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Abstract—Only IPv6 addresses are currently being assigned
to hosts because IPv4 addresses will be exhausted in the near
future. However, almost all network applications still lack
support for IPv6 communication. Therefore, users will suffer
from the unavailability of IPv6 oriented applications. Bump-In-
the-Stack (BIS) mechanisms can allow hosts to communicate
with other hosts through IPv6 networks using existing IPv4-
oriented applications. These mechanisms will be required to
achieve a smooth transition from IPv4 to IPv6 networks in
the near future. However, detailed implementation schemes
are dependent upon the operating system. Additionally, since
conventional network address translation mechanisms usually
perform in a user space, throughput performance degrades
as a result of the memory copy between kernel space and
user space. Recently, Session Initiation Protocol (SIP) has been
used to achieve multimedia communication. However, BIS does
not support address translation mechanisms for embedded IP
addresses in packet payload, such as in SIP messages. This
paper presents a specially developed Linux kernel module for
IPv4/IPv6 address translation supporting SIP messages. The
kernel module can hook all packets in a Linux network socket
using Linux netfilter mechanisms. The advantages are high
throughput, as the memory copy is limited to a socket buffer
in a Linux network stack, and flexible installation to an original
Linux kernel. Thus, the kernel module allows users to achieve
IPv4/IPv6 address translation by installing it in a generic Linux
kernel, without modifying the kernel source.

Keywords-Bump-In-the-Stack; Session Initiation Protocol;
Kernel module; Address translation; Linux.

I. INTRODUCTION

The Internet will soon exhaust another IPv4 address range.
Recently, the Asia-Pacific Network Information Center (AP-
NIC) announced that the APNIC pool had reached its final /8
IPv4 address block [1]. Hence, only the IPv6 address range
will be assigned to new networks in the near future.

IPv6 is the network layer protocol for the next generation
Internet and offers a much larger address space. Since
networking equipment vendors have developed IPv6 imple-
mentation, almost all networking equipment for enterprise
networks already supports IPv6 communication. However,
IPv6 is a different protocol from IPv4. Furthermore, there
is still a great deal of IPv4 content on the Internet. While
IPv4 devices and services continue to be widespread, it
is difficult to replace IPv4 with IPv6. Therefore, we are
entering a transition period during which network address
translation (NAT) mechanisms will be required to commu-
nicate between IPv4 and IPv6 networks [2], [3].

Various translation mechanisms for IPv4/IPv6 have been
proposed to facilitate the interoperation and coexistence of
both protocols [4]. Dual-stack lite requires an IPv6 access
network and tunnels between a host and a Network Address
Port Translation (NAPT) 44 device, which is operated by
service providers [5]. The dual-stack host, which has both
an IPv4 and an IPv6 address, sends its IPv4 traffic through
a NAPT44 device even though the service provider’s access
network is IPv6. Additionally, the host can send its IPv6
traffic routed normally. In dual-stack lite, hosts require an
IPv4 address and an IPv6 address. Therefore, it will be
difficult to apply in the near future because new IPv4
addresses will have been exhausted.

The other candidate mechanisms are NAT64 and NAT-
PT [6], [7], [8], which are translation mechanisms where
the host runs only IPv6. They are called large-scale NATs
(LSNs) or carrier grade NATs. Recent NAT64 devices can
serve a translation function to 10,000 subscribers, but their
scalability will be limited due to the expansion of network
traffic. In addition, the translations have several technical
issues [9].

These mechanisms can translate between IPv4 and IPv6
packets. However, applications also need to support IPv6
addresses in order to use IPv6 networks. Moreover, since
modification of the source code is required before IPv4-
oriented applications can support IPv6 addresses, almost all
these applications still cannot do so.

Bump-In-the-Stack (BIS) allows hosts to communicate
with other IPv6 hosts using existing IPv4 applications [10].
However, the BIS implementation is unable to provide high
throughput and flexible installation, while application proto-
cols that embed IP addresses in the packet payload are not
supported. Since Session Initiation Protocol (SIP) messages
include host’s IP addresses, translators need to modify the
IP address part in such messages if they are to support SIP
[11], [12]. Session Traversal Utilities for NAT (STUN) [13]
and Universal Plug and Play (UPnP) [14] are well known
tools in the context of a NAT traversal solution. However,
they are difficult to apply for translation between IPv4 and
IPv6 addresses because we have to assume that SIP client
applications do not support IPv6 addresses. Therefore, the
SIP Application Level Gateway (ALG) is a better solution
for translation between IPv4 and IPv6 addresses.

In this paper, we develop a kernel module for Linux
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netfilter [15]. The developed kernel module can translate
between IPv4 and IPv6 addresses in a header and modify
addresses in SIP messages. Since the developed kernel mod-
ule performs packet manipulation in a kernel space, we can
achieve high throughput performance, even with IPv4/IPv6
address translation, by reducing the memory copy of packet
data. Furthermore, the developed kernel module can be
implemented in Linux OS without kernel modification.

II. IPV6/IPV4 TRANSLATION MECHANISMS

Figure 1 shows an overview of the network presented in
this paper. Here, we focus on hosts with IPv6 addresses,
which represent the reality in the near future, as discussed
above. As it is difficult for users to modify the source code
of applications to support IPv6 networks, these hosts also
have IPv4 oriented applications. However, IPv4 oriented
applications cannot establish connections because the hosts
do not have IPv4 addresses.

The proposed implementation provides two virtual IPv4
addresses: a source IPv4 address for a virtual network
interface and a destination IPv4 address corresponding to
a destination host for IPv4 applications. Thus, IPv4 applica-
tions can establish connections using virtual IPv4 addresses.
During real communication, these virtual IPv4 addresses
are translated to corresponding real IPv6 addresses. As a
result, IPv6 applications can communicate using real IPv6
addresses, while IPv4-oriented application can communicate
using virtual IPv4 addresses.

The fundamentals of IPv6/IPv4 translation mechanisms
are discussed in BIS. But the implementation method is not
described because it is specific to the operating system. Ad-
ditionally, SIP is usually used for multimedia communica-
tions, such as voice or video conference applications. How-
ever, as these SIP applications depend on service providers,
it is difficult for the user to select optimum SIP applications
that will support IPv6 communication. In this paper, we
extend the BIS mechanisms to support SIP applications,
clarify the design for implementation, and develop a special
kernel module for Linux OS.

Figure 2 shows the system model for packet manipulation
in the developed kernel module. The functions of this mod-
ule are classified into address translation function, payload
modification function, and DNS message handling function.
The kernel module uses the Linux netfilter function to handle
a socket buffer for each packet. Therefore, modification of
the original Linux kernel is not required in order to use the
developed kernel module.

A. Virtual Interface

In the developed kernel module, instead of a real IPv6 ad-
dress, IPv4-oriented applications use a virtual IPv4 address
that is allocated in the network interface. Therefore, some
network interface for the virtual IPv4 address is required to
transmit packets with the virtual IPv4 address as a source
address.

In the proposed implementation, we create a virtual net-
work interface for the virtual IPv4 address using tun/tap
interfaces. Tun is software emulation of ethernet devices and
tap is software emulation of a network layer. Usually, tap
is used for creating a bridge interface and tun is used for
creating tunnels. However, since in our proposed implemen-
tation the virtual interface is used to assign the virtual IPv4
address, both mechanisms are available. Additionally, the
developed kernel module can hook all packets from IPv4
oriented applications. Therefore, the virtual interface does
not receive any packets from IPv4 oriented applications.

B. Packet hook in Linux netfilter

Netfilter provides a packet manipulation framework inside
the Linux 2.4.x and 2.6.x kernel series, and it is also a set
of hooks inside the Linux kernel. Therefore, kernel modules
can register their callback function with the Linux network
stack and the function is called when packets traverse
the respective hook points. As netfilter also allows kernel
modules to send the hooked packets back to the network
stack, these modules can modify packet information without
modification of the original Linux kernel.

In the developed kernel module, outbound packets from
both IPv4 and IPv6 applications are hooked at the point
NF INET LOCAL OUT. In the Linux network stack, IPv4
and IPv6 are processed separately. Therefore, the devel-
oped kernel module receives both IPv4 and IPv6 pack-
ets separately from the point NF INET LOCAL OUT.
Whereas IPv6 packets from IPv6 applications are sent
back to the Linux network stack immediately, at the point
NF INET POST ROUTING, IPv4 packets from IPv4-
oriented applications undergo some manipulation, in respect
of address translation and payload modification, before being
sent back to the latter point. A similar differentiation is made
for inbound packets, where the respective stack points are
NF INET POST ROUTING and NF INET LOCAL IN.
Thus, IPv6 applications engage in real IPv6 communication
in the normal way, while IPv4 oriented applications perform
virtual IPv4 communication through IPv6 networks.

222Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks



Virtual I/F with Virtual IPv4 address VIP4-SReal I/F with Real IPv6 address RIP6-S

IPv6 Applications IPv4 ApplicationsDNS Resolver

NF_INET_LOCAL_IN

NF_INET_POST_ROUTING

NF_INET_PRE_ROUTING

NF_INET_LOCAL_OUT

NF_INET_LOCAL_INDrop DNS A Query

Register port number of 

TCP/UDP into the port

 table

Modify SIP messages

Modify IP header

Check the port table 
IPv6 addresses Port number

RIP6-D 80

IPv6 addresses IPv4 addresses

RIP6-D VIP4-D

Create DNS A query 

for virtual IPv4 address 

as corresponding

real IPv6 address & 

register it into the address 

table

DNS AAAA 
Queries

DNS A
Queries

DNS A Replies

DNS AAAA Replies

IPv6 networks

User 
Space

Kernel 
Space

Port Table

Address Table

IPv6 data packets

IPv4 data packets

FQDN FQDN

netfilter netfilter

netfilter

netfilter

netfilter

Tun/Tap

Data packets

VIP4-DRIP6-D

Figure 2. Design of packet manipulation in kernel module.

III. ASSIGNMENT OF VIRTUAL IPV4 ADDRESS

In the proposed implementation, a source IPv4 address for
IPv4-oriented applications is allocated as a predefined virtual
IPv4 address, V IP4 − S, and a source IPv6 address for
physical network interface is allocated as a predefined real
IPv6 address, RIP6 − S. Additionally, a destination IPv4
address corresponding to a real IPv6 address is assigned
dynamically when a DNS reply message is received. These
IPv4 addresses consist of private addresses and are used
internally in the operating system; thus, the address assign-
ments do not negatively affect other hosts. This subsection
describes the procedure for virtual IPv4 assignment.

A. Translation of DNS messages

• Resolution of Fully Qualified Domain Name (FQDN)
When IPv4 oriented applications try to communicate
with a server host, the DNS resolver transmits a DNS

AAAA query and a DNS A query to find an IP address
corresponding to the FQDN.

• Discard of DNS A query
The DNS A query is meaningless, because the host does
not have a real IPv4 address. Therefore, the transmitted
DNS A query is dropped in the kernel module.

• Creation of a virtual IPv4 address
A new virtual IPv4 address corresponding to the real
IPv6 address is required as a destination IP address
for the IPv4-oriented application. Therefore, the DNS
AAAA reply corresponding to the transmitted DNS
AAAA query is hooked by the kernel module when
it is received from the physical interface. The kernel
module creates a new virtual IPv4 address, V IP4−D,
corresponding to the real IPv6 address, RIP6−D, in
the DNS

• Registration of the IPv4/v6 address pair
Since information about the pair of virtual IPv4 address
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and the real IPv6 address is required in order to modify
the IP header, the kernel module registers the pair of
them in the address table.

• Response of virtual IPv4 address
The DNS resolver returns the virtual IPv4 address cor-
responding to the FQDN by creating a DNS A reply. As
a result, the IPv4-oriented application can communicate
with the IPv6 host using the source virtual IPv4 address,
V IP4 − S, paired with the destination virtual IPv4
address, V IP4 −D, while the host can communicate
with the IPv6 server host using the source real IPv6
address, V IP6 − S, paired with the destination real
IPv6 address, V IP6−D.

B. Translation of IPv4/IPv6 addresses

This paper assumes that both IPv4-oriented applications
and IPv6 applications communicate via IPv6 networks. This
subsection describes the process for translation of IPv4/IPv6
addresses in the developed kernel module.

• Registration of IPv4 applications
The developed kernel module receives IPv6 packets
for both IPv4-oriented applications and IPv6 applica-
tions. However, the IPv6 packets received do not have
information corresponding to the IP version of the
destination application. Accordingly, the kernel module
employs a port table, where a destination IPv6 address
and a port number are registered when the kernel
module receives IPv4 packets from IPv4-oriented ap-
plications.

• Modification of transmitted packets
The kernel module handles transmitted IPv4 packets as
a socket buffer in the Linux network stack. Since the
header size of IPv4 is different from that of IPv6, the
kernel module extends the header space in the socket
buffer and modifies the header information of IPv4
to conform to that of IPv6. As in the case of BIS
mechanisms, the developed kernel module cannot be
used with IPv4 applications that use any IPv4-specific
option.

• Selection of received packets
The kernel module checks the port table to deter-
mine whether the received packets are destined for
IPv6 applications or IPv4 applications. Packets for
IPv6 applications are sent directly back to the point
NF INET LOCAL IN. For IPv4 applications, how-
ever, before being sent back to that point, the packets
undergo a process that reduces their header space in the
socket buffer and modifies the IPv6 header information
to conform with that of IPv4, according to the address
table.

IV. TRANSLATION MECHANISMS FOR SIP

In usual network address translation, only IP addresses
included in header information are modified. However,
complete IP conversion also requires the translation of IP
addresses embedded in application layer protocols, such as

Table I
PERFORMANCE EVALUATION PARAMETERS.

OS Linux
Distribution Ubuntu 10.04
Kernel version linux-2.6.32-24-generic
CPU Intel Pentium 4 2.40GHz
Memory 512 MBytes
Application iperf, nuttcp
Size of transferred data 200 MBytes
Transport protocol TCP
Number of measurement 10

those found in File Transfer Protocol (FTP) and SIP. Since
some implementations of FTP already support IPv6, FTP
applications will be available in IPv6 networks. However,
almost all SIP applications still do not support IPv6. Ad-
ditionally, since the profiles of SIP applications depend on
those of the service provider, it is difficult to modify SIP
applications to suit a user’s preferences.

The developed kernel module also supports translation
mechanisms for SIP applications. The general application
level 2 gateway for SIP applications only converts IP ad-
dresses within private networks, whereas the mechanisms
proposed here need to convert IP addresses from virtual IPv4
addresses to real IPv6 addresses. Therefore, the conversion
point in the packet payload is different from the usual cases.

Since messages from networks include real IPv6 addresses
in the packet payload, the kernel module needs to convert
real IPv6 addresses to virtual IPv4 addresses. In addition,
messages from applications include virtual IPv4 addresses in
the packet payload. Therefore, the kernel module also needs
to convert virtual IPv4 addresses to real IPv6 addresses.

The following fields are converted in the kernel module.
• Via header

A via header includes a client’s host name or an IP
address, and a port number at which it wishes to receive
responses.

• Record-Route header
A Record-Route header field includes a host name or
an IP address of a proxy. It is usually used to log SIP
traffic so as to charge a usage fee.

• Contact header
A Contact header field value may contain a display
name, a URI with URI parameters, and header param-
eters. It indicates a response host.

• Body
A Session Description Protocol (SDP) field includes
a client’s host name or an IP address. It provides
information about session identification and the types
of data communication used in the session.

V. NUMERICAL RESULTS

In order to evaluate the design of the developed kernel
module, we measured throughput, standard deviation of
throughput, and round trip time by changing the size of
the maximum segment size (MSS) of the Transmission
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Control Protocol (TCP). The measurements were made
using iperf [16] and nuttcp [17], which are well-known
network benchmark tools. The purpose of this evaluation
was to confirm the packet manipulation overhead, because
extension or shortening of a header may result in a big
overhead. Figure 3 shows the evaluation model, in which
two hosts communicated 50 with each other through the
developed kernel module. The virtual interface is constructed
by tun during the measurements. In addition, throughput
overhead may depend on MSS size, because the ratio of
header size to total packet size will be larger when the
MSS size decreases. Hence, we evaluated the throughput of
certain sizes of MSS. From this evaluation, we were able to
determine the packet manipulation overhead in the proposed
implementation. Details of the evaluation parameters are
given in Table I.

Figures 4 and 5 show the throughput performance as the
size of the MSS changes. The results are an average of ten
measurements and show that the throughput of the developed
kernel module has almost the same level of performance as
the general Linux kernel. The reason that the throughput of
the IPv4 general Linux kernel is slightly better than that
of the IPv6 general Linux kernel is the difference in total
packet length due to the header sizes of IPv4 and IPv6. In
addition, because the ratio of header size to total packet size
increases as MSS size decreases, the deficit also increases
for smaller MSS.

Figures 6 and 7 show the standard deviation of throughput
performance as the size of the MSS changes. The results
show that the performance of the developed kernel module
is similar to that of the general Linux kernel. This means
that the load of the developed kernel module does not affect
the network performance.

Figure 8 shows the Round Trip Time (RTT) as the size of
the MSS changes. The results show that the developed kernel
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module has almost the same round trip time as the general
Linux kernel. This means that the packet manipulation
mechanism in the developed kernel module does not take
much time and does not affect the transmission delay for
communication.

These results indicate that using the Linux kernel module
for netfilter can achieve high throughput and short process-
ing delay.

VI. CONCLUSION

This paper presents a newly developed kernel module that
performs IPv4/IPv6 address translation for IPv4-oriented
applications. This kernel module provides virtual IPv4 ad-
dresses to IPv4-oriented applications, enabling them to com-
municate with IPv6 hosts through IPv6 networks. Since the
kernel module can be implemented without modification of
the general Linux kernel, it can easily be used to support
IPv4 applications in IPv6 networks. The developed kernel
module also supports an application level gateway for SIP
messages. The packet manipulation of the proposed imple-
mentation takes place in Linux kernel space, thus achieving
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a high throughput performance and short processing delay
by reducing memory copy in operating systems.
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