
Comparing Network Traffic Probes based on Commodity Hardware

Luis Zabala(1)(2), Alberto Pineda(1), Armando Ferro(1), Daniel Fernández(2)
(1)Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao, Spain

(2)Stochastic and Operations Research – Networks (NET), Basque Center for Applied Mathematics (BCAM), Bilbao, Spain

Emails: {luis.zabala, alberto.pineda, armando.ferro}@ehu.es
Emails: {lzabala, dfernandez}@bcamath.org

Abstract—Due to the fact that, nowadays, it is possible to
capture traffic in 1-10 Gigabit Ethernet networks using
commodity hardware, many traffic monitoring systems, and
especially capturing tools, have been proposed in recent years.
This paper presents a comparison between two software
probes named Adviser and Ksensor. Both of them are multi-
processor systems and are built over conventional hardware.
However, while Adviser is designed in user space, Ksensor
runs in kernel space. This work compares the performance
results of the two probes considering several capture engines
(NAPI, PF_RING with DNA, PFQ) and, at the same time,
different application or analysis loads. The evaluations of the
probes with the different settings have been performed on the
same hardware multi-core configuration. The results of the
evaluations let conclude which solution is better in each
situation and which solution must be discarded.

Keywords-packet capturing; Ksensor; Adviser; NAPI,
PF_RING; PFQ

I. INTRODUCTION

Nowadays, network traffic capturing and analyzing
systems are becoming increasingly relevant. Different
applications can be related to these traffic monitoring
systems, for example, network antiviruses, Quality of
Service monitoring, intrusion detection systems, traffic
classification and balancing. They can also help
administrators in network troubleshooting. As the speed of
the network links increases, the performance requirements
on the monitoring systems are more severe. In particular, in
multi-Gigabit environments, overload situations can happen,
reaching the system limitations in terms of memory
occupation, CPU usage, system bus throughput, and having
negative impact on the accuracy of the monitoring
application. Therefore, as far as possible, unnecessary
consumption of available resources must be avoided.

The packet capturing stage is an essential component of
the traffic monitoring system. The evolution of commodity
hardware has made possible the capture of network traffic to
be a feasible task over high-speed networks, without using
any neither specific nor expensive hardware [1]. This way,
several research works [2][3][4] have arisen focused on the
development of analysis systems that are able to process all
the information carried by actual networks. Among them,
our research group of the UPV/EHU, called Network,
Quality and Security (NQaS), is working on software

solution proposals for traffic analysis systems over multi-
processor architectures.

Two traffic probes have been developed by NQaS. They
are generic and flexible, and they allow doing any type of
analysis on the captured traffic. Due to the fact that the
monitoring application is over a multi-processor platform,
the analysis can be done concurrently, obtaining a high
performance. This paper presents a comparison between
those two probes which have different view of design. On
the one hand, Adviser is a generic multi-processor
architecture which has been built in user space, it is portable
and it can make use of different capturing systems. On the
other hand, Ksensor is a kernel-space framework in which
the processing modules have been migrated from user-level
to the kernel of the operating system.

Many capturing tools and comparisons have made
available in the literature. However, most of them do not
asses how the packet capture is affected under different
analysis or application loads. This work compares the
performance results of the probes Adviser and Ksensor
considering different capture engines and, at the same time,
different analysis loads as will be seen below.

The rest of the paper is organized as follows. In Section
II, a brief explanation about related work is introduced. In
Section III, we describe the network traffic probes that will
be compared later. Section IV presents the test setup for
evaluating the performance of the traffic analysis systems.
Section V shows the results of our measurements. Finally,
Section VI remarks the conclusions.

II. RELATED WORK

The improvement of packet capturing capabilities with
commodity hardware has been an extensively covered
research topic. Hardware and software solutions have been
proposed.

Among the most recent software solutions, it is
remarkable Luca Deri’s numerous contributions within the
project ntop [2]. In this project, an open source platform has
been developed to monitor traffic in high speed networks and
it has given rise to interesting works such as [5], which
presents the network socket PF_RING, [6], in which nCap, a
proposal based on commercial network cards was proposed,
and [7], which deals with aspects related to the packet
parallel processing in multi-core platforms, as well as with
the driver called Threaded New API (TNAPI), which uses a
multiqueue structure. The same research group has also

261Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

presented the framework vPFRING for capturing packets on
virtual machines running on commodity hardware [8].

The project Ringmap [3] has certain similarities with
ntop, since it also proposes to improve the performance of
packet capture removing some packet copy operations and
mapping the Direct Memory Access (DMA) buffer into the
user space. Ringmap works with FreeBSD operating system,
while ntop works with Linux. Another approach proposed to
speed up the packet capturing capability is Netmap [4]. This
is a BSD based project which integrates in the same interface
a number of modified drivers mapping the NIC transmit and
receive buffers directly into user space. [9] proposes a packet
capturing engine with multi-core commodity hardware
named PFQ, which allows parallel packet capturing in the
kernel and, at the same time, to split and balance the
captured packets across a user-defined set of capturing
sockets. Even, there have been various works [1][10][11] in
recent years looking at evaluating existing packet capture
techniques. In particular, [11] evaluates and compares
different capture solutions for Linux and FreeBSD operating
systems. The evaluation shows that FreeBSD outperforms
standard Linux PF_PACKET, Linux with PF_RING
performs better than PF_PACKET and even better than
FreeBSD if multiple capturing processes are run on the
system. Another option analyzed is TNAPI, which achieves
the best performance when it is combined with PF_RING.

III. DESCRIPTION OF THE SOFTWARE PROBES

As mentioned before, the performance of two software
probes will be compared in this paper. The first one, named
Adviser, is a user-level traffic probe, i.e., it has got the
common structure with the analysis or monitoring
application in user space and the capturing stage in kernel
space. Adviser admits different configurations for the
capturing as will be explained later. The second probe is
called Ksensor and it is an entirely kernel-level probe. Both
of them capture and analyze traffic in Gigabit Ethernet
networks.

A. Adviser. The User-Level Framework

Adviser [12] is a multi-processor architecture able to
capture network traffic and analyze it applying online
complex algorithm. Since the architecture is built on top of
the operating system, it is portable to several systems. Fig. 1
shows the block diagram of Adviser framework. It works
essentially as follows.

First, the system parser interprets the configuration files
and stores system logic in memory. Then, analysis engine
processes captured packet from the network according to the
logic stored in memory. After applying the rules, the engine
stores the results of the analysis. Finally, offline processing
module takes these results from memory and handles this
information to provide traffic statistics or reports.

There is also a module called periodic action manager,
which supports dynamic activation or deactivation of rules,
modification of period time, etc.

Figure 1. Adviser framework.

The traffic capturing system is in the kernel with
Symmetric Multi-Processing (SMP). As Adviser can be
configured with different capturing systems, in order to
obtain Adviser’s performance results with different
configurations, we have integrated three capturing systems
into Adviser, as follows.

1) Adviser’s capturing system with NAPI and LibPcap
This first setting uses the network subsystem of standard

GNU/Linux. It is New API (NAPI) [13] from kernel versions
higher than 2.4. The link between the Linux networking
subsystem and the user-space application Adviser is
established by using the library LibPcap [14]. As can be
observed in Fig. 2a, the application Adviser reads packets
from the socket queue through Libpcap. Once Adviser’s
analysis engine receives the packet, it is decoded and the
analysis logic is applied to it.

2) Adviser’s capturing system with PF_RING
In order to reduce the number of copies from the moment

that the packet arrives to the capture system until it is
delivered to the application, we set out the use of PF_RING
[3] as capturing system in Adviser. In this point, there are
different options for doing the integration. One of them is the
use of PF_RING with LibPcap and a PF_RING aware NIC
driver. However, there is another one which provides a better
performance and, for this reason, we select it for
implementing. It is the integration of PF_RING with the
driver Direct NIC Access (DNA) [2] into Adviser, which
allows to map NIC memory and registers to the user space.
This way, packet copy from the NIC to the DMA ring is
done by the NIC Network Process Unit and not by NAPI,
resulting in better line-rate captures. Fig. 2b shows Adviser
with PF_RING DNA.

Some adaptation modules are needed to integrate
PF_RING into Adviser. First, a new module is responsible
for managing the operations of PF_RING, such as the
creation of the capturing ring and the interaction with the
network interface to set filtering rules or working modes.

262Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

Figure 2. Adviser capturing packets (a) with NAPI and LibPcap (b) with PF_RING (c) with PFQ.

Once the capturing ring is created, a socket is enabled,

the packet capturing starts and the application access to the
ring through the socket. When the packet is captured,
PF_RING places its contain in a data structure whose format
is different from the one used by LibPcap. For this, a new
module fits the format and the sizes of those data structures
so that Adviser receives the data properly to be decoded.

The last adaptation is related to the concurrency system.
Due to the design of PF_RING, the integration of Adviser
and PF_RING has to be based on threads, instead of
processes. For this reason, a new module is responsible for
creating and managing threads to set an access control to the
critical sections. The library Libpfring provides a control
mechanism called spinlock, which allows one thread to
access to the protected code, while the rest of the threads are
blocked in an active-standby process.

3) Adviser’s capturing system with PFQ
PFQ [15] is a network-capture engine designed for the

Linux kernel 3.x and modern 64-bit architectures. It is
optimized for multi-core processors, as well as for network
devices supporting multiple hardware queues.

Adviser with PFQ is depicted in Fig. 2c. PFQ consists of
the following components: the fetcher, the packet steering
block and socket queues [9]. The fetcher dequeues the packet
directly from the driver, which can be a standard driver or a
patched “aware” driver, and inserts it into the batching
queue. The next stage is represented by the packet steering
block, which is in charge of selecting which socket needs to
receive the packet. The final component is the socket queue,
which represents the interface between user space and kernel
space. Every kernel processing (from the reception of the
packet up to its copy into the socket queue) is carried out
within the NAPI context; the last processing stage is
performed by Adviser at user space.

As in the case of PF_RING, an adaptation is necessary
for the integration of Adviser with PFQ. To do this, using the

tools provided by Libpfq [16], a PFQ add-on is created in
Adviser. This access from Adviser to PFQ is based on
threads.

B. Ksensor. The Kernel-Level Framework

Ksensor [17] is a kernel-level multi-processor monitoring
system for high speed networks which uses commodity
hardware. Its design (see Fig. 3) is based on the migration of
the processing modules from user-level to the kernel of the
operating system. Only system configuration (Parser) and
result management (Offline Processing Module) modules
remain at user-level.

First, the system parser interprets the configuration files
and stores system logic in memory. Then, analysis engine
processes captured packet from the network according to the
logic stored in memory. After applying the rules, the engine
stores the results of the analysis. Finally, offline processing
module takes these results from memory and handles this
information to provide traffic statistics or reports.

Figure 3. Ksensor framework.

263Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

Figure 4. Execution instances in Ksensor with two processors and one

NIC.

There are defined as many analyzing kernel threads
(ksensord#n in Fig. 4) as the number of processors on the
hardware. Each thread belongs to an execution instance of
the system (capture and analysis). All threads share
information through the kernel memory.

Regarding the capture, it is based on the kernel
networking subsystem, i.e., NAPI. There are as many
capturing instances (ksoftirqd#n in Fig. 4) as capturing NICs
(IRQ affinity). A single packet queue is shared by all the
analyzing instances (see Fig. 4).

In order to prevent livelock situations at high packet
arrival rates, there is a congestion avoidance mechanism. It
also prevents Ksensor from wasting resources in the capture
of packets that the system will not be able to process later.
When the packet queue reaches a maximum number of
packets, this mechanism forces NAPI to stop capturing
packets. This means that all the resources of all the
processors are dedicated to analyzing instances. When the
number of packets in the packet queue reaches a fixed
threshold value the system starts capturing again.

IV. TEST SETUP FOR COMPARING THE PROBES

The tests done in order to compare the probes are very
important. Firstly, in order to automate the tests, a software
architecture has been designed and implemented by NQaS
research group. This architecture configures the tests, runs
them and gathers the results automatically. It consists of four
types of logical elements: manager, agents, daemons, and
formatters.

A. Software and Hardware Details

The real environment where the different probes have
been tested can be seen in Fig. 5. There are two networks.
One is called management network and it is used for sending
the configuration commands from the manager to the agents
and the statistics of the test from the agents to the manager.
The other one is called capturing network and it is used for
testing the probes.

The machine called manager is the interface between the
testing architecture and the administrator.

SYS T R PS

S TRT DU PLXSPE EDUTIL

MOD E

Catalyst 2950SERIES3

4

5

6

7

8

9

10

1

2

11

12

13

14

15

16

19

20

21

22

23

24

25

26

17

18

27

28

29

30

31

32

35

36

37

38

39

40

41

42

33

34

43

44

45

46

47

48

2

1

Figure 5. Network infrastructure to test the probes.

The injector is in charge of generating synthetic network
traffic in order to simulate traffic load in the network. In
order to do that, this machine has an Endace DAG 4.3GE
card that allows injecting traffic rates up to 1 Gbps. The
machine has got two processors Intel Xeon 5110 at 1.66 GHz
and 2 GB of RAM memory. It runs a Debian GNU/Linux.

In the machine called Sensor run all the probes. The
different implementations of Adviser are made using a
Debian 7 with a kernel Linux 2.6.35. On the other hand,
Ksensor is a modification of the kernel Linux 2.6.23 with a
kernel module that implements the analysis tasks. The
machine has got two processors Intel Quad Xeon 5420 at 2.5
GHz with 4 GB of RAM memory. Each processor has got
four cores.

The receiver machine is the one that should receive the
traffic. It is only used for extracting statistics.

These three machines, in order to configure the implied
software and to collect the statistics, run an agent and several
daemons of the testing architecture.

B. Test Parameters

In order to test each probe, some tests have been defined.
Each test has got different configuration parameters in order
to test the probes in different situations.

The parameters that can be configured are packet size,
injection rate, analysis load, number of CPU cores and test
duration.

The analysis load is simulated implementing different
loops that take different number of loops. In this paper, the
results shown are made with 1000 processing loops and
25000 processing loops of analysis load.

Each test takes four minutes and it is made with the same
traffic rate, packet size (54 bytes), analysis load and number
of cores. A battery of tests is a group of tests with the same
configuration parameters but the traffic rate that increases for
each test from 50.000 packets per second up to 1.500.000
packets per second (1 Gbps with the fixed packet size).

There are tests for one, two, and four CPU cores. The
machine used for running the probes in the tests has got two
quad core processors. In the tests with two cores, there is one
core running in each processor. On the other hand, in the
tests with four cores, there are two cores running in each
processor.

264Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

V. TEST RESULTS AND DISCUSSION

In order to test the probes, three test batteries have been
done for each analysis load and for each probe and with
different number of CPU cores. Each battery is composed of
21 tests of four minutes. Each test is done at a different rate.

Each graph in Fig. 6 shows the analysis throughput for
the three probes with 1000 loops of analysis load and a fixed
number of CPU cores. In Fig. 7, it can be seen, in each

graph, the results for the three probes tested in this paper
with 25000 loops of analysis and a fixed number of CPU
cores. The graphs in both figures show the analysis
throughput, that is, the throughput of the probe in packets per
second. They have three series of data, one for each probe.

On the other hand, Fig. 8 and Fig. 9 show the capture
throughput for the three probes with 1000 and 25000 loops
of analysis load and a fixed number of CPU cores.

0
100.000

200.000
300.000

400.000
500.000

600.000
700.000

800.000
900.000

1.000.000
1.100.000

1.200.000
1.300.000

1.400.000
1.500.000

0

100.000

200.000

300.000

400.000

500.000

600.000

Analysis throughput with 1000 loops

Ksensor with
cong_ctrl on and 1
core

Adviser with pcap
and 1 core

Adviser with dna
and 1 core

Network data rate (pps)

T
h
ro
u
g
h
p
u
t
(p
p
s
)

(a)

0
100.000

200.000
300.000

400.000
500.000

600.000
700.000

800.000
900.000

1.000.000
1.100.000

1.200.000
1.300.000

1.400.000
1.500.000

0

100.000

200.000

300.000

400.000

500.000

600.000

Analysis throughput with 1000 loops

Ksensor with
cong_ctrl on and 2
cores

Adviser with pcap
and 2 cores

Adviser with dna
and 2 cores

Network data rate (pps)

T
h
ro
u
g
h
p
u
t
(p
p
s)

(b)

0
100.000

200.000
300.000

400.000
500.000

600.000
700.000

800.000
900.000

1.000.000
1.100.000

1.200.000
1.300.000

1.400.000
1.500.000

0

100.000

200.000

300.000

400.000

500.000

600.000

Analisys throughput with 1000 loops

Ksensor with
cong_ctrl on and 4
cores

Adviser with pcap
and 4 cores

Adviser with dna
and 4 cores

Network data rate (pps)

T
h
ro
u
g
h
p
u
t
(p
p
s)

(c)
Figure 6. Comparison of analysis throughput with 1000 loops of analysis load. (a) With 1 CPU core. (b) With 2 CPU cores. (c) With 4 CPU cores.

0
100.000

200.000
300.000

400.000
500.000

600.000
700.000

800.000
900.000

1.000.000
1.100.000

1.200.000
1.300.000

1.400.000
1.500.000

0

10.000

20.000

30.000

40.000

50.000

60.000

Analysis throughput with 25000 loops

Ksensor with
cong_ctrl on and 1
core

Adviser with pcap
and 1 core

Adviser with dna
and 1 core

Network data rate (pps)

T
h
ro
u
g
h
p
u
t
(p
p
s)

(a)

0
100.000

200.000
300.000

400.000
500.000

600.000
700.000

800.000
900.000

1.000.000
1.100.000

1.200.000
1.300.000

1.400.000
1.500.000

0

10.000

20.000

30.000

40.000

50.000

60.000

Analysis throughput with 25000 loops

Ksensor with
cong_ctrl on and
2 cores

Adviser with pcap

and 2 cores

Adviser with dna
and 2 cores

Network data rate (pps)

T
h
ro
u
g
h
p
u
t
(p
p
s)

(b)

0
100.000

200.000
300.000

400.000
500.000

600.000
700.000

800.000
900.000

1.000.000
1.100.000

1.200.000
1.300.000

1.400.000
1.500.000

0

10.000

20.000

30.000

40.000

50.000

60.000

Analysis throughput with 25000 loops

Ksensor with
cong_ctrl on and 4
cores

Adviser with pcap
and 4 cores

Adviser with dna
and 4 cores

Network data rate (pps)

T
h
ro
u
g
h
p
u
t
(p
p
s
)

(c)
Figure 7. Comparison of analysis throughput with 25000 loops of analysis load. (a) With 1 CPU core. (b) With 2 CPU cores. (c) With 4 CPU cores.

0
100000

200000
300000

400000
500000

600000
700000

800000
900000

1000000
1100000

1200000
1300000

1400000
1500000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Capture throughput with 1000 loops

Ksensor with
cong_ctrl on and 1
core

Adviser with pcap
and 1 core

Adviser with dna
and 1 core

Network data rate (pps)

Th
ro

ug
hp

ut
 (

pp
s)

(a)

0
100000

200000
300000

400000
500000

600000
700000

800000
900000

1000000
1100000

1200000
1300000

1400000
1500000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Capture throughput with 1000 loops

Ksensor with
cong_ctrl on and 2
cores

Adviser with pcap
and 2 cores

Adviser with dna
and 2 cores

Network data rate (pps)

Th
ro

ug
hp

ut
 (

pp
s)

(b)

0
100000

200000
300000

400000
500000

600000
700000

800000
900000

1000000
1100000

1200000
1300000

1400000
1500000

0

200000

400000

600000

800000

1000000

1200000

1400000

Capture throughput with 1000 loops

Ksensor with
cong_ctrl on and 4
cores

Adviser with pcap
and 4 cores

Adviser with dna
and 4 cores

Network data rate (pps)

Th
ro

ug
hp

ut
 (

pp
s)

(c)
Figure 8. Comparison of capture throughput with 1000 loops of analysis load. (a) With 1 CPU core. (b) With 2 CPU cores. (c) With 4 CPU cores.

0
100000

200000
300000

400000
500000

600000
700000

800000
900000

1000000
1100000

1200000
1300000

1400000
1500000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Capture throughput with 25000 loops

Ksensor with
cong_ctrl on and 1
core

Adviser with pcap
and 1 core

Adviser with dna
and 1 core

Network data rate (pps)

Th
ro

ug
hp

ut
 (

pp
s)

(a)

0
100000

200000
300000

400000
500000

600000
700000

800000
900000

1000000
1100000

1200000
1300000

1400000
1500000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Capture throughput with 25000 loops

Ksensor with
cong_ctrl on and
2 cores

Adviser with pcap
and 2 cores

Adviser with dna
and 2 cores

Network data rate (pps)

Th
ro

ug
hp

ut
 (

pp
s)

(b)

0
100000

200000
300000

400000
500000

600000
700000

800000
900000

1000000
1100000

1200000
1300000

1400000
1500000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Capture throughput with 25000 loops

Ksensor with
cong_ctrl on and 4
cores

Adviser with pcap
and 4 cores

Adviser with dna
and 4 cores

Network data rate (pps)

Th
ro

ug
hp

ut
 (

pp
s)

(c)
Figure 9. Comparison capture throughput with 25000 loops of analysis load. (a) With 1 CPU core. (b) With 2 CPU cores. (c) With 4 CPU cores.

265Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

It is remarkable that all these tests are done with 54 byte
packets, the minimum sized ones that work in Ethernet
networks. This means that, with a data rate of 1 Gbps the
probes receive the maximum number of packets as possible.
The system allocates its buffers taking into account the
number of received packets and not the size of them.

This paper shows results of two prototypes with Adviser.
One of them uses Libpcap as interface to capture packets,
while the other prototype uses PF_RING_DNA. It is worth
mentioning that the prototype with PF_RING DNA uses
threads in order to implement the analysis task while the
prototype with Libpcap uses processes. We also show results
from Ksensor, the kernel-level probe presented before.

As we can see in Fig. 6-9, the prototype that has the
worst performance is Adviser with Libpcap. With one CPU
core it has a stable behavior. The analysis throughput is the
lowest one although the capture throughput is nearly the
same as with PF_RING DNA, the highest one. This happens
because the capture processes have higher priority that the
analysis ones. Besides, the packets are captured with all the
infrastructure of the operating system. The packets are
disassembled and treated as normal packets. Because of all
this, the capture takes a lot of time.

When the system is capturing packets the analysis
processes are slept and are not analyzing packets because
there is only one CPU. Because the system takes more time
capturing packets and the capture processes have more
priority than the analysis ones, there are more captured
packets than analyzed ones. This means that the system has
to drop packets without analyzing them so the analysis
throughput is lower than the capture one. There is a lot of
CPU usage lost capturing packets that the system is not able
to analyze. With more than one CPU core the behavior of
Adviser with PCAP has the same problems that have been
explained in the previous paragraph. Moreover, the design of
this prototype has not resolved well the multiprocessor
execution. It has two problems. The first one is that the
design is done with processes. The system can execute only
one process at a time so the system cannot execute more than
one analysis task at the same time although the analysis
processes have affinity with one CPU core. The second
problem is that there is only one packet queue and the
processes have to compete in order to take a packet from the
queue. Because of all this, the behavior of the probe is not
very stable and the performance is not good.

Obviously, the performance of the analysis with higher
analysis load is lower. The system takes more time in
analysis per packet so it analyzes fewer packets per second.

Regarding Ksensor, its congestion avoidance mechanism
guarantees that all the packets that are captured are analyzed.
Because of this, the capture throughput (see Fig. 8-9) and the
analysis throughput (see Fig. 6-7) are the same.

On the other hand, we can observe in Fig. 8-9 that
PF_RING DNA captures all the packets that are sent. In this
case, the CPU does not execute anything because PF_RING
DNA works with memory mapping.

If we compare the capture throughput of Adviser with
PF_RING DNA and the capture throughput of Ksensor, we
can see that PF_RING DNA has a better performance on

capture terms. Moreover, the prototype with PF_RING DNA
does not use CPU resources in order to capture packets so all
the resources can be used to analyze them.

The comparison of the analysis throughput is not so easy.
There is only one packet queue in both cases. Both
prototypes have implemented threads for the analysis. So,
with more than one core there are many consumers of the
packet queue. There are many threads competing to access to
the queue.

The higher the analysis load is the fewer accesses must
be made to the packet queue. With high analysis loads the
system analyzes fewer packets than with a lower analysis
load. This means that, with a higher analysis load, the
analysis threads make fewer accesses to the queue so there
are fewer concurrency problems.

If we compare the analysis throughput we can see that,
with 1000 loops of analysis, the performance of Ksensor
with 2 cores is lower than the performance of the prototype
with PF_RING DNA. On the other hand, with 4 cores, the
performance of Ksensor is higher. With 25000 loops of
analysis, the performance of the prototype with PF_RING
DNA is higher in both cases, with 2 and with 4 CPU cores.
One of the differences between 1000 and 25000 loops is that,
with 1000, there are more accesses to the queue so the
analysis threads have to wait more time in order to take a
packet. Both prototypes work with as many analysis threads
as CPU cores.

Ksensor has a better design for the multiple accesses to
the packet queue with more than one thread at the same time
but PF_RING DNA has a better performance in packet
capture. With 1000 loops there are many accesses to the
queue but the performance in analysis of Adviser with
PF_RING DNA is higher with one and two CPU cores. But
with four cores the performance of Ksensor is higher. With
one and two cores the performance of the capture of Adviser
with PF_RING DNA makes the analysis performance higher
but with four cores the low performance in multiple access of
the prototype Adviser makes the analysis performance be
low. With 25000 loops there are fewer accesses to the queue
so there are not as many problems as before with the
multiple accesses to the queue.

Obviously, with more CPU cores the performance of the
probes is higher.

VI. CONCLUSIONS

This work sets out to evaluate two software probes based
on commodity hardware under different configurations. On
the one hand, Adviser, a user-level framework, is evaluated
with several current capturing systems (NAPI with LibPcap,
PF_RING with DNA, PFQ) and several analysis loads
(1000, 25000 processing loops). On the other hand, Ksensor,
a kernel-level framework, uses NAPI in the capturing stage
and it is tested for different analysis loads (1000 and 25000
processing loops too). It is worth mentioning that all the
evaluations have been performed on the same hardware
platform. It has got two quad core processors. When it is
configured with one or two cores it uses one core per
processor, but with more than two cores it has to use more
than one core per processor. It is also remarkable the use of a

266Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

testing architecture which configures the tests, runs them and
gathers the results automatically.

The results indicate that Adviser with NAPI-Pcap is not a
good solution. Its behavior is not predictable and its
performance is lower than the performance of the other
probes. With low analysis load, the performance of Adviser
with PF_RING-DNA with four cores is lower than the
performance of Ksensor and, even, the performance of
Adviser with PF_RING and DNA and two cores. With high
analysis load, the performance of Adviser with PF_RING-
DNA is higher than the performance of Ksensor.

All these results have their corresponding explanation.
The numerous copies in the capturing process and the
absence of a congestion control mechanism between the
capturing and the analysis stage are the main reasons of the
unstable behavior of Adviser with NAPI-Pcap. However,
Adviser with PF_RING-DNA provides a higher performance
due to the improvement that it offers in the capturing stage,
although there could be concurrency problems. We are
referring to the problems between the capturing and analysis
instances when both of them try to access the same packet
queue. Finally, Ksensor does not provide a capturing
performance as good as PF_RING-DNA, but it incorporates
elements of control to solve concurrency problems, as well
as a congestion control mechanism. For this reason, under
certain circumstances (for instance, the case of 4 CPU cores
with 1000 loops analysis load), Ksensor can offer a better
performance than PF_RING-DNA.

As a future work we plan to migrate the prototype
Ksensor to a recent Linux version in order to take advantage
of the improvements that this recent kernel offers in
capturing performance. In this way, the adaptation of the
probe to the Generic Receive Offload (GRO) and Receive
Packet Steering (RPS) techniques, which are included in
recent kernel versions, can bring benefits for the system
performance. On the one hand, GRO implies to change the
processing of the packets in the capturing stage, by grouping
packets which belong to the same flow. On the other hand,
RPS proposes to increase the number of packet queues, by
having one packet queue for each processor and by creating a
NAPI virtual interface for each processor. This will imply to
reduce the concurrency problems between the capturing and
the analysis instances.

As explained in Section III, PFQ has been integrated into
Adviser. This has been validated by using a conventional
NIC (in particular, the model Intel 82574L) and the results
obtained have been similar to native PF_RING (without
DNA). But PFQ needs a multiqueue NIC in order to obtain
an optimal performance. As the test scenario described in
Section IV does not have any NIC of this type, Adviser with
PFQ has not been tested under the optimal conditions. For
this reason, there is not any result of PFQ in the comparison
of Section V. In the future, we plan to obtain a multiqueue
NIC to test Adviser with PFQ properly.

Finally, we want to mention that, once the migration of
Ksensor is completed, we also plan to make a new
comparison among the new Ksensor, Adviser with
PF_RING-DNA and Adviser with PFQ

ACKNOWLEDGMENT

We gratefully acknowledge support from the Basque
Government funding the VMAT project within the
SAIOTEK 2012 initiative in the scope of which this research
work has been conducted.

REFERENCES
[1] F. Schneider, “Packet capturing with contemporary hardware

in 10 Gigabit Ethernet environments," Proc. Passive and
Active Measurement Conference (PAM 2007), Springer-
Verlag Berlin Heidelberg, Apr. 2007, pp. 207-217.

[2] ntop project, http://www.ntop.org, 14.10.2013.
[3] A. Fiveg, “Ringmap capturing stack for high performance

packet capturing”, http://wiki.freebsd.org/AlexandreFiveg,
Sept. 2010.

[4] L. Rizzo, “Netmap: a novel framework for fast packet I/O,”
Proc. 2012 USENIX Annual Technical Conference, USENIX
Association, Jun. 2012, pp. 9-20.

[5] L. Deri, “Improving passive packet capture: beyond device
polling,” Proc. 4th International System Administration and
Network Engineering Conference (SANE), vol. 2004, Oct.
2004, pp. 85-93.

[6] L. Deri, “nCap: Wire-speed packet capture and transmission,”
IEEE/IFIP Workshop on End-to-End Monitoring Techniques
and Services (E2EMON), IEEE, May. 2005, pp. 47-55.

[7] F. Fusco and L. Deri, “High speed network traffic analysis
with commodity multi-core systems,” Proc. Internet
Measurement Conference (IMC 2010), ACM, Nov. 2010, pp.
218-224.

[8] A. Cardigliano, L. Deri, J. Gasparakis, and F. Fusco,
“vPF_RING: Towards wire-speed network monitoring using
virtual machines,” Proc. Internet Measurement Conference
(IMC 2011), ACM, Nov. 2011, pp. 533-548.

[9] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “On
multi-Gigabit packet capturing with multi-core commodity
hardware,” Proc. 13th Passive and Active Measurement
Conference (PAM), Springer, Mar. 2012, pp. 64–73.

[10] T. Mrazek and J. Vykopal, “Packet capture benchmark on 1
GE”, CESNET technical report 22/2008,
http://www.cesnet.cz, Dec. 2008.

[11] L. Braun, A. Didebulidze, A. Kammenhuber, and G. Carle,
“Comparing and improving current packet capturing solutions
based on commodity hardware,” Proc. Internet Measurement
Conference (IMC 2010), ACM, Nov. 2010, pp. 206-217.

[12] A. Ferro, F. Liberal, A. Muñoz, I. Delgado, and A. Beaumont,
“Software architecture based on multiprocessor platform to
apply complex intrusion detection techniques”, Proc. 2005
IEEE International Carnahan Conference on Security
Technology (CCST’05), IEEE, Oct. 2005, pp. 287-290.

[13] C. Benvenuti, Understanding Linux Network Internals,
O'Reilly Media, 2005.

[14] LibPcap, http://www.tcpdump.org, 14.10.2013.
[15] PFQ Homepage, http:// netserv.iet.unipi.it/software/pfq,

14.10.2013.
[16] PFQ: Accelerated packet capture engine for multi-core

architectures, http://pfq.github.com/PFQ, 14.10.2013.
[17] A. Munoz, A. Ferro, F. Liberal, and J. Lopez, “A kernel-level

monitor over multiprocessor architectures for high-
performance network analysis with commodity hardware,”
Proc. SensorComm 2007, IEEE, Oct. 2007, pp. 457-462.

[18] A. Pineda, L. Zabala, and A. Ferro, “Network architecture to
automatically test traffic monitoring systems,” Proc.
Mosharaka Int. Conference on Communications and Signal
Processing (MIC-CSP2012), Academy, Apr. 2012, pp. 18-23.

267Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

