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Abstract—It is becoming more and more interesting, in the
domain of distributed function optimization, the study of fully de-
centralized optimization algorithms, deployed on large networks
of heterogeneous computational units. Several issues arise on such
a system design, among which the proper way of distributing and
making use of shared information, in absence of a centralized
coordination, is a prominent one. We introduce the design of a
P2P gossip-based Particle Swarm Optimization (PSO) algorithm,
that is capable to implement different policies with respect to
the use of global information, as this becomes available via
gossiping during the computation. Such a PSO flavor is easy to
tune, in order to implement different strategies, while balancing
exploration and exploitation. Preliminary experimental results
are shown to assess the usefulness of the proposal.

Keywords-P2P function optimization; distributed Particle Swarm
Optimization; P2P distributed computation.

I. INTRODUCTION

Distributed function optimization has a long research his-
tory [1]. Usual applicative scenarios assume the availability of
either a dedicated parallel computing facility, or specialized
clusters of machines. In both cases, the coordination of the
distributed task is modeled in a centralized fashion, greatly
simplifying its management. The limitations shown by the
scalability and the robustness of these approaches are well
known.

Recently, researchers have paid increasing attention to sys-
tems organized in decentralized P2P networks of solvers,
distributed on a large collection of loosely-coupled machines,
that cooperate to solve a common task [2], [3]. The long term
goal of this kind of studies is to come up with an algorithmic
design that can provide reliably good results in unsupervised
and possibly heterogeneous systems.

The common requirement in these cases is that the optimiza-
tion tasks must be successfully and effectively performed with-
out any specialized infrastructure or central coordinating server
being required. Ideally, these systems should self-organize
themselves in a completely decentralized way, avoiding single
points of failure and performance bottlenecks. The advantages
of such approach are thus extreme robustness and scalability,
plus the capability of exploiting existing (unused or underused)
resources, like idle computer labs within a given organization,
or a volunteer computing system architecture.

A reasonable approach is to partition the optimization job in
a pool of independent tasks to be performed, and assign them
to the available nodes, taking care of balancing the load. This
can be done either using a centralized scheduler, or using a
decentralized approach. This multi-algorithm approach is well
known and widely used and it can be achieved in a decentral-
ized fashion as well [4]. Anyway, it kind of “smoothes down”

the challenge of finding a distributed algorithmic design, in
that it uses each interconnected machine as a separate solver,
rather than finding a proper decentralized design for a given
algorithm to enable the cooperation of several, possibly very
numerous resources.

An interesting research trend investigates a P2P approach,
where a distributed algorithm spreads the load of a single
optimization task among a group of nodes, in a robust, decen-
tralized and scalable way [5]. By offering such a possibility,
the need of solving an optimization task in a bounded time
and/or with a given precision could be achieved by easily
deploying identical solvers in a large-scale network and either
focusing on the quality (to obtain a more accurate result by a
specific deadline) or on the speed-up (to perform a predefined
amount of computation over a function in the shortest possible
time).

In this paper we present a novel Particle Swarm Opti-
mization (PSO) design, that can exploit such a distributed
environment and maximize the impact of a gossip-based
information sharing mechanism, to avoid getting stuck in
suboptimal region of the problem domain. Experiments in a
real deployment show the viability of the approach and the
effectiveness of the design.

In the following, Section II presents a brief description of
the standard PSO algorithm and discuss some of its distributed
variants. Section III outlines the distributed PSO algorithm
we devise and details the novelty of its design. Section IV
characterizes the distributed scenario we target and implement
in our experiments. Then experimental results are presented
and discussed in Section V. We draw our conclusion in
Section VI.

II. BACKGROUND

We provide in this section a brief description of the standard
PSO algorithm. We also recall some recent works on PSO
in fully decentralized systems, to better contextualize our
contribution.

A. Particle Swarm Optimization

PSO [6] is a nature-inspired method for finding global
optima of functions of continuous variables. The search is
performed iteratively updating a small number N (usually
in the tens) of random “particles” (solvers), whose status
information includes the current position vector xi, the current
speed vector vi, the optimum point pi and the fitness value
f(pi), which is the “best” solution the particle has achieved
so far. The particle swarm optimizer also tracks the global best
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position g, in which the swarm has achieved the best fitness
value obtained so far by any particle in the population.

At each iteration, every particle updates its velocity and
position as described by the following equations:

vi = vi + c1 · rand() · (pi − xi) + c2 · rand() · (g − xi) (1)
xi = xi + vi (2)

In these equations, rand() is a random number in the range
[0, 1], while c1 and c2 are learning factors, whose default
values are conventionally set as c1 = c2 = 2. The pseudo
code of the procedure is given in Algorithm 1.

foreach particle i do
Initialize i;

end
while maximum iterations or

minimum error criteria is not attained do
foreach particle i do

Compute current fitness value f(xi);
if f(xi) is better than f(pi) then

pi ← xi;
end

end
g ← bestOf(pi), i = 1 to N ;
foreach particle i do

Compute velocity vi according to equation 1;
Update position xi according to equation 2;

end
end

Algorithm 1: The standard PSO algorithm.

Particle speeds on each dimension are bounded to a maxi-
mum velocity vmaxi, specified by the user.

B. PSO on incomplete topologies

As one of the most investigated heuristics inspired from
nature, PSO is the subject of study of a vast scientific produc-
tion [7]. Given the remarkable behavioral diversity that can be
obtained by tuning its parameters and shaping the way swarms
interact with each others, numerous distributed variants have
been brought up as well [8], [9], [10].

The above-described version of PSO assumes that all parti-
cles agree on the global best point found so far, and is often
referred to as the “classical” or “full-information” version.
Effects of incomplete topologies on the performance of PSO
have been studied for different types of graphs [11]. Such
studies were motivated by the observation that incomplete
topologies may prevent the system from concentrating too
much on early-found local optima, therefore improving so-
lution quality. Full information has generally been shown to
outperform partial topologies [12]. Yet, our work focuses on
cases where incomplete information is a consequence of the
network topology, and global data maintenance is not practical.
Some recent publications presented PSO flavors adapted for
P2P overlay networks [13], [14].

Improvements with respect to naiver versions and robustness
even in faulty environments have been shown [15], [16],
that rely mostly on the periodic diffusion of the current best

solution among the distributed solvers and exploit the effec-
tiveness of gossip protocols in spreading relevant information
among peers. In general, gossip-based distributed computing
has shown to be able to drive the gradual improvement of
evolutionary algorithms, while achieving both scalability and
quality [17].

Within this context, it is still poorly understood how to
optimally use the information that is gossiped from node to
node. We argue that is not only the rate of gossiping that
affects the performance, as it has been shown [18]. Once we
have the most up-to-date information available at each peer,
the local solver still can choose whether to use it as soon
as possible, or to schedule the utilization in a strategic way.
The contribution of this paper is to present the design of a
P2P gossip-based PSO algorithm that is capable to implement
different policies with respect of the use of global information.
Differing from the works cited above, our approach focus on
the way information generated remotely is handled locally
at each solver, rather than on studying the performance of
the information spreading protocol, some global population
control mechanism or the optimal setting of the basic PSO
parameters.

III. ALGORITHM DESCRIPTION

The distributed PSO algorithm we propose offers a novel
way to improve the exploration of the search domain, not to
cut the search short towards the current best solution (likely
to be suboptimal). The idea is to have an algorithm that can
choose among different policies. These policies determine how
and when the global information about the current best value
found — available at any time as communicated by the other
peers — should be used. At least two good reasons not to
immediately consume the shared data come to mind:

1) to mitigate the event of an early convergence to subop-
timal attraction basins, by not moving too fast towards
the current optimal value;

2) to enhance the exploration of the search space, by
avoiding that the swarms get too close to each other
at an early stage.

By applying policies that define how to use the knowledge
about the current global optimum, the PSO algorithm can be
tuned in a way that is easier for the user to understand, with
respect to the tuning of the various PSO parameters, whose
behavioral effects are often obscure or at least debatable. We
are aware that top quality results on hard problems can only
be achieved by a careful and clever tuning of the algorithm
on function characteristics. Our contribution and the results of
our experiments point out, nonetheless, that attention should
be paid not only to the core algorithmic parameters, but also
to the way the shared information is diffused and consumed
by the various agents of the distributed optimization task.

The key idea of our proposal is to maintain an ever-
refreshing knowledge of the best point evaluated so far by any
swarms in the network, but without necessarily substituting the
local swarm’s global best with this value. The overall global
best should be rather used at a time and in a way that serves
a given strategy. Table I gives the description of the notation
we use in the following.
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TABLE I: Description of the adopted notation.

Notation Meaning
gb the local swarm’s global best
ogb the overall global best, periodically gossiped

among the solvers
p the given policy to apply
E overall number of function evaluations per-

formed in the network

We can describe the general design of our distributed PSO
algorithm as follows. Each swarm iteratively performs these
steps:

1) update the ogb via a gossip message exchange
2) apply p to decide about using either gb or ogb to move

the current particle
3) move the particle according to the decision taken
4) evaluate the function in the particle’s position
5) update the records about the local and global best values

(both gb and ogb) as needed
The strategic decisions that will impact the behavior of the

algorithm are then implemented in the policy p. The policy
may be simple or very complex, may use a limited amount of
local knowledge or it may use any shared information (beside
the value of ogb) that can be made available via peer-wise
communication among the solvers. Trying to give a minimal
set of requirements, we consider that a good policy should
indicatively specify:

– how to decide to use ogb in a given PSO iteration (what
triggers the decision, if it depends and involves the whole
swarm or the single particles, etc.);

– for how many subsequent iterations ogb will substitute
gb to compute the speed of the particles (how long each
application of the current global optimum will last in the
local solver);

– when this substitution shall permanently or temporarily
end (what determines the end of each “ogb session”).

In Section V we show experimental results obtained by
running the described distributed PSO algorithm with a simple
policy.

IV. DISTRIBUTED FRAMEWORK CHARACTERISTICS

We target the general framework described in [18], thus con-
sidering a parallel islands scenario, in which several swarms
of particles are initialized at random over a function domain.
Each swarm is hosted by a peer and peers are distributed in a
random overlay. During the search, every swarm periodically
exchanges information with another swarm hosted by a peer,
that is selected at random from the local neighborhood. At
each peer, the neighborhood is maintained by means of a
peer sampling service, implemented by the NEWSCAST gossip
protocol [19].

All the communication mechanisms are based on gossip
algorithms implemented on top of this service. Each peer
always propagates the current best solution to others, by
periodically sending it to one randomly chosen peer. Upon
receiving this information, a peer updates its own current best
solution, but only if the received one is better. If this is not the
case, no further information is sent back to the sender. Thus

TABLE II: Test functions. L: number of local minima.

Function f(x) L

Rosenbrock20
∑19

i=1 100(xi+1 − x2
i )

2 + (xi − 1)2 1

Zakharov20
∑20

i=1 x
2
i +(

∑20
i=1 ixi/2)

2+(
∑20

i=1 ixi/2)
4 1

Rastrigin20 200 +
∑20

i=1[x
2
i − 10 cos 2πxi] ≈ 106

Griewank20
∑20

i=1 x
2
i /4000−

∏20
i=1 cos

(
xi/

√
i
)
+ 1 ≈ 1019

the epidemic protocol implements a simple push approach.
The period of gossip is assumed to be at least that of one
function evaluation, thus a communication event is triggered
after each function evaluation at all peers. As it is known by
the behavior of the epidemic protocols, the time to propagate
this way a new-found best solution to every node is logarithmic
(in expectation) with respect to the size of the network.

This kind of lightweight and asynchronous communication
among swarms suits well a large-scale, possibly heterogeneous
environment. Though it could be beneficial in terms of abso-
lute performance, the swarms are not required to perform a
similar number of function evaluations in a given time, nor
they have tight time constraints to perform mutual information
exchanges.

V. EXPERIMENTAL RESULTS

The results presented in this section have been obtained in
a real distributed environment. We use our open source Java
implementation of a distributed optimization framework [20]
and the grid facilities provided by Grid5000 [21] In this kind
of experiments we do not focus on the absolute performance of
the algorithm, but rather on the differences among the adopted
configurations.

We deploy 50 solvers (swarms) on an equal number of
machines on the grid. Their random P2P overlay is maintained
by the NEWSCAST gossip protocol, running on each machine.
At each peer, the local neighborhood constantly represents
a random subset of the network. At the beginning of each
PSO iteration, a swarm updates its local information according
to the messages that have been received since the update
phase of the previous iteration. At the end of each PSO
iteration, a peer solver is selected at random by each peer
in a local neighborhood of 20 peers as the recipient of an
update message. No churn and no faults are considered in
this scenario. At each peer, the solver consists of a swarm
of 4 particles, whose parameters are set as follows: w1 =
0.9 , w2 = 0.4 , c1 = 2 , c2 = 2.

We evaluate four well known benchmark functions, de-
scribed in Table II. They differ in the number and the distri-
bution of their local minima, whereas the value of the global
minimum is 0 for all of them. We perform 10 runs for each
experiment, taking the average best value. The overall number
of function evaluations in the network, equally partitioned
among the solvers, is set as E = 220. The policy adopted
for these experiments is the following:

– start using ogb instead of gb whenever gb has not been
improved in the latest N iterations;
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Fig. 1: Results on unimodal and multimodal test functions.

– continue using ogb until each particle in the swarm has
been moved at least once AND gb is not improved (this
being both a duration and a stopping criterion).

For each function, we run different experiments by choosing
N = log2(E) and N = 1. This latter value means that ogb
is always used instead of gb, thus making PSO behaving
like the version presented in previous works [18], [15]. We
run one more set of experiments with no data exchange
among the peers (thus making ogb of no use), to compare
the performance.

As Figure 1 shows, our design allows to implement a
flexible PSO algorithm, whose performance varies according
to the strategy implemented by the given policy. The results
we show for the Rosenbrock function (Figure 1(a)) seem to
confirm the idea that the faster the gossiped information is
spread and used among the solvers, the better will be the final
result. It can be clearly seen how the outcomes get increasingly
better while we choose to use ogb more and more often, with
respect to gb. The same trend is visible in the outcomes or the
Zakharov function (Figure 1(b)), where the distributed PSO
algorithm is known to perform really well. The logarithmic
scale of the vertical axis emphasizes the effect of the full
exploitation of ogb, but we can see that by applying our
policy we are anyway able to improve the baseline by some
orders of magnitude. We notice that both the Zakharov and
the Rosenbrock functions are unimodal.

The case for the Rastrigin function (Figure 1(c)) and for
the Griewank function (Figure 1(d)) is quite different. It turns
out that, by slowing down the rate at which PSO prefer ogb
over gb throughout the computation, we can actually avoid an
early convergence to suboptimal basins. The results with the
Rastrigin function are particularly significant, because PSO
is known to have severe troubles in getting out from its
local minima. Thus, by implementing a simple policy about
the usage of the available global knowledge, we are able
to obtain improvements that would otherwise cost a long
time spent in tuning the basic PSO parameters towards a
“good” configuration. We notice that both the Rastrigin and
the Griewank functions are multimodal.

As a general remark, our design seems to improve PSO’s
ability of escaping from local minima, whereas it slows down
the pursuit of the global optimum when PSO is searching
smoother domains. Thus, we may conclude that using the
proposed policy is useful while optimizing functions that are
known (or expected) to present several local (suboptimal)
attractors.

Furthermore, we notice that the policy implemented in our
experiment is very simple and static. This can be the main
reason why, being anyway capable to improve the solution
quality for multimodal functions, it is not effective enough to
prevent PSO to be eventually trapped to suboptimal basins, as
the long horizontal lines of Figures 1(c) and 1(d) clearly show.
The same reason could be behind the analogous phenomenon
of excessively slow improvement showed by Figures 1(a) and
1(b). A policy that dynamically adapts to the current state
of the computation, as new information becomes available to
each peer via usual decentralized mechanisms, can lead to
better results and is currently being investigated.
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The limited set of results obtained so far is not enough to
assess a generalized pattern that holds in different scenarios.
Nonetheless, we believe it may point out a novel profitable
research direction, which have a large potential to be deepened
and extended. Particularly interesting may be the analysis of
the behavior of the algorithm with respect to different values
of N , or with respect to different local swarms sizes. Both
of these parameters can have a significant impact on the
performance of the algorithm, which we intend to examine
in our future work.

VI. CONCLUSION

The contribution of this paper belongs to the emerging
domain of P2P-distributed function optimization. It is partic-
ularly important in such a domain, besides the tuning of the
optimization algorithm itself, the way useful information is
shared among the participants and how each of them chooses
to use it.

We presented the design of a P2P gossip-based PSO al-
gorithm that is capable to implement different policies with
respect to the use of gossiped information about the overall
best point known at any time in the network. Preliminary
experimental results show how the performance of such an
algorithm can vary, depending on how quickly each solver
makes use of the information sent by other peers. The out-
comes show that the quality of the optimization can benefit
from adopting flexible strategies like the one we propose. This
may lead to a better exploration of the function domain and
help avoiding early suboptimal convergence.

Our results, as those of previous works [5], [16] on P2P
decentralized function optimization, show that exploiting large
scale, loosely coupled and possibly heterogeneous distributed
systems to obtain good quality results is a viable approach.
Particular care must be dedicated not only to modify the
algorithms to fit the specific distributed environment, but also
to model the diffusion of information among the participants
in the most effective way. Among the other possible research
directions, we think that is of utmost interest the study of
how different overlay communication topologies and different
computational capacities of the peers may affect the overall
quality of the results.
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