware for
monitoring and managing energy consumption in public
buildings and spaces. The proposed middleware allows the
integration of heterogeneous technologies in order to enable
a hardware independent interoperability between them.

UbiSOAP (Service-Oriented Middleware for Ubiquitous
Networking) is a service-oriented middleware [10] that
provides complete integration of the network with Web
Services. The architectural resources layer has the necessary
functions, including a unified abstraction for simple services
(sensors, actuators, processors or software components) to
help integrate applications and services with resources. A
service support component facilitates the discovery and
dynamic composition of resources (eg services). Dynamic
composition and instantiation of new services are facilitated
by semantic models and descriptions of sensors, actuators
and processing elements.

In [11], the authors present a QoS aware
publish/subscribe middleware for Edge computing called
EMMA (edge-enabled publish–subscribe middleware). They
show that EMMA can provide low-latency communication
for devices in close proximity, while allowing message
dissemination to different locations at minimal overhead
costs. Gateways allow existing publish/subscribe client
infrastructure to transparently connect to the system.

Another message-oriented middleware used for
communication between the system services of a proposed
framework is presented in [12]. The authors analyze the
driver real-time data using a distributed system architecture
and send alert messages in a timely manner. According to
their experimental results, the middleware design increases
the speed and stability of information transmission.

Other types of middleware are used in a distributed
environment, such as Transaction-Oriented Middleware
(TOM), which is used to ensure the correctness of
transaction operations and Object-Oriented/Component
Middleware (OOCM), which is based on object-oriented
programming models requests [13].

Considering the characteristics of middleware introduced
above and the goal of a dynamic management of IoT
devices, it is possible to argue the suitability of message-
oriented middleware for a flexible configuration. The
interactions of database-driven and object-oriented models
are synchronous, which limits the scalability to large
volumes of data. Not being designed for concurrent event
management, these usually do not attain the same level of
performance as systems designed for the event-based
interaction paradigm.

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

IV. MO2MD PRESENTATION

Our proposed message-oriented middleware for Dynamic
Management of IoT Devices, named MO2MD, extends the
capabilities of messages-oriented middleware and provides
high flexibility for adding new configurations of devices at
the Edge layer. The proposed middleware considers all
connected devices, such as sensors and actuators, as data
providers. We focus on the challenge of dynamic behavior
and scalability.

A. Architecture

The proposed architecture is depicted in Figure 1. The
implementation of MO2MD is achieved through a
distributed architecture which integrates global Cloud
services with local services in different Edge nodes. All
participating Edge nodes communicate with the Cloud layer
to exchange devices data and to receive configuration data.
The following paragraphs describe the principal components
of the proposed architecture:

Figure 1. MO2MD architecture.

1) Cloud Layer
The Cloud layer is composed of a cluster of servers with

massive computing and storage resources. This layer
communicates with three types of participants:

 Admins

They are the middleware users who control the different
IoT devices. They are responsible of adding or modifying the
middleware configuration.

 Specialists

They are responsible for interventions in case of devices
malfunction. They are considered as data subscribers and
receive notifications about the devices status depending on
their subscriptions.

 Gateways at the Edge layer

They are local gateways, in which local services process
the collected data from different devices and apply the
configuration requests received from the Cloud layer.

A Configuration Web application is the entry point of the
Cloud layer services. It allows the middleware admins to
view everything as a single large system that provides basic
and advanced services. The Web application provides
management tools to control the whole IoT platform and to
request new configurations that will be processed by a global
configuration service and published to the corresponding
Edge Node. The exchange of messages between the Cloud
layer and the Edge layer is ensured using the
publish/subscribe pattern [14]. A global broker handles the
requests of configuration from the admins and publishes the
submitted configurations as messages to the corresponding
Edge node.

2) Edge Layer
The Edge layer reinforces the devices layer with storage,

processing and communication capabilities. It is the
intermediate layer between the IoT devices and the Cloud
services. A local broker service in each Edge node regularly
updates the global broker about the availability and status of
their devices and it receives the data provided by IoT
devices. The Edge layer aims to provide low latency
responses.

3) Distributed Services for dynamic management of IoT
devices

a) Data management service

Data are the key of efficient devices management. In
the proposed middleware, we consider 3 types of exchanged
data, which are presented in Table 1.

TABLE I. DATA TYPES

Sensed data Configuration data Notifications
Data collected
by the devices.

The configuration
parameters requested
by the admins.

Notifications of
the devices
dysfunction.

The proposed middleware provides data management
services, such as data acquisition, data processing and data
storage.

The configuration data are the parameters and the rules
which must be taken in consideration for data management at
the Edge layer. In case of non-respect of configured rules,
notification messages are sent to the concerned specialists.

b) Configuration service

The core component of the middleware is the global
configuration service which is composed of two major units.
The first unit is the specialist’s manager, which allows the
admin to add, update or delete the corresponding specialists
of each type of device. The registered specialists will be
notified in case of an abnormal behavior of any device at the
Edge layer. The second one is the Edge nodes manager,
which is responsible for processing the configuration
requests of the admins. We choose as configuration requests:

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

 The interval of saving data in the local data base
of each device.

 The priority of each device.
 The corresponding specialist to notify in case of

device disfunction.
 The interval of sending data to the Cloud layer.
 Specific rules for each device.

All the requests may be introduced through the Web
application, depending on the decision of the admins. This
Web-based configuration enables a dynamic management of
the device’s behaviors. For example, in the case of smart
buildings, the buildings’ owner can change the interval of
saving temperature data depending on the building location.
Another example, in a smart hospital, a doctor can modify
the priority of each medical device depending on the patient
situation.

The configuration data, the specialist’s subscriptions and
the list of active devices are saved in both the Cloud and the
Edge layer. Each configuration is considered as a rule to
respect at the Edge layer. In Figure 2, we illustrate 2
different scenarios of data exchange between the Edge layer
and the Cloud layer.

Figure 2. Scenarios of dynamic data management.

c) Communication service

The communication service supports a publish-subscribe
messaging service that ensures data-centric communication
between the Cloud layer and the Edge nodes. It also supports
the link between external databases and the Cloud layer.

With the publish-subscribe pattern, the local
communication managers act as publishers on a given topic
and send messages without the need to know about the
existence of the receiving clients, who are the Specialists. At
the Edge layer, the communication service ensures the data
storage in a local database and the synchronization between
the Cloud broker and the local services to send the collected
data and any dysfunction detection.

B. Implementation and evaluation

The implemented middleware is based on Node.js which
allows multi-platform development and supports JavaScript-
based webservers. The I/O architecture of Node.js is based
on non-blocking asynchronous event-driven which makes it
suitable for data-intensive and real-time applications in

lightweight and efficient way. The Edge is a Raspberry Pi 3
which is a low-cost small-sized single board with 1 GB of
Ram and 1.2 GHz processor [15]. The messages exchanged
are ensured by MQ Telemetry Transport (MQTT) protocol
[16]. The MQTT protocol is a lightweight application layer
protocol designed for resource-constrained devices. It uses
the publish-subscribe messaging system combined with the
concept of topics to provide one-to-many message
distribution. It supports a range of 10 to 100 messages per
second.

We install the InfluxDB database, which is an open-
source Time Series Database. At its core is a custom-built
storage engine called the Time-Structured Merge (TSM)
Tree, which is optimized for time-series data. InfluxDB
provides support for mathematical and statistical functions
across time ranges; also it is developed for custom
monitoring, metrics collection and real-time analytics [17].

To prove the benefits of the dynamic configuration of the
Edge layer, we consider three different scenarios of
controlling 10 devices in one day. We suppose that the static
configuration of the interval of data storage in the local
database is a second. In each scenario, we change this
interval for a certain number of devices. Table 2 shows the
interval configuration for each scenario, as well as the
percentage of gain in terms of memory compared to the
static configuration.

TABLE II. CONFIGURATION SCENARIOS

Figure 3 shows that the use of a single data processing
strategy in a fixed and non-custom way can result in an
unnecessary use of gateway memory which obviously affects
performance and the time reaction e in emergency cases.

Figure 3. Scenarios of dynamic data management.

V. CONCLUSION AND FUTURE WORK

Flexible configuration requires the development of a
dynamic mechanism of devices management. In this paper,
we describe a message-oriented middleware that offers
distributed services for IoT devices management. The

Scenario
Number of devices per time Gain of

memory
hour minute second

Fixed case 2 1 7 29.83 %
Custom case 1 5 2 3 69.65 %
Custom case 2 2 7 1 88.82 %

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

proposed architecture supports a flexible configuration of
connected devices in different locations from a Web
application. In particular, we show that our middleware gives
the possibility to modify the data storage interval at the Edge
layer in order to personalize the devices behavior and realize
resources optimization.

Future work includes the complete implementation of the
proposed middleware, including its security and reliability
guarantees, as well as automatic resource discovery to realize
autonomous devices deployment at the Edge layer.

REFERENCES

[1] H. El-Sayed et al., "Edge of Things: The Big Picture on the
Integration of Edge, IoT and the Cloud in a Distributed
Computing Environment," IEEE Access, vol. 6, pp. 1706-
1717, 2018. doi: 10.1109/ACCESS.2017.2780087

[2] J. Ren, H. Guo, C. Xu and Y. Zhang, "Serving at the Edge: A
Scalable IoT Architecture Based on Transparent Computing,"
IEEE Network, vol. 31, no. 5, pp. 96-105, 2017. doi:
10.1109/MNET.2017.1700030

[3] S. Shekhar and A. Gokhale, "Dynamic Resource Management
Across Cloud-Edge Resources for Performance-Sensitive
Applications," 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGRID), Madrid, 2017, pp. 707-710.

[4] G. Fortino, A. Guerrieri, W. Russo and C. Savaglio
“Middleware for Smart Objects and Smart Environments:
Overview and Comparison,” G. Fortino,P. Trunfio,eds. ,
Internet of Things Based on Smart Objects. Internet of Things
(Technology, Communications and Computing), Springer,
Cham, 2014, pp. 1-27.

[5] M. A. Razzaque, M. Milojevic-Jevric, A. Palade and S.
Clarke, "Middleware for Internet of Things: A Survey," in
IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70-95, Feb.
2016. doi: 10.1109/JIOT.2015.2498900

[6] L. Alonso et al., "Middleware and communication
technologies for structural health monitoring of critical
infrastructures: A survey," Computer Standards & Interfaces,
vol. 56, pp. 83-100, 2018, doi: 10.1016/j.csi.2017.09.007

[7] N. Naik, "Choice of effective messaging protocols for IoT
systems: MQTT, CoAP, AMQP and HTTP," 2017 IEEE

International Systems Engineering Symposium (ISSE), pp. 1-
7, Vienna, 2017. doi: 10.1109/SysEng.2017.8088251.

[8] A. H. Ngu et al, “ IoT Middleware: A Survey on Issues and
Enabling Technologies,” IEEE Internet of Things Journal,
vol. 4, pp. 1-20, Feb. 2017, doi: 10.1109/JIOT.2016.2615180

[9] E. Patti et al., “Event-Driven User-Centric Middleware for
Energy-Efficient Buildings and Public Spaces,” IEEE
Systems Journal, vol. 10, pp. 1137-1146, Sept. 2016, doi:
10.1109/JSYST.2014.2302750

[10] M. Caporuscio, P.G. Raverdy and V. Issarny, “Ubisoap: a
service-oriented middleware for ubiquitous networking,”
IEEE Trans. Serv. Comput., vol. 5,pp. 86–98, 2012.
https://doi.org/10.1109/TSC.2010.60

[11] X. Xu et al., “EAaaS: Edge Analytics as a Service,” 2017
IEEE International Conference on Web Services (ICWS),
Honolulu, HI, 2017, pp.9-356.

[12] P. Lai, C. Dow and Y. Chang. “Rapid-Response Framework
for Defensive Driving Based on Internet of Vehicles Using
Message-Oriented Middleware,” IEEE Access, vol. 6,pp.
18548-18560, 2018, doi: 10.1109/ACCESS.2018.2808913

[13] M. Albano, L.L Ferreira, L. M. Pinho, and A. R. Alkhawaja,

“ Message-Oriented Middleware for smart grids,” Computer
Standards & Interfaces, vol.38, pp. 133-143, 2015.
https://doi.org/10.1016/j.csi.2014.08.002

[14] A. Hakiri, P. Berthou, A. Gokhale and S. Abdellatif,
"Publish/subscribe-enabled software defined networking for
efficient and scalable IoT communications," IEEE
Communications Magazine, vol. 53, no. 9, pp. 48-54,
September 2015. doi: 10.1109/MCOM.2015.7263372

[15] J. Bermúdez-Ortega et al., "Remote Web-based Control
Laboratory for Mobile Devices based on EJsS, Raspberry Pi
and Node.js", IFAC-PapersOnLine,vol. 48, no. 29, pp. 158-
163, 2015.

[16] A. Banks and R. Gupta, MQTT Version 3.1. 1. OASIS
standard, vol. 29, 2014.

[17] C. Rudolf, “SQL, noSQL or newSQL–comparison and
applicability for Smart Spaces,” Network Architectures and
Services, 2017.

49Copyright (c) IARIA, 2019. ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

