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Abstract—Virtual Networks (VNs) have attracted considerable
attention in the last years since they offer a flexible and economic
approach to deploy customer suited networks and run their
applications. Such applications have different requirements, such
as topology, security, resilience, and thus pose different challenges
to the network embedding problem. In the last three decades
of research in distributed systems, one core aspect discussed is
the one of synchrony, since it impacts directly the complexity
and functionality of fault-tolerant algorithms. In this paper, we
argue that VNs and a suitable VN embedding process offer both
abstractions and techniques to discuss and address the support of
applications with hybrid synchrony demands, thus contributing in
core aspects of reliable distributed systems. This work introduces
the general idea of Hybrid Synchrony Virtual Networks (HSVNs)
and presents a mathematical model that formalises the embedding
of HSVNs into a physical network. Our results show that the
model proposed is able to, correctly and efficiently, allocate
resources on the SN, in an optimal manner.

Keywords—Virtual Network; Distributed Systems; Synchrony

I. INTRODUCTION

Virtual Networks (VNs) have attracted considerable atten-
tion in the last years, both as an experimental environment to
evaluate new protocols, as well as a technology to be integrated
in the current network architectures. As can be seen in the
literature, the diversity of applications pose different require-
ments on their supporting VNs, e.g., topology, security, and
resilience requirements. In this context, network embedding, a
key aspect that defines how resources of a physical network
(also called Substrate Network - SN) are used to support VNs,
assumes several variants according to the kinds of applications
and respective VNs demands.

In the last three decades of research in Distributed Systems
(DSs), also triggered by the impossibility result by Fischer,
Lynch and Paterson in the 80’s [1], one core aspect discussed
is the one of synchrony. It is known that the development
of DSs depends on the guarantees provided by the underly-
ing infrastructure. If, on the one hand, infrastructures with
synchronous guarantees contribute towards development of
simpler and reliable systems, on the other hand providing such
guarantees may be very expensive or even infeasible. Thus,
the assumption of asynchronous environments was commonly
adopted because both it is considered more realistic and any
solution for the asynchronous case can be generalized to the
synchronous case. Since dealing with the uncertainty inherent
to asynchronous models requires complex algorithms, and due
to evolution in networking technologies, more recently the

assumption of partial synchrony has been considered in the
literature [2], [3].

In this paper, we propose and argue that VNs and the VN
embedding process offer both abstractions and techniques to
support applications with Hybrid Synchrony (HS) demands
(or partial synchrony). To the authors’ best knowledge, this
is undiscussed in the VN field and, as mentioned above,
of paramount importance to host a prominent class of DSs.
More specifically, the contributions of this paper are: (i) we
introduce the need and the idea of VNs with hybrid synchrony
requirements, characterise the kind of support needed from
SNs to cope with these VN requirements, and thus formalise
the main abstractions to discuss about hybrid synchrony both at
VN and at SN level; (ii) we provide an example of an important
distributed application, namely a failure detector, that benefits
from hybrid synchronous infrastructures; (iii) we discuss and
formalise the network embedding problem for VNs with hybrid
synchrony requirements through a mathematical model; (iv) we
evaluate the performance of our model in terms of mapping
cost, physical resources load, embedding time, and measure
the efficiency of our approach to spare synchronous resources.

The paper is organized as follows: Section II discusses
related work. In Section III, we motivate the importance of
hybrid synchrony to support DSs. In Section IV, we propose
and formalize the notion of VNs with hybrid synchrony (HS),
which we call HSVNs, together with the embedding model.
Section V includes performance evaluation, and Section VI
illustrates an example for the HSVN mapping. Finally, in
Section VII , we conclude the paper.

II. RELATED WORK

Revising the literature, we found several works treating
the VNs mapping problem through two main approaches:
optimization models and heuristics. Chawdhury et al. [4]
propose a relaxed version of mixed integer program, where
the objective function is a weighted sum of node and link
mapping, with the goal of increasing the acceptance ratio
and decrease cost. Bay et al. [5] propose a security-aware
mapping model where three levels of security are discussed.
Yu et al. [6] propose an algorithm that combines VN mapping
with substrate link backup to improve VNs resilience. Unlike
the previous works, Hsu et al. [7] map virtual links through
path splitting technique, in addition, path migration is used
to maximize the number of coexisting VNs. Botero et al. [8]
were the first to propose a heuristic algorithm that considers
the CPU of the physical paths intermediate nodes. For wider
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collection of VNs mapping, see Belbekkouche et al. [9], for
survey.

In the tropic of VNs mapping, we find that our work is
nearer to those who were concerned with delay constraints.
For example, Zhang et al. [10] propose a heuristic algorithm
for mapping virtual multicast service-oriented networks subject
to delay and delay variation. They consider SNs composed
of links with maximum delay. Their work benefits real-time
and interactive applications, where packets are supposed to be
received at the destination within specific time bounds, and the
delay difference of packets reception at multiple destinations
should be minimal.

Inführ et al. [11] addressed the VNs mapping problem with
delay constraints besides routing and location constraints. The
SN considered is composed of links with maximum delay,
and nodes that have maximum routing capacity and location
constraints. Four different categories were used to represent
cases in which VNs have different sets of requirements re-
garding BW, delay, and nodes CPU: (1) web slice for low BW
requirements, short delays, and no specific CPU requirements,
(2) stream slice for medium to high BW requirements, no
delay bounds, and 3 processing units per routed bandwidth,
(3) P2P slice for medium BW and CPU requirements and no
delay bounds, and (4) VoIP slice for medium BW and delay
requirements, and high CPU requirements.

The study presented in this paper is distinct from the
aforementioned works in the following aspects: (1) we consider
the delay constraints (or time bounds) on both links and nodes,
not only links, since in the considered class of DSs some
links should have time guarantees in delivering the messages,
and some nodes should be performing real-time tasks; (2) a
physical path is considered synchronous not only when its
links are synchronous, rather the path’s intermediate nodes
should be all synchronous as well, since they play role in
the routing process, impacting the source-destination delay;
(3) the mapping model we propose aims at optimizing the
usage of the synchronous resources whose building cost is
high comparatively. For example, some VNs slices adopted
in [11] had no delay requirements, yet the SN considered
had no distinction in kind of resources, which results in an
unneeded cost, and (4) unlike other works, the SN we consider
is hybrid in its components synchrony. Some nodes and links
have time bounds and others do not, which is suitable for DSs
applications that have hybrid synchronous requirements.

III. WORK MOTIVATION: SYNCHRONY MODELS IN
DISTRIBUTED SYSTEMS

The design of DSs is strongly dependent on the assump-
tions about the environment where they execute. For instance,
different assumptions about process execution speeds and mes-
sage delivery delays would require specific design decisions.
Thus, an important aspect to consider is the synchrony level
offered by the underlying infrastructure. In an asynchronous
system, no assumption about process execution speed and/or
message delivery delays is made. Conversely, in a synchronous
system, relative processing speed and the message delays are
bounded [12].

Assuming that, underlying infrastructures behaving asyn-
chronously showed to be realistic to a wide range of applica-

tions. Although they are very attractive, key problems of fault-
tolerant computing are not solvable under the asynchronous
assumption. For example, Fischer, Lynch and Paterson have
proven that consensus cannot be solved deterministically in
asynchronous systems where at least one process may crash
[1].

By asserting that a system is synchronous, system develop-
ers can rely on the timely behaviour of the components. This,
in turn, enables one to employ simpler algorithms than those
required to solve the same problem in an asynchronous system
[12]. For instance, processes can perfectly distinguish faulty
from slow processes. However, building synchronous systems
requires infrastructures composed exclusively by timely com-
ponents, which could be very expensive or even infeasible.

Hybrid models assume intermediate levels of synchrony.
Cristian and Fetzer proposed the timed-asynchronous model
[2], where the system alternates between synchronous and
asynchronous behaviour. In that model, the degree of syn-
chronism varies over time. In [3], Verı́ssimo presented the
wormhole model, that exploits the space dimension to provide
hybrid synchrony. This means that timely guarantees of system
components may be different. For instance, one part of a
system would behave synchronously, while other part would
be fully asynchronous.

Once behaviours caused by faults and arbitrary delays are
expected in the conventional infrastructures, hybrid models
become a good option to improve the development of fault-
tolerant applications. By enforcing small parts of the system
to behave synchronously while other parts are asynchronous,
stronger properties provided by synchronous parts can be
enjoyed by the system as a whole. For this reason, hybrid
systems overcome limitations of the homogeneous systems.

Example: Failure detector - Failure detectors have
attracted interest in the development of reliable DSs, since
consensus and related problems (e.g., atomic broadcast [13])
can be solved with it. The failure detection approach can also
be adapted to solve other relevant problems, such as predicate
detection [14] and election [15].

Failure detectors are used to detect faulty processes in a
group of processes, and they are defined in terms of abstract
properties, namely accuracy and completeness. A failure de-
tector that satisfies strong accuracy and strong completeness
properties is a perfect failure detector (P) [13]. It means it
never makes mistakes (suspect erroneously) and, eventually
detects every crash.

A failure detector P can be built on top of synchronous
environments. The problem is that implementing P in fully
synchronous environments depends on the existence of an
underlying infrastructure with timely guarantees (sometimes
infeasible) while implementing it in asynchronous systems is
even impossible.

Macêdo et al. [16] propose an implementation of a failure
detector P that runs on hybrid synchronous environments.
They assume the underlying system has synchronous pro-
cesses, some channels behave synchronously and others asyn-
chronously.

Basically, each module fdi periodically asks to processes
pj if they are alive. Upon receiving a message “are you alive”,
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every correct process replies to the sender with a “I’m alive”
message. Upon receiving the replying message, fdi knows the
process pj is up. However, if a timeout expires, it means that
no answer from pj was received in the last τ time units. If the
channel connecting processes fdi to fdj is synchronous, then
it is known that the process pj has failed. Process pj is added to
the faulty list in pi, and a notification informing the detection
is sent to all other processes. Otherwise, if the channel is
asynchronous, there is no way to detect if the process pj has
failed or the reply message is delayed.

We illustrate a failure detector P running in a hybrid
synchronous environment in Figure 1. It shows a hypothetical
topology for an application composed by six processes. All
processes are hosted in synchronous nodes, and they com-
municate with each other through payload channels (pai).
Further, a failure detector module fdi is attached to each
process Pi. Connection between failure detectors modules
in a synchronous partition is done by synchronous channels
(solid lines in the figure). Connection between fd modules
in different partitions can be asynchronous (dotted lines).
In order to improve legibility, payload channels pai, CPU
and bandwidth constraints were omitted in the figure. In this
example, the payload channels should be represented by a
complete graph connecting every pair of processes.

Fig. 1: Application topology with failure detector P

Although not all failure detectors are in the same syn-
chronous partition, the P implementation allows every applica-
tion process to benefit from a perfect detection. Even in cases
in which not all fdi modules belong to a synchronous partition,
it is possible to take advantage of the existing synchrony,
provided that some subgraphs are synchronous. In such cases,
assumptions from weaker failure detectors (e.g., ♦P,♦S [13])
would be ensured and still useful for the applications.

Another interesting aspect of the hybrid synchronous sys-
tem is that application workload is totally independent of the
failure detector modules. Application processes can commu-
nicate through asynchronous channels and still enjoy stronger
properties provided by the failure detector service.

IV. OUR PROPOSAL: HYBRID SYNCHRONY VIRTUAL
NETWORKS

Our proposal lays in offering VNs to support DSs applica-
tions with partial synchrony. The rational behind it is mainly
twofold. First; the synchronous elements in DSs are consider-
ably more expensive than the asynchronous ones, since they
require fundamental handling mechanisms. Resource sharing,
provided by the nature of VNs, allows simultaneous use for
this class of expensive resources. Secondly, VNs allow flexible

resource allocation mechanisms by the Infrastructure Service
Provider (ISP). This provides modern DSs applications with
scalability which is an important aspect in the field.

The aforementioned reasons lead to the abstraction of new
type of VNs: the Hybrid Synchrony Virtual Networks (HSVN).
They are virtual networks that have a subset of nodes and links
that obey time bounds for processing and communication. This
abstraction put us to meet two main aspects associated: (i) the
SN design, since VNs inherit properties that only exist in the
underlying infrastructure, and (ii) suitable efficient embedding
process for the HSVN.

Although HSVN can run on fully synchronous SN, this de-
cision would have to pay the excess in an unneeded cost, since
even asynchronous virtual nodes and links will be mapped on
synchronous physical ones. We argue that hybrid synchronous
SN, combined with a suitable embedding, is capable to answer
the timely requirements in an economic manner. Hybrid syn-
chronous SNs have two classes of nodes: (i) synchronous nodes
with functioning time guarantees, achieved through the imple-
mentation of periodical real-time tasks, and (ii) asynchronous
nodes that have no timely guarantees. Analogously, two classes
of physical links are available: (i) synchronous links that have
time-bounded messages transmission delay, achieved through
the implementation of Quality of Service (QoS) policies and
admission control, and (ii) asynchronous links that have no
timely guarantee.

A. The HSVN embedding model

We propose a HSVN embedding mathematical model in
the shape of a Mixed Integer Program (MIP). Our model
answers hybrid synchrony requirements and, at the same time,
optimizes the synchronous resources usage besides the BW
and CPU. The HSVN exploits the space dimension to provide
hybrid synchrony [3].

Variables definition- The substrate network is represented
by an undirected graph G(N,L), composed of a set of physical
nodes N connected through a set of physical links L. N is
given by Ns ∪ Na, where Ns and Na contain all the syn-
chronous and asynchronous SN nodes, respectively. Similarly,
L is given by Ls ∪ La. Each virtual network V Nk belonging
to the set of virtual networks V N will be presented by an
undirected graph Gk(Nk, Lk), where Nk = Nk

s ∪ Nk
a and

Lk = Lk
s ∪ Lk

a. We consider that there is a cost c(i, j) for
one unit of traffic going through the physical link (i, j) ∈ L.
Analogously, c(i) is the cost for processing one unit of traffic in
node i ∈ N . c(i, j) and c(i) are of higher value if the link and
node were synchronous. A binary function sync(i) expresses
the SN nodes synchrony: sync(i) = 1 if i ∈ Ns, otherwise
sync(i) = 0 (i.e., i ∈ Na). Similarly, sync(i, j) expresses
the SN links synchrony. Functions sync(ik) and sync(ik, jk)
indicate the virtual nodes and links synchrony respectively
(ik ∈ Nk and (ik, jk) ∈ Lk). Besides synchrony, two other
attributes are considered for the SN and VN elements: nodes
CPU , and links bandwidth (BW ). The syntax for those
attributes on the SN and VN respectively are: cpu(i), bw(i, j),
cpu(ik), and bw(ik, jk). Finally, we define the output variables
for our mathematical model: a binary function σ(ik, i) that
expresses whether node i ∈ N maps node ik ∈ Nk, and
a binary function ρ(ik, jk, i, j) that expresses whether the
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physical link (i, j) ∈ L is part of the path that maps the virtual
link (ik, jk) ∈ Lk.

The embedding model- The Objective Function (O.F.)
we consider is inspired from [10], which is the total resources
used (e.g., BW and CPU). We modify the O.F. with the goal
of minimizing the use of synchronous resources besides the
BW and CPU. For this purpose, c(i) and c(i, j) are inserted
in (1).

Objective: minimize∑
∀V Nk∈V N

∑
∀(ik)∈Nk

∑
∀(i)∈N (σ(ik, i) · c(i) · cpu(ik))

+
∑

∀V Nk∈V N

∑
∀(ik,jk)∈Lk

∑
∀(i,j)∈L(ρ(i

k, jk, i, j)

·c(i, j) · bw(ik, jk))
(1)

Subject to

- Capacity constraints:
for every (i, j) ∈ L∑
∀V Nk∈V N

∑
∀(ik,jk)∈Lk

ρ(ik, jk, i, j)·bw(ik, jk) ≤ bw(i, j) (2)

for every i ∈ N∑
∀V Nk∈V N

∑
∀ik∈Nk

σ(ik, i) · cpu(ik) ≤ cpu(i) (3)

- Nodes mapping constraints:
for every V Nk ∈ V N , ik ∈ Nk∑

∀i∈N

σ(ik, i) = 1 (4)

for every V Nk ∈ V N , i ∈ N∑
∀ik∈Nk

σ(ik, i) ≤ 1 (5)

- Links mapping constraint:
for every V Nk ∈ V N , (ik, jk) ∈ Lk, i ∈ N∑
∀j∈N

ρ(ik, jk, i, j)−
∑
∀j∈N

ρ(ik, jk, j, i) = σ(ik, i)− σ(jk, i)

(6)

- Nodes synchrony constraints:
for every V Nk ∈ V N , ik ∈ Nk, i ∈ N

sync(ik) · σ(ik, i) ≤ sync(i) (7)

- Links synchrony constraints:
for every V Nk ∈ V N , (ik, jk) ∈ Lk, (i, j) ∈ L

sync(ik, jk) · ρ(ik, jk, i, j) ≤ sync(i, j); (8)

for every V Nk ∈ V N , (ik, jk) ∈ Lk, (i, j) ∈ L

sync(ik, jk) · ρ(ik, jk, i, j) ≤ sync(i) ∗ sync(j); (9)

The capacity constraint (2) assures that the total bandwidth
of the virtual links, mapped on paths that include a certain
physical link, does not exceed the bandwidth capacity of this

physical link. Similarly, constraint (3) represents the equiv-
alent restriction regarding nodes CPU . The node mapping
constraint (4) assures that each virtual node is mapped, and
only once, on a physical node. Without this constraint, and
since the O.F. aims at minimizing cost, then the optimizer
might choose not to map any node, which is against the goal.
Constraint (5) assures that virtual nodes belonging to the same
V N are not mapped on the same physical node. This is to
achieve load balancing besides improving the reliability, since
the unavailability of a SN node will impact, at most, one
node on a given VN. This procedure minimizes the number of
virtual nodes prone to failure by a physical node failure. This
is an important aspect in fault tolerant distributed systems,
where a maximum number of faulty processes is accepted
to allow the system to tolerate the fault, i.e., not to let the
fault impact the system output. For any virtual link (a, b),
the links mapping constraint (6), adopted in [5] and [11],
assures the creation of a valid physical path. Because the
right side of the equation will be 1 and -1 for a and b
respectively, meaning a will have an outgoing arc and b an
ingoing one. For all other nodes on the SN, the right side
of the equation will be zero, thus the concatenation of arcs
will form a valid path. The nodes synchrony constraint (7)
assures that synchronous virtual nodes are mapped only on
synchronous SN nodes, whereas asynchronous virtual nodes
are allowed to be mapped on synchronous or asynchronous SN
nodes. This is acceptable because the synchronous SN nodes
supply what the asynchronous ones do, but the reverse is not
valid. Similarly, the links synchrony constraint is presented in
(8). Note that the allocation of synchronous physical resources
for asynchronous virtual demands is done only if there are
no other possible options (physical asynchronous resources
got exhausted). This is achieved via minimizing the O.F.
Finally, constraint (9) guarantees that when the intermediate
physical nodes on the synchronous physical path should be
also synchronous. This is because these nodes play role in the
routing process, thus impacting the source-destination delay.
After solving the mathematical model, each virtual node is
mapped to one physical node, and each virtual link is mapped
to one physical path at maximum, where a physical path can
be a unique physical link or a concatenation of physical links.

V. PERFORMANCE EVALUATION

We evaluate the performance of our model through: 1)
mapping cost, 2) physical resources load, 3) optimizing the
usage of synchronous resources and, 4) embedding time.

A. Workloads and tools

Like some other works [17] [5], the physical and virtual
networks were randomly generated. For this we used BRITE
[18] tool (Boston university Representative Internet Topology
gEnerator) with Waxman [19] model. We implemented the
model with ZIMPL language [20] (Zuse Institute Mathemat-
ical Programming Language) and used CPLEX Optimization
Studio [21] to solve the MIP, running on a computer with a
CPU of 4 cores and 1.60 GHz, and 2 GB of main memory. We
ran twelve experiments divided into three groups, A, B and C,
with VNs total size of 10, 20, and 30 nodes respectively. Table
I describes the parameters for each experiment.
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TABLE I: Experimentsparameters

Group:VN size A:10 routers,B:20 routers,C:30 routers
Scenario 1 2 3 4
SN size 25 nodes
SN BW uniformly distributed: 1Gbps-3Gbps
SN CPU nodes fully free initially
VNs BW uniformly distributed: 100Mbps-1Gbps
VN CPU 10, 15, 25 % of SN nodes CPU
SN sync. 30% 100%

VNs sync. 0%. 30% 60% x%

In all the experiments, the SN size was fixed in 25
nodes. Initially, all CPUs are free, and links BW is uniformly
distributed between 1-3 Gbps. In scenarios 1, 2, and 3 of
each group, the SN was set up with 30% of synchronous
resources, whereas in scenario 4 of each group the SN was
fully synchronous. This scenario will be the base for cost
comparison since it simulates the case where all the SN nodes
and links have time bounds.

The VNs were generated with 3, 4, or 5 nodes each, the
virtual nodes have 10%, 15%, or 25% of the SN nodes CPU.
The VNs links BW was uniformly distributed between 100
Mbps and 1 Gbps. The VNs synchrony varies within each
group: 0% in scenario 1, 30% in scenario 2 and 60% in
scenario 3. Note that the VNs synchrony in the fourth scenario
of each group was referred to as x% because in this scenario
the mapping cost will be independent of the VNs synchrony
requests since the SN resources have no differentiation in
synchrony (the SN is fully synchronous).

B. Results

The first parameter evaluated is the mapping cost, rep-
resented by our model objective function This parameter is
a combination of CPU and BW used. Figure 2 depicts the
mapping cost for each of the twelve experiments performed.
We note down three main observations: (i) within each group,
the mapping cost increases gradually with the increment of
the VNs synchrony requests. For example, the mapping cost
increased 173% when the VNs synchrony demands increased
from 0% in B1 to 30% in B2, and increased more 76% in
B3 with 60% VNs synchrony demands. This is explained by
the increase in physical synchronous resources (nodes and
links) usage, which are more expensive. (ii) by comparing
the counterparts experiments of the three groups, e.g., A2,
B2, and C2 (all with 30% VNs synchronous demands), we
notice that the mapping cost increases. This is due to the
incremental VN size, which tends naturally to reserve more
physical resources. (iii) comparing the three first experiments
within each group with the fourth one, we can say that our
model can host hybrid VNs in an economic way. That is, the
SN can be used in an optimized way to allocate these demands.
For instance, experiment C3 depicts the mapping of a hybrid
VN with 60% of synchrony demands on a hybrid SN with
30% of synchronous resources. Whereas mapping the same
VNs demand on a fully synchronous SN, experiment C4, is
subject to an extra 94% un-needed cost. So, hybrid VNs do not
need fully synchronous SN, rather a hybrid SN with suitable
mapping is enough to allocate the needed demands, and spares
resources for future ones.

Fig. 2: Mapping cost

The second parameter to evaluate is the SN resources load.
We present the load evaluation for scenario C3 only, because,
within the twelve experiments performed, it is the one with
the maximum VNs size and higher synchrony percentage as
hybrid substrate. Figure 3 shows the cumulative distribution
function (CDF) of the SN nodes CPU and links BW usage.
We note that only 4% of the SN nodes reached 65% of use, and
about 3% of the SN links have BW consumption that exceeds
60%. So, the SN resources seem to have fair load, which is
an important factor since avoiding to fully charge nodes and
links tends increase the possibility of mapping future demands
within the same SN.

Fig. 3: CDF for resource usage in experiment C3

Next, to check closely the model ability in sparing the
synchronous resources, we devised a scenario where all asyn-
chronous SN resources get used. Consequently, synchronous
SN resources are used for mapping asynchronous VNs de-
mands. This case is allowed only when SN is running out of
asynchronous physical resources. To investigate this point, we
modified experiment B2 in the set to experiment B2’, where
the SN in B2’ has 25% asynchronous resources and the VNs
CPU demands increased to 60% of the SN nodes CPU. Figure
4 is a scheme of resource mapping in B2’. The horizontal
axis is the SN resources, divided into synchronous in the
positive portion of the axis, and asynchronous in the negative
one. The same for the VNs synchronous and asynchronous
demands on the vertical axis. Note that, the altitude holds no
information, it is just the positioning (positive or negative).
This division results in four quarters, we number them counter
clockwise. Optimally, the synchronous demands are to be
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mapped on synchronous SN resources, and asynchronous on
asynchronous. This leads to points allocated only in the first
and third quarters. No points are supposed to appear in the
second quarter, since it is meaningless to map synchronous
virtual demands on asynchronous physical resources. The
fourth quarter is supposed to have the minimum number of
allocations, which is an indication of optimizing the use of
synchronous resources (i.e., few mappings of asynchronous
demands on synchronous physical resources). In other works,
that consider fully synchronous SN, all the allocations will
appear in the right half of the plane (quarter 1 and 4), which
is the expensive part. In our work we insert the possibility of
allocations existing in the left half of the plane, which reduces
the cost potential.

Fig. 4: Scheme of resource mapping in experiment B2’

Finally, We evaluate the optimization time for each experi-
ment performed, see Table II. We notice that most of the values
were less than 10 minutes which is a reasonable computational
time. For some experiments the value was high, which might
be a compromise for obtaining an optimal solution.

TABLE II: Embedding time (in minutes)

Group. exp.1 exp.2 exp.3
A 0.85 0.40 0.31
B 37.55 1.64 10.26
C 58.34 27.12 4.47

VI. GRAPH-BASED EXAMPLE FOR HSVN MAPPING

In this section, we present a simple graph-based example
for mapping HSVNs. The goal is to see, in practice, some
aspects considered by our approach.

We consider three VNs with different synchrony demands,
together with a hybrid SN. Both the VNs and the SN are shown
in Figure 5. V N1 represents a virtual infrastructure for an
application equipped with a failure detector, similar to that pre-
sented in Section III, but with four nodes. The links connecting
payload channels are omitted in the figure to improve legibility.
V N1 has hybrid requirements regarding synchrony, whereas
V N2 and V N3 represent fully synchronous and asynchronous
applications, respectively. By solving the MIP for the example
under analysis, every virtual node was mapped on one physical
node, and each virtual link was mapped on one physical
path, where a physical path can be one physical link, or a
concatenation of several physical links. Figure 5 shows the
optimal solution found for nodes and links mapping.

In the light of this example, we point at some aspects
previously detailed in the paper: i) our mapping approach
considers both hybrid VNs (e.g., V N1) and homogeneous VNs
(e.g., V N2 and V N3), ii) the proposed model aims at sparing
the synchronous resources, e.g., an asynchronous virtual link
(fd12, fd

1
4), was mapped on a path of three asynchronous links

{(b,h),(h,a),(a,c)}, connecting b to c, to avoid mapping it on a
synchronous shorter path of one link {(b,c)}, connecting the
same two nodes, iii) the HSVN allows resource sharing, which
is important, especially for sharing the synchronous resources,
e.g., the synchronous nodes c, and d could be used both for
mapping V N1 and V N2. The same with the synchronous link
(d, c), finally, iv) regarding mapping cost, we ran the optimizer
for the adopted example in two cases, first, with a hybrid SN as
illustrated in Figure 5, secondly, with a fully synchronous SN.
The O.F. values obtained were 5400 and 11400 respectively
in both cases. This shows clearly that, the use of hybrid SN,
together with a suitable mapping process, minimizes the cost
considerably.

VII. DISCUSSION

In this paper, we have proposed the concept of Hybrid
Synchrony Virtual Networks, i.e., virtual networks that have a
subset of nodes and links that obey time bounds for processing
and communication. The rationale behind it is, at one hand,
that there is an important class of systems, namely fault-
tolerant distributed systems, that can benefit from the hybrid
synchrony. On the other hand, the embedding of several virtual
networks in a substrate network allows resource sharing, which
is important since synchronous resources are expensive. The
proposed embedding mathematical model adopts these aspects.

Our results show that our model can host hybrid synchrony
VNs in an economical way, which is achieved mainly through:
1) the usage of a hybrid synchronous SN instead of a fully
synchronous one, and 2) synchronous resources are spared, in
other words, mapping asynchronous virtual demands on top of
synchronous physical resources is considered the last resource
invested only before rejecting the demand. Moreover, the
model reflects a reasonable load distribution on the underlying
nodes and links, and acceptable optimization time.

Our work can be generalized in three directions: (i) al-
though we have dedicated enough efforts to illustrate perfect
failure detectors, a wider set of applications benefit from hybrid
synchrony. For instance, general purpose applications would
communicate mainly through asynchronous channels and still
rely on timely execution triggers. Thus, certain actions would
be executed in a timely fashion (e.g., checkpointing [22], elec-
tion [15], or any round-based agreement); (ii) the hybrid SN we
are proposing, combined with our embedding model, can host
not only hybrid synchrony applications, but also homogeneous
ones (fully synchronous or fully asynchronous); (iii) while in
this step of our work we are concerned with synchrony, we
envisage that similar models may, in the future, be used to
denote other kinds of specific functionalities expected from
the resources. such as subsets of nodes and links with special
security or resilience features.

Our future work goes in the direction of online mapping
for the HSVNs, when the SN resources, or/and the VNs
demands are time variant. The mapping approach proposed
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V N1 links SN path V N2 links SN path V N3 links SN path
(fd1, fd2) {(a, b)} (pa1, pa2) {(d, c)} (pa1, pa2) {(h, v)}
(fd1, fd3) {(a, e), (e, d)} (pa1, pa3) {(h, e)}
(fd1, fd4) {(a, c)}
(fd2, fd3) {(b, g), (g, d)}
(fd2, fd4) {(b, h), (h, a), (a, c)}
(fd3, fd4) {(d, c)}

Fig. 5: Virtual networks mapping

in this paper, allows only static resource allocation, and thus,
does not answer the online mapping. For this reason, we are
developing a heuristic algorithm, which is supposed to allow
resource allocation for the HSVNs in a dynamic manner.
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