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Abstract—Due to the fact that, nowadays, it is possible to 
capture traffic in 1-10 Gigabit Ethernet networks using 
commodity hardware, many traffic monitoring systems, and 
especially capturing tools, have been proposed in recent years. 
This paper presents a comparison between two software 
probes named Adviser and Ksensor. Both of them are multi-
processor systems and are built over conventional hardware. 
However, while Adviser is designed in user space, Ksensor 
runs in kernel space. This work compares the performance 
results of the two probes considering several capture engines 
(NAPI, PF_RING with DNA, PFQ) and, at the same time, 
different application or analysis loads. The evaluations of the 
probes with the different settings have been performed on the 
same hardware multi-core configuration. The results of the 
evaluations let conclude which solution is better in each 
situation and which solution must be discarded. 

Keywords-packet capturing; Ksensor; Adviser; NAPI, 
PF_RING; PFQ 

I.  INTRODUCTION 

Nowadays, network traffic capturing and analyzing 
systems are becoming increasingly relevant. Different 
applications can be related to these traffic monitoring 
systems, for example, network antiviruses, Quality of 
Service monitoring, intrusion detection systems, traffic 
classification and balancing. They can also help 
administrators in network troubleshooting. As the speed of 
the network links increases, the performance requirements 
on the monitoring systems are more severe. In particular, in 
multi-Gigabit environments, overload situations can happen, 
reaching the system limitations in terms of memory 
occupation, CPU usage, system bus throughput, and having 
negative impact on the accuracy of the monitoring 
application. Therefore, as far as possible, unnecessary 
consumption of available resources must be avoided. 

The packet capturing stage is an essential component of 
the traffic monitoring system. The evolution of commodity 
hardware has made possible the capture of network traffic to 
be a feasible task over high-speed networks, without using 
any neither specific nor expensive hardware [1]. This way, 
several research works [2][3][4] have arisen focused on the 
development of analysis systems that are able to process all 
the information carried by actual networks. Among them, 
our research group of the UPV/EHU, called Network, 
Quality and Security (NQaS), is working on software 

solution proposals for traffic analysis systems over multi-
processor architectures. 

Two traffic probes have been developed by NQaS. They 
are generic and flexible, and they allow doing any type of 
analysis on the captured traffic. Due to the fact that the 
monitoring application is over a multi-processor platform, 
the analysis can be done concurrently, obtaining a high 
performance. This paper presents a comparison between 
those two probes which have different view of design. On 
the one hand, Adviser is a generic multi-processor 
architecture which has been built in user space, it is portable 
and it can make use of different capturing systems. On the 
other hand, Ksensor is a kernel-space framework in which 
the processing modules have been migrated from user-level 
to the kernel of the operating system. 

Many capturing tools and comparisons have made 
available in the literature. However, most of them do not 
asses how the packet capture is affected under different 
analysis or application loads. This work compares the 
performance results of the probes Adviser and Ksensor 
considering different capture engines and, at the same time, 
different analysis loads as will be seen below. 

The rest of the paper is organized as follows. In Section 
II, a brief explanation about related work is introduced. In 
Section III, we describe the network traffic probes that will 
be compared later. Section IV presents the test setup for 
evaluating the performance of the traffic analysis systems. 
Section V shows the results of our measurements. Finally, 
Section VI remarks the conclusions. 

II. RELATED WORK 

The improvement of packet capturing capabilities with 
commodity hardware has been an extensively covered 
research topic. Hardware and software solutions have been 
proposed. 

Among the most recent software solutions, it is 
remarkable Luca Deri’s numerous contributions within the 
project ntop [2]. In this project, an open source platform has 
been developed to monitor traffic in high speed networks and 
it has given rise to interesting works such as [5], which 
presents the network socket PF_RING, [6], in which nCap, a 
proposal based on commercial network cards was proposed, 
and [7], which deals with aspects related to the packet 
parallel processing in multi-core platforms, as well as with 
the driver called Threaded New API (TNAPI), which uses a 
multiqueue structure. The same research group has also 
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presented the framework vPFRING for capturing packets on 
virtual machines running on commodity hardware [8]. 

The project Ringmap [3] has certain similarities with 
ntop, since it also proposes to improve the performance of 
packet capture removing some packet copy operations and 
mapping the Direct Memory Access (DMA) buffer into the 
user space. Ringmap works with FreeBSD operating system, 
while ntop works with Linux. Another approach proposed to 
speed up the packet capturing capability is Netmap [4]. This 
is a BSD based project which integrates in the same interface 
a number of modified drivers mapping the NIC transmit and 
receive buffers directly into user space. [9] proposes a packet 
capturing engine with multi-core commodity hardware 
named PFQ, which allows parallel packet capturing in the 
kernel and, at the same time, to split and balance the 
captured packets across a user-defined set of capturing 
sockets. Even, there have been various works [1][10][11] in 
recent years looking at evaluating existing packet capture 
techniques. In particular, [11] evaluates and compares 
different capture solutions for Linux and FreeBSD operating 
systems. The evaluation shows that FreeBSD outperforms 
standard Linux PF_PACKET, Linux with PF_RING 
performs better than PF_PACKET and even better than 
FreeBSD if multiple capturing processes are run on the 
system. Another option analyzed is TNAPI, which achieves 
the best performance when it is combined with PF_RING. 

III.  DESCRIPTION OF THE SOFTWARE PROBES 

As mentioned before, the performance of two software 
probes will be compared in this paper. The first one, named 
Adviser, is a user-level traffic probe, i.e., it has got the 
common structure with the analysis or monitoring 
application in user space and the capturing stage in kernel 
space. Adviser admits different configurations for the 
capturing as will be explained later. The second probe is 
called Ksensor and it is an entirely kernel-level probe. Both 
of them capture and analyze traffic in Gigabit Ethernet 
networks. 

A. Adviser. The User-Level Framework 

Adviser [12] is a multi-processor architecture able to 
capture network traffic and analyze it applying online 
complex algorithm. Since the architecture is built on top of 
the operating system, it is portable to several systems. Fig. 1 
shows the block diagram of Adviser framework. It works 
essentially as follows. 

First, the system parser interprets the configuration files 
and stores system logic in memory. Then, analysis engine 
processes captured packet from the network according to the 
logic stored in memory. After applying the rules, the engine 
stores the results of the analysis. Finally, offline processing 
module takes these results from memory and handles this 
information to provide traffic statistics or reports. 

There is also a module called periodic action manager, 
which supports dynamic activation or deactivation of rules, 
modification of period time, etc. 

 
Figure 1.  Adviser framework. 

The traffic capturing system is in the kernel with 
Symmetric Multi-Processing (SMP). As Adviser can be 
configured with different capturing systems, in order to 
obtain Adviser’s performance results with different 
configurations, we have integrated three capturing systems 
into Adviser, as follows. 

1) Adviser’s capturing system with NAPI and LibPcap 
This first setting uses the network subsystem of standard 

GNU/Linux. It is New API (NAPI) [13] from kernel versions 
higher than 2.4. The link between the Linux networking 
subsystem and the user-space application Adviser is 
established by using the library LibPcap [14]. As can be 
observed in Fig. 2a, the application Adviser reads packets 
from the socket queue through Libpcap. Once Adviser’s 
analysis engine receives the packet, it is decoded and the 
analysis logic is applied to it. 

2) Adviser’s capturing system with PF_RING 
In order to reduce the number of copies from the moment 

that the packet arrives to the capture system until it is 
delivered to the application, we set out the use of PF_RING 
[3] as capturing system in Adviser. In this point, there are 
different options for doing the integration. One of them is the 
use of PF_RING with LibPcap and a PF_RING aware NIC 
driver. However, there is another one which provides a better 
performance and, for this reason, we select it for 
implementing. It is the integration of PF_RING with the 
driver Direct NIC Access (DNA) [2] into Adviser, which 
allows to map NIC memory and registers to the user space. 
This way, packet copy from the NIC to the DMA ring is 
done by the NIC Network Process Unit and not by NAPI, 
resulting in better line-rate captures. Fig. 2b shows Adviser 
with PF_RING DNA. 

Some adaptation modules are needed to integrate 
PF_RING into Adviser. First, a new module is responsible 
for managing the operations of PF_RING, such as the 
creation of the capturing ring and the interaction with the 
network interface to set filtering rules or working modes. 
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Figure 2.  Adviser capturing packets (a) with NAPI and LibPcap (b) with PF_RING (c) with PFQ. 

 
Once the capturing ring is created, a socket is enabled, 

the packet capturing starts and the application access to the 
ring through the socket. When the packet is captured, 
PF_RING places its contain in a data structure whose format 
is different from the one used by LibPcap. For this, a new 
module fits the format and the sizes of those data structures 
so that Adviser receives the data properly to be decoded. 

The last adaptation is related to the concurrency system. 
Due to the design of PF_RING, the integration of Adviser 
and PF_RING has to be based on threads, instead of 
processes. For this reason, a new module is responsible for 
creating and managing threads to set an access control to the 
critical sections. The library Libpfring provides a control 
mechanism called spinlock, which allows one thread to 
access to the protected code, while the rest of the threads are 
blocked in an active-standby process. 

3) Adviser’s capturing system with PFQ 
PFQ [15] is a network-capture engine designed for the 

Linux kernel 3.x and modern 64-bit architectures. It is 
optimized for multi-core processors, as well as for network 
devices supporting multiple hardware queues. 

Adviser with PFQ is depicted in Fig. 2c. PFQ consists of 
the following components: the fetcher, the packet steering 
block and socket queues [9]. The fetcher dequeues the packet 
directly from the driver, which can be a standard driver or a 
patched “aware” driver, and inserts it into the batching 
queue. The next stage is represented by the packet steering 
block, which is in charge of selecting which socket needs to 
receive the packet. The final component is the socket queue, 
which represents the interface between user space and kernel 
space. Every kernel processing (from the reception of the 
packet up to its copy into the socket queue) is carried out 
within the NAPI context; the last processing stage is 
performed by Adviser at user space. 

As in the case of PF_RING, an adaptation is necessary 
for the integration of Adviser with PFQ. To do this, using the 

tools provided by Libpfq [16], a PFQ add-on is created in 
Adviser. This access from Adviser to PFQ is based on 
threads. 

 

B. Ksensor. The Kernel-Level Framework 

Ksensor [17] is a kernel-level multi-processor monitoring 
system for high speed networks which uses commodity 
hardware. Its design (see Fig. 3) is based on the migration of 
the processing modules from user-level to the kernel of the 
operating system. Only system configuration (Parser) and 
result management (Offline Processing Module) modules 
remain at user-level. 

First, the system parser interprets the configuration files 
and stores system logic in memory. Then, analysis engine 
processes captured packet from the network according to the 
logic stored in memory. After applying the rules, the engine 
stores the results of the analysis. Finally, offline processing 
module takes these results from memory and handles this 
information to provide traffic statistics or reports. 

 

 
Figure 3.  Ksensor framework. 
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Figure 4.  Execution instances in Ksensor with two processors and one 

NIC. 

There are defined as many analyzing kernel threads 
(ksensord#n in Fig. 4) as the number of processors on the 
hardware. Each thread belongs to an execution instance of 
the system (capture and analysis). All threads share 
information through the kernel memory. 

Regarding the capture, it is based on the kernel 
networking subsystem, i.e., NAPI. There are as many 
capturing instances (ksoftirqd#n in Fig. 4) as capturing NICs 
(IRQ affinity). A single packet queue is shared by all the 
analyzing instances (see Fig. 4). 

In order to prevent livelock situations at high packet 
arrival rates, there is a congestion avoidance mechanism. It 
also prevents Ksensor from wasting resources in the capture 
of packets that the system will not be able to process later. 
When the packet queue reaches a maximum number of 
packets, this mechanism forces NAPI to stop capturing 
packets. This means that all the resources of all the 
processors are dedicated to analyzing instances. When the 
number of packets in the packet queue reaches a fixed 
threshold value the system starts capturing again. 

IV.  TEST SETUP FOR COMPARING THE PROBES 

The tests done in order to compare the probes are very 
important. Firstly, in order to automate the tests, a software 
architecture has been designed and implemented by NQaS 
research group. This architecture configures the tests, runs 
them and gathers the results automatically. It consists of four 
types of logical elements: manager, agents, daemons, and 
formatters. 

A. Software and Hardware Details 

The real environment where the different probes have 
been tested can be seen in Fig. 5. There are two networks. 
One is called management network and it is used for sending 
the configuration commands from the manager to the agents 
and the statistics of the test from the agents to the manager. 
The other one is called capturing network and it is used for 
testing the probes. 

The machine called manager is the interface between the 
testing architecture and the administrator.  
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Figure 5.  Network infrastructure to test the probes. 

The injector is in charge of generating synthetic network 
traffic in order to simulate traffic load in the network. In 
order to do that, this machine has an Endace DAG 4.3GE 
card that allows injecting traffic rates up to 1 Gbps. The 
machine has got two processors Intel Xeon 5110 at 1.66 GHz 
and 2 GB of RAM memory. It runs a Debian GNU/Linux. 

In the machine called Sensor run all the probes. The 
different implementations of Adviser are made using a 
Debian 7 with a kernel Linux 2.6.35. On the other hand, 
Ksensor is a modification of the kernel Linux 2.6.23 with a 
kernel module that implements the analysis tasks. The 
machine has got two processors Intel Quad Xeon 5420 at 2.5 
GHz with 4 GB of RAM memory. Each processor has got 
four cores. 

The receiver machine is the one that should receive the 
traffic. It is only used for extracting statistics. 

These three machines, in order to configure the implied 
software and to collect the statistics, run an agent and several 
daemons of the testing architecture. 

B. Test Parameters 

In order to test each probe, some tests have been defined. 
Each test has got different configuration parameters in order 
to test the probes in different situations. 

The parameters that can be configured are packet size, 
injection rate, analysis load, number of CPU cores and test 
duration. 

The analysis load is simulated implementing different 
loops that take different number of loops. In this paper, the 
results shown are made with 1000 processing loops and 
25000 processing loops of analysis load. 

Each test takes four minutes and it is made with the same 
traffic rate, packet size (54 bytes), analysis load and number 
of cores. A battery of tests is a group of tests with the same 
configuration parameters but the traffic rate that increases for 
each test from 50.000 packets per second up to 1.500.000 
packets per second (1 Gbps with the fixed packet size). 

There are tests for one, two, and four CPU cores. The 
machine used for running the probes in the tests has got two 
quad core processors. In the tests with two cores, there is one 
core running in each processor. On the other hand, in the 
tests with four cores, there are two cores running in each 
processor. 
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V. TEST RESULTS AND DISCUSSION 

In order to test the probes, three test batteries have been 
done for each analysis load and for each probe and with 
different number of CPU cores. Each battery is composed of 
21 tests of four minutes. Each test is done at a different rate. 

Each graph in Fig. 6 shows the analysis throughput for 
the three probes with 1000 loops of analysis load and a fixed 
number of CPU cores. In Fig. 7, it can be seen, in each 

graph, the results for the three probes tested in this paper 
with 25000 loops of analysis and a fixed number of CPU 
cores. The graphs in both figures show the analysis 
throughput, that is, the throughput of the probe in packets per 
second. They have three series of data, one for each probe. 

On the other hand, Fig. 8 and Fig. 9 show the capture 
throughput for the three probes with 1000 and 25000 loops 
of analysis load and a fixed number of CPU cores. 
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Figure 6.  Comparison of analysis throughput with 1000 loops of analysis load. (a) With 1 CPU core. (b) With 2 CPU cores. (c) With 4 CPU cores. 
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Figure 7.  Comparison of analysis throughput with 25000 loops of analysis load. (a) With 1 CPU core. (b) With 2 CPU cores. (c) With 4 CPU cores. 
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Figure 8.  Comparison of capture throughput with 1000 loops of analysis load. (a) With 1 CPU core. (b) With 2 CPU cores. (c) With 4 CPU cores. 
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Figure 9.  Comparison capture throughput with 25000 loops of analysis load. (a) With 1 CPU core. (b) With 2 CPU cores. (c) With 4 CPU cores. 
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It is remarkable that all these tests are done with 54 byte 
packets, the minimum sized ones that work in Ethernet 
networks. This means that, with a data rate of 1 Gbps the 
probes receive the maximum number of packets as possible. 
The system allocates its buffers taking into account the 
number of received packets and not the size of them. 

This paper shows results of two prototypes with Adviser. 
One of them uses Libpcap as interface to capture packets, 
while the other prototype uses PF_RING_DNA. It is worth 
mentioning that the prototype with PF_RING DNA uses 
threads in order to implement the analysis task while the 
prototype with Libpcap uses processes. We also show results 
from Ksensor, the kernel-level probe presented before. 

As we can see in Fig. 6-9, the prototype that has the 
worst performance is Adviser with Libpcap. With one CPU 
core it has a stable behavior. The analysis throughput is the 
lowest one although the capture throughput is nearly the 
same as with PF_RING DNA, the highest one. This happens 
because the capture processes have higher priority that the 
analysis ones. Besides, the packets are captured with all the 
infrastructure of the operating system. The packets are 
disassembled and treated as normal packets. Because of all 
this, the capture takes a lot of time. 

When the system is capturing packets the analysis 
processes are slept and are not analyzing packets because 
there is only one CPU. Because the system takes more time 
capturing packets and the capture processes have more 
priority than the analysis ones, there are more captured 
packets than analyzed ones. This means that the system has 
to drop packets without analyzing them so the analysis 
throughput is lower than the capture one. There is a lot of 
CPU usage lost capturing packets that the system is not able 
to analyze. With more than one CPU core the behavior of 
Adviser with PCAP has the same problems that have been 
explained in the previous paragraph. Moreover, the design of 
this prototype has not resolved well the multiprocessor 
execution. It has two problems. The first one is that the 
design is done with processes. The system can execute only 
one process at a time so the system cannot execute more than 
one analysis task at the same time although the analysis 
processes have affinity with one CPU core. The second 
problem is that there is only one packet queue and the 
processes have to compete in order to take a packet from the 
queue. Because of all this, the behavior of the probe is not 
very stable and the performance is not good. 

Obviously, the performance of the analysis with higher 
analysis load is lower. The system takes more time in 
analysis per packet so it analyzes fewer packets per second. 

Regarding Ksensor, its congestion avoidance mechanism 
guarantees that all the packets that are captured are analyzed. 
Because of this, the capture throughput (see Fig. 8-9) and the 
analysis throughput (see Fig. 6-7) are the same. 

On the other hand, we can observe in Fig. 8-9 that 
PF_RING DNA captures all the packets that are sent. In this 
case, the CPU does not execute anything because PF_RING 
DNA works with memory mapping. 

If we compare the capture throughput of Adviser with 
PF_RING DNA and the capture throughput of Ksensor, we 
can see that PF_RING DNA has a better performance on 

capture terms. Moreover, the prototype with PF_RING DNA 
does not use CPU resources in order to capture packets so all 
the resources can be used to analyze them. 

The comparison of the analysis throughput is not so easy. 
There is only one packet queue in both cases. Both 
prototypes have implemented threads for the analysis. So, 
with more than one core there are many consumers of the 
packet queue. There are many threads competing to access to 
the queue. 

The higher the analysis load is the fewer accesses must 
be made to the packet queue. With high analysis loads the 
system analyzes fewer packets than with a lower analysis 
load. This means that, with a higher analysis load, the 
analysis threads make fewer accesses to the queue so there 
are fewer concurrency problems. 

If we compare the analysis throughput we can see that, 
with 1000 loops of analysis, the performance of Ksensor 
with 2 cores is lower than the performance of the prototype 
with PF_RING DNA. On the other hand, with 4 cores, the 
performance of Ksensor is higher. With 25000 loops of 
analysis, the performance of the prototype with PF_RING 
DNA is higher in both cases, with 2 and with 4 CPU cores. 
One of the differences between 1000 and 25000 loops is that, 
with 1000, there are more accesses to the queue so the 
analysis threads have to wait more time in order to take a 
packet. Both prototypes work with as many analysis threads 
as CPU cores.  

Ksensor has a better design for the multiple accesses to 
the packet queue with more than one thread at the same time 
but PF_RING DNA has a better performance in packet 
capture. With 1000 loops there are many accesses to the 
queue but the performance in analysis of Adviser with 
PF_RING DNA is higher with one and two CPU cores. But 
with four cores the performance of Ksensor is higher. With 
one and two cores the performance of the capture of Adviser 
with PF_RING DNA makes the analysis performance higher 
but with four cores the low performance in multiple access of 
the prototype Adviser makes the analysis performance be 
low. With 25000 loops there are fewer accesses to the queue 
so there are not as many problems as before with the 
multiple accesses to the queue. 

Obviously, with more CPU cores the performance of the 
probes is higher. 

VI.  CONCLUSIONS 

This work sets out to evaluate two software probes based 
on commodity hardware under different configurations. On 
the one hand, Adviser, a user-level framework, is evaluated 
with several current capturing systems (NAPI with LibPcap, 
PF_RING with DNA, PFQ) and several analysis loads 
(1000, 25000 processing loops). On the other hand, Ksensor, 
a kernel-level framework, uses NAPI in the capturing stage 
and it is tested for different analysis loads (1000 and 25000 
processing loops too). It is worth mentioning that all the 
evaluations have been performed on the same hardware 
platform. It has got two quad core processors. When it is 
configured with one or two cores it uses one core per 
processor, but with more than two cores it has to use more 
than one core per processor. It is also remarkable the use of a 
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testing architecture which configures the tests, runs them and 
gathers the results automatically. 

The results indicate that Adviser with NAPI-Pcap is not a 
good solution. Its behavior is not predictable and its 
performance is lower than the performance of the other 
probes. With low analysis load, the performance of Adviser 
with PF_RING-DNA with four cores is lower than the 
performance of Ksensor and, even, the performance of 
Adviser with PF_RING and DNA and two cores. With high 
analysis load, the performance of Adviser with PF_RING-
DNA is higher than the performance of Ksensor. 

All these results have their corresponding explanation. 
The numerous copies in the capturing process and the 
absence of a congestion control mechanism between the 
capturing and the analysis stage are the main reasons of the 
unstable behavior of Adviser with NAPI-Pcap. However, 
Adviser with PF_RING-DNA provides a higher performance 
due to the improvement that it offers in the capturing stage, 
although there could be concurrency problems. We are 
referring to the problems between the capturing and analysis 
instances when both of them try to access the same packet 
queue. Finally, Ksensor does not provide a capturing 
performance as good as PF_RING-DNA, but it incorporates 
elements of control to solve concurrency problems, as well 
as a congestion control mechanism. For this reason, under 
certain circumstances (for instance, the case of 4 CPU cores 
with 1000 loops analysis load), Ksensor can offer a better 
performance than PF_RING-DNA. 

As a future work we plan to migrate the prototype 
Ksensor to a recent Linux version in order to take advantage 
of the improvements that this recent kernel offers in 
capturing performance. In this way, the adaptation of the 
probe to the Generic Receive Offload (GRO) and Receive 
Packet Steering (RPS) techniques, which are included in 
recent kernel versions, can bring benefits for the system 
performance. On the one hand, GRO implies to change the 
processing of the packets in the capturing stage, by grouping 
packets which belong to the same flow. On the other hand, 
RPS proposes to increase the number of packet queues, by 
having one packet queue for each processor and by creating a 
NAPI virtual interface for each processor. This will imply to 
reduce the concurrency problems between the capturing and 
the analysis instances. 

As explained in Section III, PFQ has been integrated into 
Adviser. This has been validated by using a conventional 
NIC (in particular, the model Intel 82574L) and the results 
obtained have been similar to native PF_RING (without 
DNA). But PFQ needs a multiqueue NIC in order to obtain 
an optimal performance. As the test scenario described in 
Section IV does not have any NIC of this type, Adviser with 
PFQ has not been tested under the optimal conditions. For 
this reason, there is not any result of PFQ in the comparison 
of Section V. In the future, we plan to obtain a multiqueue 
NIC to test Adviser with PFQ properly. 

Finally, we want to mention that, once the migration of 
Ksensor is completed, we also plan to make a new 
comparison among the new Ksensor, Adviser with 
PF_RING-DNA and Adviser with PFQ 
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